Analysis of Kinship and Population Genetic Structure of 53 Apricot Resources Based on Whole Genome Resequencing
<p>Statistics on the number of different types of single base substitutions.</p> "> Figure 2
<p>Heat map of sample genetic relationships. Pairs from the first sample to the last. The larger the value, the closer to red; that is, the closer the relationship between two individuals.</p> "> Figure 3
<p>Comparison of genetic relationship matrices and genetic distances. DT: Sample from Datong City, Shanxi Province; HS: from Hohhot, Inner Mongolia; LZ: samples from Lanzhou City, Gansu Province; TG: from Jinzhong City, Shanxi Province; SX: from Yulin City, Shaanxi Province. A total of 53 common apricot varieties were classified into four taxa (Q1, Q2, Q3, and Q4).</p> "> Figure 4
<p>PCA, principal component analysis. Each color represents a group of species. S1 (Red): Group I; S2 (Orange): Group II; S3 (Green): Group III; S4 (Blue): Group IV.</p> "> Figure 5
<p>Cross-validation error rate line chart.</p> "> Figure 6
<p>Analysis of SNP population structure in 53 common apricot varieties (K = 4). Each column of vertical grids represents the genetic background of a sample; each color block represents an estimated ancestor, and the proportion of the vertical grid occupied by each color block represents the proportion of that ancestor that contributes to the genetic background of that sample. Red for G1; Orange for G2; Green for G3; Blue for G4.</p> "> Figure 7
<p>Three-dimensional PCA distribution maps of different groups. (<b>A</b>) The three-dimensional PCA of the samples when the varieties are divided into four groups; (<b>B</b>) the three-dimensional PCA of the samples when the varieties are divided into six groups. Varieties with the same color in the PCA plot were considered to be in the same line.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DNA Extraction
2.3. Library Preparation and Sequencing
2.4. Data Analysis
3. Results
3.1. DNA and Sequencing Quality Control
3.2. Variant Analysis
3.3. G Matrix Analysis
3.4. Cluster Analysis
3.5. Kinship Relationship Analysis
3.6. Principal Component Analysis
3.7. Population Genetic Structure Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Yang, L.; Jiang, F.; Zhang, M.; Sun, H.; Wang, Y. Estimation of Genome Size of Apricots Based on Flow Cytometry. Acta Agric. Boreali-Sin. 2020, 35, 32–38. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhang, Z. Chinese Fruit Tree Annals-Apricot Rolls; China Forestry Publishing House: Beijing, China, 2003. [Google Scholar]
- Xia, L.; Song, W.; Zhang, W.; Huang, Z.; Chen, L.; Cui, Z.; Chen, Y. Zaohongyan, a superior early-maturing and firmness flesh Apricot cultivar. J. Fruit Sci. 2021, 38, 1207–1210. [Google Scholar] [CrossRef]
- Zhao, Q.F.; Huang, L.; Wang, M.; Liu, X.; Zhang, X.; Ma, X. Genetic relationship and population genetic structure analysis of 100 accessions of grape germplasm resources based on SSR markers. J. Fruit Sci. 2021, 38, 1217–1230. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Wang, D.; Jing, C.; Wu, X. Genetic diversity analysis of Prunus armeniaca L. germplasm resources based on SSR markers. Mol. Plant Breed. 2023, 1–22. Available online: https://kns.cnki.net/kcms2/detail/46.1068.S.20230724.1435.007.html (accessed on 3 December 2024).
- Yang, H.H.; Chen, X.; Feng, B.; Wu, Y. Assessment of Prunus armeniaca limeixing germplasm by RAPD. J. Fruit Sci. 2007, 24, 303–307. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, D.; Liu, W.; Liu, S.; Zhang, A.; Liu, N.; Zhang, Y. enetic Diversity and Population Structure of the North China Populations of Apricot(Prunus armeniaca L.). Sci. Agric. Sin. 2013, 46, 89–98. [Google Scholar] [CrossRef]
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F.; et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ni, X. The Chloroplast Genome of Prunus mume; The Prunus Mume Genome. Compendium of Plant Genomes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 85–91. [Google Scholar]
- Shirasawa, K.; Isuzugawa, K.; Ikenaga, M.; Saito, Y.; Yamamoto, T.; Hirakawa, H.; Isobe, S. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res. 2013, 24, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhang, J.; Wang, S.; Yang, L.; Luo, Y.; Gao, S.; Zhang, M.; Wu, S.; Hu, S.; Sun, H.; et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic. Res. 2019, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, D.; Yu, K.; Ji, J.; Liu, N.; Zhang, Y.; Xu, M.; Zhang, Y.; Ma, X.; Liu, S.; et al. Frequent germplasm exchanges drive the high genetic diversity of Chinese-cultivated common apricot germplasm. Hortic. Res. 2021, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Niu, L.N.; Li, Z.W.; Xue, T.; Chai, M.; Luo, Y.; He, J. Genetic diversity of Strawberry Mottle virus based on cp geness. Acta Agric. Boreali-Occident. Sin. 2023, 32, 2007–2013. [Google Scholar] [CrossRef]
- Du, Y.; Yu, X.; Wang, P.; Li, Q.; Wang, Y.; Zhang, B. Genetic diversity analysis of wild Medicago falcata L. in Xinjiang based on SNP molecular markers. Feed Res. 2024, 47, 68–73. [Google Scholar] [CrossRef]
- Yu, D.N.; Wang, T.; Tie, Z.; Qin, F.; La, Y.; Ma, X.; Zhang, D.; Zha, X.; Liang, C. Population structure analysis of qilian white tibetan sheep group based on whole genome resequencing. China Herbiv. Sci. China Herbiv. Sci. 2023, 43, 12–16. [Google Scholar] [CrossRef]
- Li, G. Genetic Diversity of Chinese PCNA Persimmon Based on Whole Genome Resequencing. Master’s Dissertation, Huazhong Agricultural University, Wuhan, China, 2022. [Google Scholar] [CrossRef]
- Han, Z.; Han, W.; Xie, R.; Guo, J.; Yi, L.; Hou, J. Analysis of genetic diversity of 148 Potato germplasm based on SNP Markers from whole genome resequencing. Acta Bot. Boreali-Occident. Sin. 2021, 41, 1302–1314. [Google Scholar]
- Li, Q.; Zheng, G. Research and application of SNP molecular marker technology in crop seed detection. China Seed Ind. 2019, 16, 16–17. [Google Scholar] [CrossRef]
- Guan, L. Development of SSR and SNP Markers Based on Whole-Genome Variants and Their Potentional Application Peach. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar]
- Wang, X.; Liu, F.; Li, M.; Zhang, T.; LAi, Q.; Liu, X.; Xiong, Y.; Tang, X.; Li, C.; Wang, Y. Genetic diversity and structure analysis of Gulin wild tea resources based on GBS technology. Southwest China J. Agric. Sci. 2023, 36, 1141–1149. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Y.; Yang, C.; Wang, B.; Qiao, J.; Yin, S.; Zhou, H.; Li, F. Genetic relationship analysis of Paulownia species using whole genome re-sequencing. J. Cent. South Univ. For. Technol. 2023, 43, 1–10. [Google Scholar] [CrossRef]
- Vanraden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, K.; Wang, D.; Zhao, J.; Zhang, C.; Cong, P.; Liu, L.; Li, L.; Piao, J. The genetic diversity and population structure analysis on Malus baccata (L.) borkh from 7 Sources. Sci. Agric. Sin. 2018, 51, 3766–3777. [Google Scholar] [CrossRef]
Number | Sample Name | Sample Code | Alignment Rate (%) | Coverage (%) | Aver-Dep |
---|---|---|---|---|---|
1 | Huangjintianxing | HJTX | 97.57 | 90.04 | 9.25 |
2 | Hongmeixing | HMX | 97.96 | 89.77 | 15.48 |
3 | Lingnong3 | LN3 | 98.04 | 89.46 | 16.93 |
4 | Lingnong1 | LN1 | 97.95 | 89.07 | 15.55 |
5 | Hongxiangmi | HXM | 97.85 | 92.60 | 13.15 |
6 | Huangbanxing | HB | 97.72 | 90.05 | 15.36 |
7 | Jinmeixing | JMX | 97.79 | 90.82 | 15.58 |
8 | Kaitexing | KT | 98.00 | 88.99 | 12.52 |
9 | Sanyuandajiexing | SYDJ | 97.67 | 91.20 | 16.55 |
10 | Xiangxing | XX | 97.53 | 89.95 | 15.20 |
11 | Xintexing | XT | 97.68 | 89.76 | 15.16 |
12 | Liaoninglijiexing | LNLJX | 95.87 | 88.89 | 13.13 |
13 | Hamixing | HAMX | 98.10 | 89.46 | 14.84 |
14 | Boke1 | BK1 | 97.84 | 89.67 | 14.94 |
15 | Muguaxing | MGX | 97.92 | 90.03 | 16.94 |
16 | Gongfoxing | GFX | 97.43 | 89.91 | 13.92 |
17 | Meixing | MX | 97.64 | 90.19 | 16.22 |
18 | Yingtiaojinxing | YTJX | 97.89 | 89.46 | 14.77 |
19 | Xiangbaixing | XBX | 97.95 | 90.02 | 14.81 |
20 | Yidianhong | YDH | 97.70 | 89.39 | 13.92 |
21 | Yanggaodajiexing | YGDJX | 98.07 | 90.69 | 14.47 |
22 | Pingliangdajiexing | PLDJX | 97.79 | 89.67 | 14.00 |
23 | Zaoshuliguangxing | ZSLGX | 97.96 | 88.79 | 13.47 |
24 | Ruantiaojinxing | RTJX | 97.92 | 89.40 | 14.55 |
25 | Liguangwanshuxing | LGWSX | 97.97 | 89.94 | 13.14 |
26 | Youxing | YX | 97.53 | 89.95 | 15.20 |
27 | Baishuixing | BSX | 97.50 | 93.08 | 63.27 |
28 | Jiguang | JG | 97.76 | 92.55 | 36.41 |
29 | Wanhong | WH | 97.85 | 93.27 | 40.78 |
30 | Jinmei | JM | 97.47 | 93.27 | 80.01 |
31 | Jidanxing | JDX | 97.40 | 90.61 | 11.82 |
32 | Yidalixing | YDLX | 97.75 | 89.49 | 9.96 |
33 | Daxingmei | DXM | 97.55 | 90.59 | 12.22 |
34 | Luotuohuang | LTH | 97.81 | 89.82 | 9.97 |
35 | Taipinghong | TPH | 97.42 | 91.24 | 19.09 |
36 | Laoshanhong | LSH | 96.92 | 89.66 | 8.64 |
37 | Mengdajiexing | MDJ | 96.10 | 89.93 | 10.13 |
38 | Wuyuexian | WYX | 97.79 | 88.27 | 7.31 |
39 | Shanxidajiexing | SXDX | 97.43 | 89.29 | 10.14 |
40 | Jintaiyang | JTY | 97.61 | 92.70 | 10.66 |
41 | Yanzhihong | YZH | 97.63 | 88.30 | 7.52 |
42 | Fenyanzhihong | FYZH | 97.77 | 91.86 | 31.76 |
43 | Baixing | BX | 97.96 | 96.43 | 12.26 |
44 | Manaixing | MNX | 97.92 | 88.72 | 8.58 |
45 | Houtouxing | HTX | 97.79 | 94.84 | 12.68 |
46 | Chuanhong | CH | 97.83 | 90.05 | 11.86 |
47 | Fengyuanxing | FYX | 97.69 | 90.90 | 14.64 |
48 | Fengyuan29 | FY29 | 97.76 | 90.58 | 11.28 |
49 | Xindianbaohexing | XDB | 97.82 | 90.40 | 13.45 |
50 | Lanzhoudajiexing | LDJ-3 | 97.65 | 91.43 | 13.80 |
51 | Dongwudajiexing | DWDJ-3 | 97.32 | 90.87 | 12.10 |
52 | Dongxiangdajiexing | DTD | 97.76 | 89.10 | 11.89 |
53 | Dongxiangbaohexing | DTB | 97.48 | 89.90 | 14.67 |
Genomic Position | SNP Number of Loci |
---|---|
Nonsynonymous | 3,323,008 |
Stop gain | 68,981 |
Synonymous | 3,028,064 |
Stop loss | 16,410 |
Exonic | 6,436,463 |
Intronic | 14,853,605 |
Intergenic | 48,392,511 |
Upstream | 8,897,323 |
Downstream | 8,246,616 |
Upstream/Downstream | 1,480,979 |
Splicing | 24,741 |
Genomic Position | InDel Number of Point Points |
---|---|
Frameshift deletion | 170,474 |
Frameshift insertion | 88,397 |
UTR5 | 381 |
Non-frameshift deletion | 81,518 |
Non-frameshift insertion | 57,623 |
Stop gain | 8807 |
Stoploss | 3344 |
Downstream | 1,741,285 |
Exonic | 410,163 |
Intergenic | 7,513,932 |
Intronic | 2,954,011 |
Splicing | 12,788 |
Upstream | 1,931,934 |
Upstream/Downstream | 328,046 |
Sample Combination | Genetic Distance | Genetic Distance Ranking | Affiliation | Relationship Ranking |
---|---|---|---|---|
PLDJX × BK1 | 1.4122059 | 1 | 0.005700 | 17 |
PLDJX × XBX | 1.4097709 | 2 | 0.005570 | 16 |
XBX × BK1 | 1.4068449 | 3 | 0.005380 | 14 |
LTH × WYX | 1.0724071 | 4 | 0.008011 | 26 |
YZH × HMX | 1.0648852 | 5 | 0.006841 | 25 |
JM × YZH | 1.0563859 | 6 | 0.005550 | 15 |
JM × YZH | 1.0540115 | 7 | 0.006232 | 21 |
CH × YZH | 1.0524688 | 8 | 0.006614 | 23 |
HBX × SXDJX | 1.0507799 | 9 | 0.006166 | 19 |
XX × HBX | 1.0439993 | 10 | 0.004860 | 4 |
JM × HMX | 1.0262081 | 11 | 0.004150 | 1 |
RTJX × HAMX | 1.0208997 | 12 | 0.005090 | 12 |
YTJX × HAMX | 1.0196109 | 13 | 0.005020 | 9 |
HAMX × CH | 1.0188594 | 14 | 0.004860 | 5 |
RTJX × YTJX | 1.0188064 | 15 | 0.004960 | 7 |
HAMX × GFX | 1.0187374 | 16 | 0.005050 | 11 |
RTJX × GFX | 1.0187374 | 17 | 0.005030 | 10 |
JM × CH | 1.017809 | 18 | 0.003750 | 2 |
YTJX × GFX | 1.0164344 | 19 | 0.005000 | 8 |
LZDJX × YZH | 1.010440 7 | 20 | 0.010713 | 30 |
LGWSX × HJTX | 0.9968687 | 22 | 0.006652 | 24 |
DWDJ-3 × MDJ | 0.9960544 | 24 | 0.006255 | 22 |
HJTX × YGDJX | 0.9889232 | 26 | 0.006221 | 20 |
HJTX × JMX | 0.9878738 | 27 | 0.006029 | 18 |
YGDJX × LGWSX | 0.9703597 | 29 | 0.005100 | 13 |
LGWSX × JMX | 0.9690487 | 30 | 0.004900 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Q.; Qing, J.; He, Y. Analysis of Kinship and Population Genetic Structure of 53 Apricot Resources Based on Whole Genome Resequencing. Curr. Issues Mol. Biol. 2024, 46, 14106-14118. https://doi.org/10.3390/cimb46120844
Xin Q, Qing J, He Y. Analysis of Kinship and Population Genetic Structure of 53 Apricot Resources Based on Whole Genome Resequencing. Current Issues in Molecular Biology. 2024; 46(12):14106-14118. https://doi.org/10.3390/cimb46120844
Chicago/Turabian StyleXin, Qirui, Jun Qing, and Yanhong He. 2024. "Analysis of Kinship and Population Genetic Structure of 53 Apricot Resources Based on Whole Genome Resequencing" Current Issues in Molecular Biology 46, no. 12: 14106-14118. https://doi.org/10.3390/cimb46120844
APA StyleXin, Q., Qing, J., & He, Y. (2024). Analysis of Kinship and Population Genetic Structure of 53 Apricot Resources Based on Whole Genome Resequencing. Current Issues in Molecular Biology, 46(12), 14106-14118. https://doi.org/10.3390/cimb46120844