Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells
<p>Phase contrast images, obtained using 10× objective, presenting the morphology (<b>A</b>) and viability (<b>B</b>) of SK-N-SH cells exposed at different ethanol concentrations (<span class="html-italic">p</span>-value < 0.05 was considered statistically significant, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.005).</p> "> Figure 2
<p>The morphology of SK-N-SH cells treated with CoCl<sub>2</sub> or DFX (phase contrast images obtained using 20× objective). The black border shows the region presented on the right (magnified images).</p> "> Figure 3
<p>Quantification of cell viability and ROS release at 6 and 24 h in ethanol-exposed and non-exposed SK-N-SH cells treated with different concentrations of DFX and CoCl<sub>2</sub>. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.005.</p> "> Figure 4
<p>Heatmap showing the levels of apoptotic gene expression in ethanol-exposed and non-exposed cells treated with hypoxic agents. Each numerical data was graphically represented using warm colors for low-value data points and cool colors representing high-value data points.</p> "> Figure 5
<p>The effects of hypoxia mimetic treatment on apoptosis-related proteins in chronic ethanol-treated SK-N-SH cells. The total protein lysates (400 μg) were subjected to proteome profiler array analysis. (<b>A</b>) Dot-blot image: 1. Bcl-2; 2. Bcl-x; 3. HIF-1α; 4. Claspin; 5. Phospho-p53 (S15); 6. Phospho-p53 (S46); 7. Phospho-p53 (S392); 8. TNF RI/TNFRSF1A. (<b>B</b>) Fold change compared to ethanol-unexposed cells (logarithmic scale). The intensity of each spot was quantified using ImageJ software, and the resulted graph shows fold change of proteins measured after hypoxic treatment relative to untreated ethanol-unexposed control cells.</p> "> Figure 5 Cont.
<p>The effects of hypoxia mimetic treatment on apoptosis-related proteins in chronic ethanol-treated SK-N-SH cells. The total protein lysates (400 μg) were subjected to proteome profiler array analysis. (<b>A</b>) Dot-blot image: 1. Bcl-2; 2. Bcl-x; 3. HIF-1α; 4. Claspin; 5. Phospho-p53 (S15); 6. Phospho-p53 (S46); 7. Phospho-p53 (S392); 8. TNF RI/TNFRSF1A. (<b>B</b>) Fold change compared to ethanol-unexposed cells (logarithmic scale). The intensity of each spot was quantified using ImageJ software, and the resulted graph shows fold change of proteins measured after hypoxic treatment relative to untreated ethanol-unexposed control cells.</p> "> Figure 6
<p>Heatmap analysis of stress and metabolic gene expression profile induced by DFX and CoCl<sub>2</sub> on ethanol-exposed SK-N-SH cells. Each numerical data was graphically represented using warm colours representing low-value data points and cool colours representing high-value data points.</p> "> Figure 7
<p>The effects of ethanol treatment on the expression of the gene that codes metabolic enzymes.</p> "> Figure 8
<p>The effects of hypoxic treatment on stress-related proteins in long-term ethanol-exposed SK-N-SH cells. The total protein lysates (100 μg) were subjected to the proteome profiler stress array analysis. (<b>A</b>) Dot-blot image: 1. Bcl-2; 2. Carbonic Anhydrase IX (CA9); 3. COX-2; 4. HIF-1α; 5. HIF-2α (EPAS1); 6. Phospho-p53 (S46); 7. PON1; 8. PON3; 9. Phospho-JNK Pan (T183/Y185. (<b>B</b>) Fold change relative to control cells (unexposed to ethanol) (logarithmic scale). The intensity of each spot was quantified using ImageJ software. The resulting graph shows the fold change of proteins measured for hypoxic treatment relative to control cells maintained without ethanol and hypoxic agents.</p> "> Figure 9
<p>The effects of ethanol and hypoxic treatment on the gene expressions involved in pyroptosis and inflammation. Each numerical data was graphically represented using warm colors representing low-value data points and cool colours representing high-value data points.</p> "> Figure 10
<p>Summary data time courses of migration/wound healing of treated and untreated SK-N-SH cells; (<b>A</b>) SK-N-SH cells exposed or non-exposed at EtOH 50 mM for 9 weeks; (<b>B</b>) SK-N-SH cells treated post-wounding with 50 µM, respective 100 µM, DFX or CoCl<sub>2</sub> for 24 h; (<b>C</b>) SK-N-SH cells grown in media with 50 mM EtOH for 9 weeks and treated post-wounding with 50 µM, respective 100 µM, DFX or CoCl<sub>2</sub> for 24 h; (<b>D</b>) SK-N-SH cells grown in media without/with 50 mM EtOH for 9 weeks and treated post-wounding with 50 µM, respective 100 µM, DFX or CoCl<sub>2</sub> for 24 h; (<b>E</b>) Acridine Orange/Propidium Iodide Stain (fluorescence, 10× objective).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Viability of SK-N-SH and Setting Ethanol Long-Term Exposure Concentrations
2.2. Evaluation of the Effect of Hypoxia Inducers
2.3. Evaluation of the Effect of Hypoxia Inducers on the Viability of Long-Term Ethanol-Exposed SK-N-SH Cells
2.4. Evaluation of the Effect of Hypoxia Inducers on ROS Release by Long-Term Ethanol-Exposed SK-N-SH Cells
2.5. Apoptosis Evaluation in Ethanol-Exposed and Non-Exposed Cells Treated with Hypoxic Agents
2.6. Analysis of Stress Effects Induced by DFX and CoCl2 on Alcohol-Treated SK-N-SH Cells
2.7. Analysis of Inflammatory Effects Induced by DFX and CoCl2 on Ethanol-Exposed Neural Cells
2.8. Evaluation of Cell Recovery after Hypoxic Treatment Using the Scratch Assay
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anjum, A.; Yazid, M.D.; Fauzi Daud, M.; Idris, J.; Ng, A.M.H.; Selvi Naicker, A.; Ismail, O.H.R.; Athi Kumar, R.K.; Lokanathan, Y. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef]
- Hagen, E.M. Acute complications of spinal cord injuries. World J. Orthop. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Yanagisawa, S.; Katoh, H.; Imai, T.; Nomura, S.; Watanabe, M. The relationship between inflammasomes and the endoplasmic reticulum stress response in the injured spinal cord. Neurosci. Lett. 2019, 705, 54–59. [Google Scholar] [CrossRef]
- Onose, G.; Anghelescu, A.; Blendea, C.D.; Ciobanu, V.; Daia, C.O.; Firan, F.C.; Munteanu, C.; Oprea, M.; Spinu, A.; Popescu, C. Non-invasive, non-pharmacological/bio-technological interventions towards neurorestoration upshot after ischemic stroke, in adults—Systematic, synthetic, literature review. Front. Biosci. 2021, 26, 1204–1239. [Google Scholar] [CrossRef]
- Rowland, J.W.; Hawryluk, G.W.J.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, M.; Ueyama, T.; Nemoto, K.; Tamaki, T.; Senba, E. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J. Neurotrauma 2000, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Rotariu, M.; Turnea, M.; Ionescu, A.M.; Popescu, C.; Spinu, A.; Ionescu, E.V.; Oprea, C.; Țucmeanu, R.E.; Tătăranu, L.G.; et al. Main Cations and Cellular Biology of Traumatic Spinal Cord Injury. Cells 2022, 11, 2503. [Google Scholar] [CrossRef]
- Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.C.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; et al. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 907. [Google Scholar] [CrossRef]
- Stroud, M.W.; Bombardier, C.H.; Dyer, J.R.; Rimmele, C.T.; Esselman, P.C. Preinjury alcohol and drug use among persons with spinal cord injury: Implications for rehabilitation. J. Spinal Cord Med. 2011, 34, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Stoica, S.I.; Tănase, I.; Ciobanu, V.; Onose, G. Initial researches on neuro-functional status and evolution in chronic ethanol consumers with recent traumatic spinal cord injury. J. Med. Life 2019, 12, 97–112. [Google Scholar] [CrossRef]
- Kerendi, F.; Halkos, M.E.; Kin, H.; Corvera, J.S.; Brat, D.J.; Wagner, M.B.; Vinten-Johansen, J.; Zhao, Z.Q.; Forbess, J.M.; Kanter, K.R.; et al. Upregulation of hypoxia inducible factor is associated with attenuation of neuronal injury in neonatal piglets undergoing deep hypothermic circulatory arrest. J. Thorac. Cardiovasc. Surg. 2005, 130, 1079.e1–1079.e10. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Sha, X.Y.; Wu, Y.N.; Chen, M.T.; Zhong, J.X. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen. Res. 2020, 15, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yang, H.; Fang, B.; Zhang, Z.; Wang, Y.; Dai, Y. mfat-1 transgene protects cultured adult neural stem cells against cobalt chloride-mediated hypoxic injury by activating Nrf2/ARE pathways. J. Neurosci. Res. 2018, 96, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Brütting, C.; Narasimhan, H.; Hoffmann, F.; Kornhuber, M.E.; Staege, M.S.; Emmer, A. Investigation of endogenous retrovirus sequences in the neighborhood of genes up-regulated in a neuroblastoma model after treatment with hypoxia-mimetic cobalt chloride. Front. Microbiol. 2018, 9, 287. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, G.; Zhang, Y.L.; He, H.W.; Yu, B.Q.; Hong, Y.M.; You, W.; Li, X. Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells. Neural Regen. Res. 2020, 15, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.L.; Lu, M.Y.; Liu, F.; Mei, Y.; Zhang, X.J.; Zhang, H.; Zan, J.; Sun, X.O.; Tan, W. Isosteviol Sodium Protects Neural Cells Against Hypoxia-Induced Apoptosis Through Inhibiting MAPK and NF-κB Pathways. J. Stroke Cerebrovasc. Dis. 2019, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Chounchay, S.; Noctor, S.C.; Chutabhakdikul, N. Microglia enhances proliferation of neural progenitor cells in an in vitro model of hypoxic-ischemic injury. EXCLI J. 2020, 19, 950–961. [Google Scholar] [CrossRef]
- Simonart, T.; Degraef, C.; Andrei, G.; Mosselmans, R.; Hermans, P.; Van Vooren, J.P.; Noel, J.C.; Boelaert, J.R.; Snoeck, R.; Heenen, M. Iron chelators inhibit the growth and induce the apoptosis of Kaposi’s sarcoma cells and of their putative endothelial precursors. J. Investig. Dermatol. 2000, 115, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, E.M.; Schuh, C.D.; Drücker, P.; Haenni, D.; Pearson, A.; Ghazi, S.; Bugarski, M.; Polesel, M.; Duss, M.; Landau, E.M.; et al. The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability. Sci. Rep. 2020, 10, 1577. [Google Scholar] [CrossRef] [Green Version]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Uesaka, M.; Nakashima, K. Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130511. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Bautista, J.A.; Acevo-Rodríguez, P.S.; Castro-Obregón, S. Programmed Cell Senescence in the Mouse Developing Spinal Cord and Notochord. Front. Cell Dev. Biol. 2021, 9, 587096. [Google Scholar] [CrossRef] [PubMed]
- Oda, K.; Arakawa, H.; Tanaka, T.; Matsuda, K.; Tanikawa, C.; Mori, T.; Nishimori, H.; Tamai, K.; Tokino, T.; Nakamura, Y.; et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by ser-46-phosphorylated p53. Cell 2000, 102, 849–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, R.V.; Erickson, L.A.; Jin, L.; Kulig, E.; Qian, X.; Cheville, J.C.; Scheithauer, B.W. p27(kip1): A multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol. 1999, 154, 313–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcagno, A.M.; Ambudkar, S. V Molecular mechanisms of drug resistance in single-step and multi-step drug-selected cancer cells. Methods Mol. Biol. 2010, 596, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Stoica, S.I.; Bleotu, C.; Ciobanu, V.; Ionescu, A.M.; Albadi, I.; Onose, G.; Munteanu, C. Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery. Biomedicines 2022, 10, 481. [Google Scholar] [CrossRef]
- Royds, J.A.; Dower, S.K.; Qwarnstrom, E.E.; Lewis, C.E. Response of tumour cells to hypoxia: Role of p53 and NFkB. J. Clin. Pathol. Mol. Pathol. 1998, 51, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, T. The Nuclear Factor NF-kB Pathway in Inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.; Monteiro, A.; Salgado, A.J.; Monteiro, S.; Silva, N.A. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int. J. Mol. Sci. 2022, 23, 13833. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Cheriyan, T.; Ryan, D.J.; Weinreb, J.H.; Cheriyan, J.; Paul, J.C.; Lafage, V.; Kirsch, T.; Errico, T.J. Spinal cord injury models: A review. Spinal Cord 2014, 52, 588–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, H.R.; Zhang, H.; Chen, Y.; Bohnsack, J.P.; Shieh, A.W.; Kusumo, H.; Drnevich, J.; Liu, C.; Grayson, D.R.; Maienschein-Cline, M.; et al. Unraveling the epigenomic and transcriptomic interplay during alcohol-induced anxiolysis. Mol. Psychiatry 2022, 27, 4624–4632. [Google Scholar] [CrossRef] [PubMed]
- Alifimoff, J.K.; Firestone, L.L.; Miller, K.W. Anaesthetic potencies of primary alkanols: Implications for the molecular dimensions of the anaesthetic site. Br. J. Pharmacol. 1989, 96, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Noll, E.C.; Rodney, W.M. Survival After a Serum Ethanol Concentration of 11/2%. Lancet 1982, 320, 1394. [Google Scholar] [CrossRef] [PubMed]
- Birková, A.; Hubková, B.; Čižmárová, B.; Bolerázska, B. Current view on the mechanisms of alcohol-mediated toxicity. Int. J. Mol. Sci. 2021, 22, 9686. [Google Scholar] [CrossRef]
- Zhou, F.C.; Balaraman, Y.; Teng, M.; Liu, Y.; Singh, R.P.; Nephew, K.P. Alcohol Alters DNA Methylation Patterns and Inhibits Neural Stem Cell Differentiation. Alcohol Clin. Exp. Res. 2011, 35, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Cravo, M.L.; Camilo, M.E. Hyperhomocysteinemia in chronic alcoholism: Relations to folic acid and vitamins B6 and B12 status. Nutrition 2000, 16, 296–302. [Google Scholar] [CrossRef]
- Mason, J.B.; Choi, S.W. Effects of alcohol on folate metabolism: Implications for carcinogenesis. Alcohol 2005, 35, 235–241. [Google Scholar] [CrossRef]
- Giovannucci, E. Trans-HHS Workshop: Diet, DNA Methylation Processes and Health Epidemiologic Studies of Folate and Colorectal Neoplasia: A Review 1. J. Nutr. 2002, 132, 2350–2355. Available online: https://academic.oup.com/jn/article-abstract/132/8/2350S/4687576 (accessed on 10 February 2023). [CrossRef] [Green Version]
- Olsen, R.W.; Li, G.D.; Wallner, M.; Trudell, J.R.; Bertaccini, E.J.; Lindahl, E.; Miller, K.W.; Alkana, R.L.; Davies, D.L. Structural models of ligand-gated ion channels: Sites of action for anesthetics and ethanol. Alcohol Clin. Exp. Res. 2014, 38, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Abrahao, K.P.; Salinas, A.G.; Lovinger, D.M. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017, 96, 1223–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, H.W.; Petersen, E.N.; Cabanos, C.; Murphy, K.R.; Pavel, M.A.; Hansen, A.S.; Ja, W.W.; Hansen, S.B. A Molecular Target for an Alcohol Chain-Length Cutoff. J. Mol. Biol. 2019, 431, 196–209. [Google Scholar] [CrossRef] [PubMed]
- Lopachin, R.M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol. 2014, 27, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Deitrich, R. Ethanol as a Prodrug: Brain Metabolism of Ethanol Mediates Its Reinforcing Effects—A Commentary. Alcohol Clin. Exp. Res. 2011, 35, 581–583. [Google Scholar] [CrossRef]
- Antonio, A.M.; Druse, M.J. Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons. Brain Res. 2008, 1204, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Wei, Y.H. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. 2007, 232, 592–606. [Google Scholar]
- Ramachandran, V.; Watts, L.T.; Maffi, S.K.; Chen, J.; Schenker, S.; Henderson, G.I. Ethanol-Induced Oxidative Stress Precedes Mitochondrially Mediated Apoptotic Death of Cultured Fetal Cortical Neurons. J. Neurosci. Res. 2003, 74, 577–588. [Google Scholar] [CrossRef]
- Stoica, S.I.; Onose, G.; Hoteteu, M.; Munteanu, C. Effects of ethanol and deferoxamine on rat primary glial cell cultures, in regard with ischemia induced by traumatic spinal cord injury. Balneo PRM Res. J. 2022, 13, 502. [Google Scholar] [CrossRef]
- Koh, S.H.; Kim, S.H.; Kwon, H.; Kim, J.G.; Kim, J.H.; Yang, K.H.; Kim, J.; Kim, S.U.; Yu, H.J.; Do, B.R.; et al. Phosphatidylinositol-3 kinase/Akt and GSK-3 mediated cytoprotective effect of epigallocatechin gallate on oxidative stress-injured neuronal-differentiated N18D3 cells. Neurotoxicology 2004, 25, 793–802. [Google Scholar] [CrossRef]
- Müller, N.; Alteheld, B.; Stehle, P. Tomato products and lycopene supplements: Mandatory components in nutritional treatment of cancer patients? Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 657–660. [Google Scholar] [CrossRef]
- Zhang, X.L.; Cohen, H.L.; Porjesz, B.; Begleiter, H. Mismatch negativity in subjects at high risk for alcoholism. Alcohol Clin. Exp. Res. 2001, 25, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. J. Neurochem. 2004, 88, 1555–1569. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, P.H.; Wiesener, M.S.; Chang, G.W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.E.; Wykoff, C.C.; Pugh, C.W.; Maher, E.R.; Ratcliffe, P.J. The tumoursuppressor proteinVHLtargets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 459, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Takacova, M.; Barathova, M.; Zatovicova, M.; Golias, T.; Kajanova, I.; Jelenska, L.; Sedlakova, O.; Svastova, E.; Kopacek, J.; Pastorekova, S. Carbonic anhydrase IX—Mouse versus human. Int. J. Mol. Sci. 2020, 21, 246. [Google Scholar] [CrossRef] [Green Version]
- Ciccone, L.; Cerri, C.; Nencetti, S.; Orlandini, E. Carbonic anhydrase inhibitors and epilepsy: State of the art and future perspectives. Molecules 2021, 26, 6380. [Google Scholar] [CrossRef]
- Kasuya, Y.; Umezawa, H.; Hatano, M. Stress-activated protein kinases in spinal cord injury: Focus on roles of p38. Int. J. Mol. Sci. 2018, 19, 867. [Google Scholar] [CrossRef] [Green Version]
- Aviram, M.; Rosenblat, M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med. 2004, 37, 1304–1316. [Google Scholar] [CrossRef]
- Wilson, R.B.; Solass, W.; Archid, R.; Weinreich, F.J.; Königsrainer, A.; Reymond, M.A. Resistance to anoikis in transcoelomic shedding: The role of glycolytic enzymes. Pleura Peritoneum 2019, 4, 20190003. [Google Scholar] [CrossRef]
- Gao, L.; Wang, C.; Qin, B.; Li, T.; Xu, W.; Lenahan, C.; Ying, G.; Li, J.; Zhao, T.; Zhu, Y.; et al. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase Suppresses Neuronal Apoptosis by Increasing Glycolysis and “cyclin-dependent kinase 1-Mediated Phosphorylation of p27 After Traumatic Spinal Cord Injury in Rats. Cell Transplant. 2020, 29, 1–14. [Google Scholar] [CrossRef]
- Smits, V.A.J.; Cabrera, E.; Freire, R.; Gillespie, D.A. Claspin—Checkpoint adaptor and DNA replication factor. FEBS J. 2019, 286, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Shafie, I.N.F.; McLaughlin, M.; Burchmore, R.; Lim, M.A.A.; Montague, P.; Johnston, P.E.J.; Penderis, J.; Anderson, T.J. The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog. Cell Stress Chaperones 2014, 19, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasgupta, A. Alcohol and Its Biomarkers: Clinical Aspects and Laboratory Determination; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef] [Green Version]
- Toledo, F.; Wahl, G.M. Regulating the p53 pathway: In vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 2006, 6, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, J.M. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene 2008, 27, 4013–4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loughery, J.; Cox, M.; Smith, L.M.; Meek, D.W. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 2014, 42, 7666–7680. [Google Scholar] [CrossRef] [Green Version]
- Smeenk, L.; van Heeringen, S.J.; Koeppel, M.; Gilbert, B.; Janssen-Megens, E.; Stunnenberg, H.G.; Lohrum, M. Role of p53 Serine 46 in p53 target gene regulation. PLoS ONE 2011, 6, e17574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibbetts, R.S.; Brumbaugh, K.M.; Williams, J.M.; Sarkaria, J.N.; Cliby, W.A.; Shieh, S.Y.; Taya, Y.; Prives, C.; Abraham, R.T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999, 13, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Castrogiovanni, C.; Waterschoot, B.; De Backer, O.; Dumont, P. Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcriptionindependent apoptosis. Cell Death Differ. 2018, 25, 190–203. [Google Scholar] [CrossRef]
- Ou, Z.; Zhou, Y.; Wang, L.; Xue, L.; Zheng, J.; Chen, L.; Tong, Q. NLRP3 Inflammasome Inhibition Prevents α-Synuclein Pathology by Relieving Autophagy Dysfunction in Chronic MPTP–Treated NLRP3 Knockout Mice. Mol. Neurobiol. 2021, 58, 1303–1311. [Google Scholar] [CrossRef]
- Mortezaee, K.; Khanlarkhani, N.; Beyer, C.; Zendedel, A. Inflammasome: Its role in traumatic brain and spinal cord injury. J. Cell. Physiol. 2018, 233, 5160–5169. [Google Scholar] [CrossRef]
- De Vasconcelos, N.M.; Lamkanfi, M. Recent insights on inflammasomes, gasdermin pores, and pyroptosis. Cold Spring Harb. Perspect. Biol. 2020, 12, 1–22. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chen, Q.; Li, X.; Zeng, Z.; Xiong, W.; Li, G.; Li, X.; Yang, J.; Xiang, B.; Yi, M. Pyroptosis: A new paradigm of cell death for fighting against cancer. J. Exp. Clin. Cancer Res. 2021, 40, 153. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liu, X.; Chen, H.; Duan, Y.; Liu, J.; Pan, Y.; Liu, B. Activation of Pyroptosis by Membrane-Anchoring AIE Photosensitizer Design: New Prospect for Photodynamic Cancer Cell Ablation. Angew. Chem. Int. Ed. 2021, 60, 9093–9098. [Google Scholar] [CrossRef] [PubMed]
- Luo, J. Autophagy and ethanol neurotoxicity. Autophagy 2014, 10, 2099–2108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoica, S.I.; Onose, G.; Pitica, I.M.; Neagu, A.I.; Ion, G.; Matei, L.; Dragu, L.D.; Radu, L.-E.; Chivu-Economescu, M.; Necula, L.G.; et al. Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells. Curr. Issues Mol. Biol. 2023, 45, 1655-1680. https://doi.org/10.3390/cimb45020107
Stoica SI, Onose G, Pitica IM, Neagu AI, Ion G, Matei L, Dragu LD, Radu L-E, Chivu-Economescu M, Necula LG, et al. Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells. Current Issues in Molecular Biology. 2023; 45(2):1655-1680. https://doi.org/10.3390/cimb45020107
Chicago/Turabian StyleStoica, Simona Isabelle, Gelu Onose, Ioana Madalina Pitica, Ana Iulia Neagu, Gabriela Ion, Lilia Matei, Laura Denisa Dragu, Lacramioara-Elena Radu, Mihaela Chivu-Economescu, Laura Georgiana Necula, and et al. 2023. "Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells" Current Issues in Molecular Biology 45, no. 2: 1655-1680. https://doi.org/10.3390/cimb45020107
APA StyleStoica, S. I., Onose, G., Pitica, I. M., Neagu, A. I., Ion, G., Matei, L., Dragu, L. D., Radu, L.-E., Chivu-Economescu, M., Necula, L. G., Anghelescu, A., Diaconu, C. C., Munteanu, C., & Bleotu, C. (2023). Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells. Current Issues in Molecular Biology, 45(2), 1655-1680. https://doi.org/10.3390/cimb45020107