Lattice Boltzmann Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers
<p>Changes in pressure difference around droplet for different surface tensions and droplet radii. Red, blue, and black symbols illustrate results from present study with <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> </semantics></math>, respectively.</p> "> Figure 2
<p>(<b>Left</b>) Evolution of interface for Rayleigh–Taylor instability for (<b>top row</b>) Re = 256 and (<b>bottom row</b>) Re = 2048 at different times: (from <b>left</b> to <b>right</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>/</mo> <mi>T</mi> <mo>=</mo> </mrow> </semantics></math>1, 2, 3, 4, and 5. (<b>Right</b>) Position of penetrating spike over time: (black) Re = 256 and (red) Re = 2048. (plain lines) Results and (symbols) data from [<a href="#B19-entropy-23-00166" class="html-bibr">19</a>].</p> "> Figure 3
<p>(<b>Left</b>) Interface for Rayleigh–Taylor instability at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>/</mo> <mi>T</mi> <mo>=</mo> </mrow> </semantics></math> 5 and Re = 256 for three different resolutions (<b>left</b> to <b>right</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 150, 300, and 600. (<b>Right</b>) Position of penetrating spike over time: (black) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 600, (red) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 300, and (blue) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 150.</p> "> Figure 4
<p>(<b>Left</b>) Interface for Rayleigh–Taylor instability at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>/</mo> <mi>T</mi> </mrow> </semantics></math> = 5 and Re = 2048 for three different resolutions (<b>left</b> to <b>right</b>) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 150, 300, and 600. (<b>Right</b>) Position of penetrating spike over time: (black) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 600, (red) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 300, and (blue) <math display="inline"><semantics> <msub> <mi>L</mi> <mi>x</mi> </msub> </semantics></math> = 150.</p> "> Figure 5
<p>(<b>Left</b>) Evolution of interface for 3D Rayleigh–Taylor instability for Re = 1000 at different times: (from <b>left</b> to <b>right</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>/</mo> <mi>T</mi> </mrow> </semantics></math> = 1.9, 3.9, 5.8, 7.8, and 9.7. (<b>Right</b>) Position of penetrating spike over time: (plain lines) Results and (symbols) data from [<a href="#B41-entropy-23-00166" class="html-bibr">41</a>].</p> "> Figure 6
<p>Geometrical configuration of droplet impact on liquid sheet case in 2D.</p> "> Figure 7
<p>Impact of circular droplet on liquid sheet at different We and Re numbers with <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mi>h</mi> </msub> <mo>/</mo> <msub> <mi>ρ</mi> <mi>l</mi> </msub> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>l</mi> </msub> <mo>/</mo> <msub> <mi>ν</mi> <mi>h</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math>. (black) Re = 200 and We = 220, (red) Re = 1000 and We = 220, and (blue) Re = 1000 and We = 2200.</p> "> Figure 8
<p>Evolution of spreading radius <math display="inline"><semantics> <msub> <mi>r</mi> <mi>K</mi> </msub> </semantics></math> as function of time for droplet impact on liquid film case. Circular symbols designate 2D simulations: (black) Re = 200 and We = 220, (red) Re = 1000 and We = 220, and (blue) Re = 1000 and We = 2200. Rectangular symbols belong to 3D simulation with Re = 1000 and We = 8000. Dashed line is <math display="inline"><semantics> <mrow> <mfrac> <msub> <mi>r</mi> <mi>K</mi> </msub> <mi>D</mi> </mfrac> <mo>=</mo> <mn>1.1</mn> <msqrt> <mrow> <mi>t</mi> <mo>/</mo> <mi>T</mi> </mrow> </msqrt> </mrow> </semantics></math>.</p> "> Figure 9
<p>Impact of spherical droplet on thin liquid sheet at We = 8000 and Re = 1000 at different times with <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mi>h</mi> </msub> <mo>/</mo> <msub> <mi>ρ</mi> <mi>l</mi> </msub> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>l</mi> </msub> <mo>/</mo> <msub> <mi>ν</mi> <mi>h</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Target Macrosopic System
2.2. LB Formulation for Conservative Phase-Field Equation
2.3. LB Model for Flow Field
3. Numerical Applications
3.1. Static Droplet: Surface-Tension Measurement
3.2. Rayleigh–Taylor Instability
3.3. Turbulent 3D Rayleigh–Taylor Instability
3.4. Droplet Splashing on Thin Liquid Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Hermite Polynomials and Coefficients
References
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method: Principles and Practice; Graduate Texts in Physics; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Guo, Z.; Shu, C. Lattice Boltzmann Method and Its Applications in Engineering; Advances in Computational Fluid Dynamics; World Scientific: Singapore, 2013; Volume 3. [Google Scholar] [CrossRef] [Green Version]
- Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Chorin, A.J. A Numerical Method for Solving Incompressible Viscous Flow Problems. J. Comput. Phys. 1997, 135, 118–125. [Google Scholar] [CrossRef]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, X.; Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 1994, 49, 2941–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, M.R.; Orlandini, E.; Osborn, W.R.; Yeomans, J.M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 1996, 54, 5041–5052. [Google Scholar] [CrossRef]
- Swift, M.R.; Osborn, W.R.; Yeomans, J.M. Lattice Boltzmann Simulation of Nonideal Fluids. Phys. Rev. Lett. 1995, 75, 830–833. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Li, Q. Investigation of Galilean invariance of multi-phase lattice Boltzmann methods. Phys. A Stat. Mech. Its Appl. 2006, 362, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Kupershtokh, A.; Medvedev, D.; Karpov, D. On equations of state in a lattice Boltzmann method. Comp. Math. Appl. 2009, 58, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.; Schaefer, L. Equations of state in a lattice Boltzmann model. Phys. Fluids 2006, 18, 042101. [Google Scholar] [CrossRef]
- Sbragaglia, M.; Benzi, R.; Biferale, L.; Succi, S.; Sugiyama, K.; Toschi, F. Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 2007, 75, 026702. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Luo, K.H. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Phys. Rev. E 2013, 88, 053307. [Google Scholar] [CrossRef] [Green Version]
- Fakhari, A.; Rahimian, M.H. Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev. E 2010, 81, 036707. [Google Scholar] [CrossRef]
- Safari, H.; Rahimian, M.H.; Krafczyk, M. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow. Phys. Rev. E 2013, 88, 013304. [Google Scholar] [CrossRef]
- Safari, H.; Rahimian, M.H.; Krafczyk, M. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method. Phys. Rev. E 2014, 90, 033305. [Google Scholar] [CrossRef]
- Yazdi, H.; Rahimiani, M.H.; Safari, H. Numerical simulation of pressure-driven phase-change in two-phase fluid flows using the Lattice Boltzmann Method. Comput. Fluids 2018, 172, 8–18. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Liang, H.; Chai, Z.; Shi, B. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity 2019, 2, 33–52. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Chen, S.; Zhang, R. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability. J. Comput. Phys. 1999, 152, 642–663. [Google Scholar] [CrossRef]
- Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N. A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 2004, 98, 628–644. [Google Scholar] [CrossRef]
- Amirshaghaghi, H.; Rahimian, M.; Safari, H. Application of a two phase lattice Boltzmann model in simulation of free surface jet impingement heat transfer. Int. Commun. Heat Mass Transf. 2016, 75, 282–294. [Google Scholar] [CrossRef]
- Amirshaghaghi, H.; Rahimian, M.H.; Safari, H.; Krafczyk, M. Large Eddy Simulation of liquid sheet breakup using a two-phase lattice Boltzmann method. Comput. Fluids 2018, 160, 93–107. [Google Scholar] [CrossRef]
- Hosseini, S.A. Development of a Lattice Boltzmann-Based Numerical Method for the Simulation of Reacting Flows. Ph.D. Thesis, Otto-von-Guericke Universität/Universite Paris-Saclay, Gif-sur-Yvette, France, 2020. [Google Scholar]
- Sun, Y.; Beckermann, C. Sharp interface tracking using the phase-field equation. J. Comput. Phys. 2007, 220, 626–653. [Google Scholar] [CrossRef]
- Chiu, P.H.; Lin, Y.T. A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 2011, 230, 185–204. [Google Scholar] [CrossRef]
- Fakhari, A.; Bolster, D.; Luo, L.S. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades. J. Comput. Phys. 2017, 341, 22–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chai, Z.; Shi, B.; Liang, H. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Phys. Rev. E 2016, 94, 033304. [Google Scholar] [CrossRef] [Green Version]
- Chopard, B.; Falcone, J.L.; Latt, J. The lattice Boltzmann advection-diffusion model revisited. Eur. Phys. J. Spec. Top. 2009, 171, 245–249. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Darabiha, N.; Thévenin, D. Lattice Boltzmann advection-diffusion model for conjugate heat transfer in heterogeneous media. Int. J. Heat Mass Transf. 2019, 132, 906–919. [Google Scholar] [CrossRef] [Green Version]
- Zu, Y.; Li, A.; Wei, H. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation. Phys. Rev. E 2020, 102, 053307. [Google Scholar] [CrossRef]
- Lee, T.; Lin, C.L. Pressure evolution lattice Boltzmann equation method for two-phase flow with phase change. Phys. Rev. E 2003, 67, 056703. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Safari, H.; Darabiha, N.; Thévenin, D.; Krafczyk, M. Hybrid Lattice Boltzmann-finite difference model for low Mach number combustion simulation. Combust. Flame 2019, 209, 394–404. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Abdelsamie, A.; Darabiha, N.; Thévenin, D. Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows. Phys. Fluids 2020, 32, 077105. [Google Scholar] [CrossRef]
- Geier, M.; Lenz, S.; Schönherr, M.; Krafczyk, M. Under-resolved and large eddy simulations of a decaying Taylor–Green vortex with the cumulant lattice Boltzmann method. Theor. Comput. Fluid Dyn. 2020. [Google Scholar] [CrossRef]
- Geier, M.; Schönherr, M.; Pasquali, A.; Krafczyk, M. The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Comput. Math. Appl. 2015, 70, 507–547. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Mazloomi Moqaddam, A.; Kang, Q.; Derome, D.; Carmeliet, J. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow. Phys. Fluids 2018, 30, 032104. [Google Scholar] [CrossRef]
- Mazloomi M, A.; Chikatamarla, S.; Karlin, I. Entropic Lattice Boltzmann Method for Multiphase Flows. Phys. Rev. Lett. 2015, 114, 174502. [Google Scholar] [CrossRef]
- Yang, X.; He, H.; Xu, J.; Wei, Y.; Zhang, H. Entropy generation rates in two-dimensional Rayleigh–Taylor turbulence mixing. Entropy 2018, 20, 738. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wei, Y.; Zhu, Z.; Dou, H.; Qian, Y. Statistics of heat transfer in two-dimensional turbulent Rayleigh-Bénard convection at various Prandtl Number. Entropy 2018, 20, 582. [Google Scholar] [CrossRef] [Green Version]
- Rahmat, A.; Tofighi, N.; Shadloo, M.; Yildiz, M. Numerical simulation of wall bounded and electrically excited Rayleigh–Taylor instability using incompressible smoothed particle hydrodynamics. Coll. Surf. A Physicochem. Eng. Asp. 2014, 460, 60–70. [Google Scholar] [CrossRef]
- Liang, H.; Li, Q.X.; Shi, B.C.; Chai, Z.H. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Phys. Rev. E 2016, 93, 033113. [Google Scholar] [CrossRef]
- Hagemeier, T.; Hartmann, M.; Thévenin, D. Practice of vehicle soiling investigations: A review. Int. J. Multiph. Flow 2011, 37, 860–875. [Google Scholar] [CrossRef]
- Hagemeier, T.; Hartmann, M.; Kühle, M.; Thévenin, D.; Zähringer, K. Experimental characterization of thin films, droplets and rivulets using LED fluorescence. Exp. Fluids 2012, 52, 361–374. [Google Scholar] [CrossRef]
- Josserand, C.; Zaleski, S. Droplet splashing on a thin liquid film. Phys. Fluids 2003, 15, 1650. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.; Jin, L.; Niu, X.; Shu, S. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion. Phys. Rev. E 2019, 99, 023302. [Google Scholar] [CrossRef]
- Liang, H.; Xu, J.; Chen, J.; Wang, H.; Chai, Z.; Shi, B. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows. Phys. Rev. E 2018, 97, 033309. [Google Scholar] [CrossRef] [Green Version]
- Sitompul, Y.P.; Aoki, T. A filtered cumulant lattice Boltzmann method for violent two-phase flows. J. Comput. Phys. 2019, 390, 93–120. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, S.A.; Safari, H.; Thevenin, D. Lattice Boltzmann Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers. Entropy 2021, 23, 166. https://doi.org/10.3390/e23020166
Hosseini SA, Safari H, Thevenin D. Lattice Boltzmann Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers. Entropy. 2021; 23(2):166. https://doi.org/10.3390/e23020166
Chicago/Turabian StyleHosseini, Seyed Ali, Hesameddin Safari, and Dominique Thevenin. 2021. "Lattice Boltzmann Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers" Entropy 23, no. 2: 166. https://doi.org/10.3390/e23020166
APA StyleHosseini, S. A., Safari, H., & Thevenin, D. (2021). Lattice Boltzmann Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers. Entropy, 23(2), 166. https://doi.org/10.3390/e23020166