Kinetic Theory with Casimir Invariants—Toward Understanding of Self-Organization by Topological Constraints
Abstract
:1. Introduction
2. Hamiltonian Structure and Foliated Phase Space
2.1. General Theory
2.2. Example: Casimir Invariant and Self-Organization on a Foliated Phase Space
2.2.1. Magnetic Confinement
2.2.2. Topological Constraints Imposed by Adiabatic Invariants
2.2.3. Thermal Equilibrium on Macro Hierarchy
3. Hamiltonian Structure of Magnetofluid System
3.1. Hall-MHD System
3.2. Canonical Representation of H-MHD System
3.3. Dynamics Observed in Base-Space
4. Kinetic Theory with Topological Constraints
4.1. Co-Adjoint Representation of the Canonicalized H-MHD Dynamics
4.2. Distribution Function
4.3. Boltzmann Distribution
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, J.B. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 1974, 33, 1139–1141. [Google Scholar] [CrossRef]
- Taylor, J.B. Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 1986, 58, 741–763. [Google Scholar] [CrossRef]
- Morrison, P.J.; Greene, J.M. Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 1980, 45, 790–794. [Google Scholar] [CrossRef]
- Holm, D.D.; Kupershmidt, B.A.; Levermore, C.D. Canonical maps between Poisson brackets in Eulerian and Lagrangian descriptions of continuum mechanics. Phys. Lett. A 1983, 98, 389–395. [Google Scholar] [CrossRef]
- Marsden, J.E.; Ratiu, T.; Weinstein, A. Semidirect products and reduction in mechanics. Trans. Am. Math. Soc. 1984, 281, 147–177. [Google Scholar] [CrossRef]
- Holm, D.D. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability. Phys. Fluids 1987, 30, 1310–1322. [Google Scholar] [CrossRef]
- Morrison, P.J. Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 1998, 70, 467–521. [Google Scholar] [CrossRef]
- Arnold, V.I.; Khesin, B.A. Topological Methods in Hydrodynamics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Morrison, P.J. Hamiltonian fluid mechanics. In Encyclopedia of Mathematical Physics; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, p. 593. [Google Scholar]
- Hirota, M.; Fukumoto, Y. Energy of hydrodynamic and magnetohydrodynamic waves with point and continuous spectra. J. Math. Phys. 2008, 49, 083101. [Google Scholar] [CrossRef]
- Marsden, J.; Weinstein, A. Coadjoint orbits vortices, and Clebsch variables for incompressible fluids. Phys. D 1983, 7, 305–323. [Google Scholar] [CrossRef]
- Yoshida, Z.; Hameiri, E. Canonical Hamiltonian mechanics of Hall magnetohydrodynamics and its limit to ideal magnetohydrodynamics. J. Phys. A Math. Theor. 2013, 46, 335502. [Google Scholar] [CrossRef]
- Yoshida, Z. Nambu mechanics viewed as a Clebsch parameterized Poisson algebra—Toward canonicalization and quantization. Prog. Theor. Exp. Phys. 2024, 2024, 03A103. [Google Scholar] [CrossRef]
- Yoshida, Z.; Mahajan, S.M. Self-organization in foliated phase space: Construction of a scale hierarchy by adiabatic invariants of magnetized particles. Prog. Theor. Exp. Phys. 2014, 2014, 073J01. [Google Scholar] [CrossRef]
- Yoshida, Z. Self-organization by topological constraints: Hierarchy of foliated phase space. Adv. Phys. X 2016, 1, 2–19. [Google Scholar] [CrossRef]
- Clebsch, A. Über eine allgemeine Transformation der hydrodynamischen Gleichungen. Z. Reine Angew. Math. 1857, 54, 293–312. [Google Scholar]
- Lin, C.C. Hydrodynamics of Helium II. In Proceedings of the International School of Physics “Enrico Fermi” XXI, Varena, Italy, July 1961; Academic Press: New York, NY, USA, 1963; pp. 93–146. [Google Scholar]
- Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 2, 190–194. [Google Scholar] [CrossRef]
- Seliger, R.L.; Whitham, G.B. Variational principles in continuum mechanics. Proc. Roy. Soc. A 1968, 305, 1–25. [Google Scholar]
- Salmon, R. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 1988, 20, 225–256. [Google Scholar] [CrossRef]
- Jackiw, R. Lectures on Fluid Dynamics—A Particle Theorist’s View of Supersymmetric, Non-Abelian, Noncommutative Fluid Mechanics and d-Branes; Springer: New York, NY, USA, 2002. [Google Scholar]
- Yoshida, Z. Clebsch parameterization: Basic properties and remarks on its applications. J. Math. Phys. 2009, 50, 113101. [Google Scholar] [CrossRef]
- Yoshida, Z.; Mahajan, S.M. Duarity of the Lagnrangian and Eulerian representations of collective motion —A connection built around vorticity. Plasma Phys. Control. Fusion 2012, 54, 014003. [Google Scholar] [CrossRef]
- Yoshida, Z.; Morrison, P.J. Epi-two-dimensional fluid flow: A new topological paradigm for dimensionality. Phys. Rev. Lett. 2017, 119, 244501. [Google Scholar] [CrossRef]
- Yoshida, Z.; Saitoh, H.; Morikawa, J.; Yano, Y.; Watanabe, S.; Ogawa, Y. Magnetospheric vortex formation: Self-organized confinement of charged particles. Phys. Rev. Lett. 2010, 104, 235004. [Google Scholar] [CrossRef]
- Nishikawa, K.; Wakatani, M. Plasma Physics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2000; Section 4.3. [Google Scholar]
- Yoshida, Z.; Giga, Y. Remarks on spectra of operator rot. Math. Z. 1990, 204, 235–245. [Google Scholar] [CrossRef]
- Moreau, J.J. Constantes d’un ilot tourbillonnaire en fluide parfait barotrope. Comptes Rendus Acad. Sci. 1961, 252, 2810–2812. [Google Scholar]
- Woltjer, L. A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. USA 1958, 44, 489–491. [Google Scholar] [CrossRef]
- Moffatt, H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1969, 35, 117–129. [Google Scholar] [CrossRef]
- Moffatt, H.K.; Ricca, R. Helicity and the Calugareanu invariant. Proc. R. Soc. Lond. Ser. A 1992, 439, 411–429. [Google Scholar]
- Scheeler, M.W.; van Rees, W.M.; Kedia, H.; Kleckner, D.; Irvine, W.T.M. Complete measurement of helicity and its dynamics in vortex tubes. Science 2017, 357, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Tanehashi, K.; Yoshida, Z. Gauge symmetries and Noether charges in Clebsch-parameterized magnetohydrodynamics. J. Phys. A Math. Theor. 2015, 48, 495501. [Google Scholar] [CrossRef]
- Morrison, P.J. The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 1980, 80, 383–386. [Google Scholar] [CrossRef]
- Morrison, P.J. Poisson brackets for fluids and plasmas. AIP Conf. Proc. 1982, 88, 13–46. [Google Scholar]
- Marsden, J.E.; Weinstein, A. The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 1982, 4, 394–406. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Hubbard, J.C.; Turski, L.A. Gauge-independent canonical formulation of relativistic plasma theory. Phys. A 1984, 128, 509–519. [Google Scholar] [CrossRef]
- Marsden, J.E.; Morrison, P.J.; Weinstein, A. The Hamiltonian structure of the BBGKY hierarchy equations. Contemp. Math. 1984, 28, 115–124. [Google Scholar]
- Lainz, M.; Sardón, C.; Weinstein, A. Plasma in monopole background is not twisted Poisson. Phys. Rev. D 2019, 100, 105016. [Google Scholar] [CrossRef]
- Krommes, J.A. Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys. Rep. 2002, 360, 1–352. [Google Scholar] [CrossRef]
- Ito, N.; Yoshida, Z. Statistical mechanics of magnetohydrodynamics. Phys. Rev. E 1996, 53, 5200–5206. [Google Scholar] [CrossRef]
- Jordan, R.; Yoshida, Z.; Ito, N. Statistical mechanics of three-dimensional magnetohydrodynamics in a multiply connected domain. Phys. D 1998, 114, 251–272. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 1941, 30, 301–305. [Google Scholar]
- Kolmogorov, A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 1962, 13, 82–85. [Google Scholar] [CrossRef]
- Kraichnan, R.H.; Montgomery, D. Two-dimensional turbulence. Rep. Prog. Phys. 1980, 43, 547–619. [Google Scholar] [CrossRef]
- Frisch, U.; Kurien, S.; Pandit, R.; Pauls, W.; Ray, S.S.; Wirth, A.; Zhu, J.-Z. Hyperviscosity, galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 2008, 101, 144501. [Google Scholar] [CrossRef]
- Zhu, J.-Z.; Yang, W.; Zhu, G.-Y. Purely helical absolute equilibria and chirality of (magneto) fluid turbulence. J. Fluid Mech. 2014, 739, 479–501. [Google Scholar] [CrossRef]
- Sato, N.; Yoshida, Z. Degenerate Laplacian describing topologically constrained diffusion: Helicity constraint as an alternative to ellipticity. J. Phys. A Math. Theor. 2019, 52, 355202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, Z. Kinetic Theory with Casimir Invariants—Toward Understanding of Self-Organization by Topological Constraints. Entropy 2025, 27, 5. https://doi.org/10.3390/e27010005
Yoshida Z. Kinetic Theory with Casimir Invariants—Toward Understanding of Self-Organization by Topological Constraints. Entropy. 2025; 27(1):5. https://doi.org/10.3390/e27010005
Chicago/Turabian StyleYoshida, Zensho. 2025. "Kinetic Theory with Casimir Invariants—Toward Understanding of Self-Organization by Topological Constraints" Entropy 27, no. 1: 5. https://doi.org/10.3390/e27010005
APA StyleYoshida, Z. (2025). Kinetic Theory with Casimir Invariants—Toward Understanding of Self-Organization by Topological Constraints. Entropy, 27(1), 5. https://doi.org/10.3390/e27010005