A Spectral Investigation of Criticality and Crossover Effects in Two and Three Dimensions: Short Timescales with Small Systems in Minute Random Matrices
<p>The phase diagrams for the two- and three-dimensional BC models are depicted. The points utilized in our numerical experiments are extracted from Butera and Pernici [<a href="#B50-entropy-26-00395" class="html-bibr">50</a>], serving as foundational data for the investigations conducted in this study.</p> "> Figure 2
<p>The density of states in the two-dimensional BC model with anisotropy (<math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). The gap between eigenvalues varies with the temperature of the simulated system. While the system approaches the MP law, an exact match is not achieved at high temperatures (<math display="inline"><semantics> <mrow> <mi>T</mi> <mo>></mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math>) due to the presence of spin–spin correlations, preventing complete correspondence.</p> "> Figure 3
<p>The density of states for anisotropy <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> in the three-dimensional BC model. Similar behavior in the gap between two bulk eigenvalues is observed compared to the two-dimensional BC model (see <a href="#entropy-26-00395-f002" class="html-fig">Figure 2</a>).</p> "> Figure 4
<p>Average and variance of the two-dimensional BC model as a function of temperature are depicted. The inset plots show the derivative of the variance, indicating a divergence at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>The average and variance of the three-dimensional BC model as a function of temperature illustrate a similar behavior occurring in three dimensions. The inset plots depict the derivative of the variance, highlighting its divergence at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math>. Interestingly, it is observed that the inflection point appears to be even more pronounced in three dimensions.</p> "> Figure 6
<p>Second derivative of variance (<math display="inline"><semantics> <mi>ζ</mi> </semantics></math>) for both the two-dimensional and three-dimensional BC models. The critical temperature precisely corresponds to the inflection point of the eigenvalue variance, indicated by <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo><</mo> <mn>0</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>T</mi> <mo><</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>></mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>Average eigenvalue approaching the TCP in the two-dimensional BC model. We can observe that the shape of the curve is deformed as we approach the TCP on the critical line.</p> "> Figure 8
<p>Eigenvalue variance as a function of temperature approaches the TCP in the 2D BC model. The method appears to reasonably respond even for points closer to the TCP. We can observe the inflection point up to just before the TCP, but we also notice a small deviation between the critical exact values and those determined by the method due to the crossover. At this precise TCP, there is a peak at the tricritical temperature that shifts from the previous points. Interestingly, at the TCP we do not observe the inflection point in two dimensions.</p> "> Figure 9
<p>Average eigenvalue approaching the TCP in the 3D BC model, mirroring the analysis conducted for the 2D version shown in <a href="#entropy-26-00395-f007" class="html-fig">Figure 7</a>.</p> "> Figure 10
<p>Eigenvalue variance approaching the TCP in the 3D BC model. We can observe the inflection point until the TCP, but that slightly differs from the best estimates of the critical temperatures in this vicinity of the TCP.</p> "> Figure 11
<p>Averaged maximum eigenvalue as a function of <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>/</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> for different values of <span class="html-italic">D</span> in the two-dimensional BC model.</p> "> Figure 12
<p>Averaged maximum eigenvalue as function of <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>/</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> for different values of <span class="html-italic">D</span> in the three-dimensional BC model.</p> "> Figure 13
<p>The average eigenvalue as a function of <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>/</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> for different linear system sizes is depicted. We start with <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mn>16</mn> </mrow> </semantics></math>, then proceed to larger sizes, including <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, 25, 30, 32, 64, 100, and 128 for the two-dimensional BC model with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, chosen for simplicity. The inset plot illustrates that for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>≥</mo> <mn>32</mn> </mrow> </semantics></math>, the minimum at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> coincides. With <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>≥</mo> <mn>64</mn> </mrow> </semantics></math>, there is excellent agreement.</p> "> Figure 14
<p>Average eigenvalue plotted against <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>/</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> for various linear system sizes. We consider <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, 4, 8, 10, 16, and 22 in a three-dimensional BC model with <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for simplicity. The inset plot highlights that, for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>≥</mo> <mn>16</mn> </mrow> </semantics></math>, the minimum occurs at precisely <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math>.</p> "> Figure A1
<p>Spectral variance as a function of various values of <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mi>T</mi> <mo>/</mo> <msub> <mi>T</mi> <mi>C</mi> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, including <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, is presented. We provide fits using the Boltzmann, logistic, and a function exhibiting a unique type of inflection point at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Random Matrices, Critical, and Tricritical Points in the Blume–Capel Model
2.1. Random Matrices and Phase Transitions: General Comments
2.2. Wishart-like Matrices and Spin Systems
3. Results
3.1. Critical Points
3.2. Crossover Phenomena
3.3. Analyzing Extreme Statistics of Correlation Magnetization Matrices
3.4. Finite Size Scaling: Exploring Small Systems with Short Time Scales
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Oxford Science Publications: Oxford, UK, 1987. [Google Scholar]
- Bouchaud, J.; Potters, M. Theory of Financial Risk and Derivative Pricing; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef]
- Szabo, G.; Fath, G. Evolutionary games on graphs. Phys. Rep. 2007, 446, 97–216. [Google Scholar] [CrossRef]
- Barabasi, A.-L. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Janssen, H.K.; Schaub, B.; Schmittmann, B. New universal short-time scaling behaviour of critical relaxation processes. Z. Phys. B Condens. Matter. 1989, 73, 539–549. [Google Scholar] [CrossRef]
- Janssen, H.K.; Oerding, K. Non-equilibrium relaxation at a tricritical point. J. Phys. A Math. Gen. 1994, 27, 715–723. [Google Scholar] [CrossRef]
- Henkel, M.; Pleimling, M. Non-Equilibrium Phase Transitions, Vol. 2: Ageing and Dynamical Scaling Far from Equilibrium; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Zheng, B. Monte Carlo simulations of short-time critical dynamics. Int. J. Mod. Phys. B 1998, 12, 1419–1484. [Google Scholar] [CrossRef]
- Huse, D.A. Remanent magnetization decay at the spin-glass critical point: A new dynamic critical exponent for nonequilibrium autocorrelations. Phys. Rev. B 1989, 40, 304–308. [Google Scholar] [CrossRef]
- Albano, E.V.; Bab, M.A.; Baglietto, G.; Borzi, R.A.; Grigera, T.S.; Loscar, E.S.; Rodriguez, D.E.; Puzzo, M.L.R.; Saracco, G.P. Study of phase transitions from short-time non-equilibrium behaviour. Rep. Prog. Phys. 2011, 74, 026501. [Google Scholar] [CrossRef]
- Grinstein, G.; Jayaprakash, C.; He, Y. Statistical mechanics of probabilistic cellular automata. Phys. Rev. Lett. 1985, 55, 2527–2530. [Google Scholar] [CrossRef]
- Tome, T.; de Oliveira, M.J. Short-time dynamics of critical nonequilibrium spin models. Phys. Rev. E 1998, 58, 4242. [Google Scholar] [CrossRef]
- Tome, T.; de Oliveira, M. Stochastic Dynamics and Irreversibility; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Janssen, H.K. On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Z. Phys. B 1981, 42, 151–154. [Google Scholar] [CrossRef]
- Grassberger, P. The critical behaviour of two-dimensional self-avoiding random walks. Z. Phys. B 1982, 48, 255–260. [Google Scholar] [CrossRef]
- Marro, J.; Dickman, R. Nonequilibrium Phase Transitions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Hinrichsen, H. Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 2000, 49, 815–958. [Google Scholar] [CrossRef]
- da Silva, R.; Dickman, R.; de Felicio, J.R.D. Critical behavior of nonequilibrium models in short-time Monte Carlo simulations. Phys. Rev. E 2004, 70, 067701. [Google Scholar] [CrossRef]
- da Silva, R. Numerical evidence of Janssen-Oerding’s prediction in a three-dimensional spin model far from equilibrium. Phys. Rev. E 2022, 105, 034114. [Google Scholar] [CrossRef]
- da Silva, R. Exploring the Similarities between Mean-field and Short-range Relaxation Dynamics of Spin Models. Braz. J. Phys. 2022, 52, 128. [Google Scholar] [CrossRef]
- da Silva, R.; Alves, N.A.; de Felicio, J.R.D. Universality and Scaling Study of Tricritical Behavior of 2D Blume-Capel Model in Short-Time Dynamics. Phys. Rev. E 2002, 66, 026130. [Google Scholar]
- da Silva, R.; Fernandes, H.A.; de Felicio, J.R.D.; Figueiredo, W. Novel considerations about the non-equilibrium regime of the tricritical point in a metamagnetic model: Localization and tricritical exponents. Comp. Phys. Comm. 2013, 184, 2371–2377. [Google Scholar] [CrossRef]
- Wigner, E.P. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I. Ann. Math. 1955, 62, 548–564. [Google Scholar]
- Wigner, E.P. Characteristic Vectors of Bordered Matrices with Infinite Dimensions II. Ann. Math. 1957, 65, 203–207. [Google Scholar] [CrossRef]
- Wigner, E.P. On the Distribution of the Roots of Certain Symmetric Matrices. Ann. Math. 1958, 67, 325–327. [Google Scholar] [CrossRef]
- Mehta, M.L. Random Matrices; Academic Press: Boston, MA, USA, 1991. [Google Scholar]
- Dyson, F.J. Statistical Theory of the Energy Levels of Complex Sytems I. J. Math. Phys. 1962, 3, 140–156. [Google Scholar] [CrossRef]
- Dyson, F.J. Statistical Theory of the Energy Levels of Complex Sytems II. J. Math. Phys. 1962, 3, 157–165. [Google Scholar] [CrossRef]
- Dyson, F.J. Statistical Theory of the Energy Levels of Complex Sytems III. J. Math. Phys. 1962, 3, 166–175. [Google Scholar] [CrossRef]
- Wishart, J. The generalised product moment distribution in samples from a normal multivariate population. Biometrika 1928, 20A, 32. [Google Scholar] [CrossRef]
- Livan, G.; Novaes, M.; Vivo, P. Introduction to Random Matrices, Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Vinayak, T.; Prosen, T.; Buca, B.; Seligman, T.H. Spectral analysis of finite-time correlation matrices near equilibrium phase transitions. Europhys. Lett. 2014, 108, 20006. [Google Scholar] [CrossRef]
- Biswas, S.; Leyvraz, F.; Castillero, P.M.; Seligman, T.H. Rich structure in the correlation matrix spectra in non-equilibrium steady states. Sci. Rep. 2017, 7, 40506. [Google Scholar] [CrossRef]
- da Silva, R. Random matrices theory elucidates the nonequilibrium critical phenomena. Int. J. Mod. Phys. C 2023, 34, 2350061. [Google Scholar] [CrossRef]
- da Silva, R.; Fernandes, H.C.M.; Filho, E.V.; Prado, S.D.; de Felicio, J.R.D. Mean-field criticality explained by random matrices theory. Braz. J. Phys. 2023, 53, 80. [Google Scholar] [CrossRef]
- d’Auriac, J.-C.A.; Maillard, J.-M. Random matrix theory in lattice statistical mechanics. Phys. A 2003, 321, 325. [Google Scholar]
- Cicuta, G.M.; Molinari, L.; Montaldi, E. Multicritical points in matrix models. J. Phys. A 1990, 23, L421. [Google Scholar] [CrossRef]
- Cicuta, G.; Molinari, L. Phase Transition, Chapter 14. In The Oxford Handbook of Random Matrix Theory; Akemann, G., Baik, J., Francesco, P.D., Eds.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Eynard, B. Universal distribution of random matrix eigenvalues near the ‘birth of a cut’ transition. J. Stat. Mech. 2006, 2006, P07005. [Google Scholar] [CrossRef]
- Baik, J.; Arous, G.B.; Pechet, S. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 2005, 33, 1643. [Google Scholar] [CrossRef]
- Benaych-Georges, F.; Guionnet, A.; Maida, M. Fluctuations of the Extreme Eigenvalues of Finite Rank Deformations of Random Matrices. Electron. J. Probab. 2011, 16, 1621–1662. [Google Scholar] [CrossRef]
- Costin, O.; Lebowitz, J. Gaussian fluctuations in random matrices. Phys. Rev. Lett. 1995, 75, 69–72. [Google Scholar] [CrossRef]
- Marino, R.; Majumdar, S.N.; Schehr, G.; Vivo, P. Phase Transitions and Edge Scaling of Number Variance in Gaussian Random Matrices. Phys. Rev. Lett. 2014, 112, 254101. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lamann, M.H.; Richter, J.; Steinigeweg, R.; Dymarsky, A.; Gemmer, J. Eigenstate thermalization hypothesis and its deviations from random-matrix theory beyond the thermalization time. Phys. Rev. Lett. 2022, 128, 180601. [Google Scholar] [CrossRef]
- Griffiths, R.B. Thermodynamics Near the Two-Fluid Critical Mixing Point in He3-He4. Phys. Rev. Lett. 1970, 24, 715. [Google Scholar] [CrossRef]
- Blume, M.; Emery, V.J.; Griffiths, R.B. Ising Model for the λ Transition and Phase Separation in He3-He4 Mixtures. Phys. Rev. A 1971, 4, 1071. [Google Scholar] [CrossRef]
- Blume, M. Theory of the First-Order Magnetic Phase Change in UO2. Phys. Rev. 1966, 141, 517. [Google Scholar] [CrossRef]
- Capel, H. On the possibility transitions of first-order in Ising systems with zero-field phase of triplet ions splitting. Physica 1966, 32, 966. [Google Scholar] [CrossRef]
- Butera, P.; Pernici, M. The Blume-Capel model for spins S = 1 and 3/2 in dimensions d = 2 and 3. Phys. A 2018, 507, 22–66. [Google Scholar] [CrossRef]
- Beale, P.D. Finite-size scaling study of the two-dimensional Blume-Capel model. Phys. Rev. B 1986, 33, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Deserno, M. Tricriticality and the Blume-Capel model: A Monte Carlo study within the microcanonical ensemble. Phys. Rev. E 1997, 56, 5204–5210. [Google Scholar] [CrossRef]
- Xavier, J.C.; Alcaraz, F.C.; Lara, D.P.; Plascak, J.A. Critical behavior of the spin-3/2 Blume-Capel model in two dimensions. Phys. Rev. B 1998, 57, 11575. [Google Scholar] [CrossRef]
- Hasenbusch, M. Dynamic critical exponent z of the three-dimensional Ising universality class: Monte Carlo simulations of the improved Blume-Capel model. Phys. Rev. E. 2020, 101, 022126. [Google Scholar] [CrossRef] [PubMed]
- Sinai, Y.; Soshnikov, A. Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Bras. Mat. 1998, 29, 1–24. [Google Scholar] [CrossRef]
- Brezin, E.; Itzykson, C.; Parisi, G.; Zuber, J.B. Planar diagrams. Comm. Math. Phys. 1978, 59, 35–51. [Google Scholar] [CrossRef]
- Marcenko, V.A.; Pastur, L.A. Distribution of Eigenvalues for Some Sets of Random Matrices. Math. USSR Sb. 1967, 1, 457–483. [Google Scholar] [CrossRef]
- da Silva, R.; Prado, S.D. Exploring Transition from Stability to Chaos through Random Matrices. Dynamics 2023, 3, 777–792. [Google Scholar] [CrossRef]
- da Silva, R.; Tome, T.; de Oliveira, M.J. Numerical exploration of the aging effects in spin systems. Phys. Lett. A 2023, 489, 129148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filho, E.V.; da Silva, R.; de Felício, J.R.D. A Spectral Investigation of Criticality and Crossover Effects in Two and Three Dimensions: Short Timescales with Small Systems in Minute Random Matrices. Entropy 2024, 26, 395. https://doi.org/10.3390/e26050395
Filho EV, da Silva R, de Felício JRD. A Spectral Investigation of Criticality and Crossover Effects in Two and Three Dimensions: Short Timescales with Small Systems in Minute Random Matrices. Entropy. 2024; 26(5):395. https://doi.org/10.3390/e26050395
Chicago/Turabian StyleFilho, Eliseu Venites, Roberto da Silva, and José Roberto Drugowich de Felício. 2024. "A Spectral Investigation of Criticality and Crossover Effects in Two and Three Dimensions: Short Timescales with Small Systems in Minute Random Matrices" Entropy 26, no. 5: 395. https://doi.org/10.3390/e26050395
APA StyleFilho, E. V., da Silva, R., & de Felício, J. R. D. (2024). A Spectral Investigation of Criticality and Crossover Effects in Two and Three Dimensions: Short Timescales with Small Systems in Minute Random Matrices. Entropy, 26(5), 395. https://doi.org/10.3390/e26050395