Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network
<p>Comparison of the <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> proportions through mean-field (MF) simulation method with and without the involvement of newly susceptible individuals in the epidemics spreading at each time step <span class="html-italic">t</span>. (<b>a</b>) Homogeneous networks, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>b</b>) heterogeneous networks, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. Setup of other parameters is <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>0.08</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.175</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. The number of infected and recovered individuals at initial time step is <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Comparison of the evolution curves of the proportions of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> based on MCS and CTMC methods at each time step on homogeneous networks with average degree <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>a</b>) Local amplification of Infected-MCS; (<b>b</b>) local amplification of Infected-CTMC; (<b>c</b>) local amplification of Recovered-MCS; (<b>d</b>) local amplification of Recovered-CTMC. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>.</p> "> Figure 3
<p>Comparison of the evolution curves for the proportions of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> through MCS and CTMC methods at each time step on heterogeneous networks with average degree <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>a</b>) Local amplification of Infected-MCS; (<b>b</b>) local amplification of Infected-CTMC; (<b>c</b>) local amplification of Recovered-MCS; (<b>d</b>) local amplification of Recovered-CTMC. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>.</p> "> Figure 4
<p>Comparison of the evolution curves for the proportions of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> through MF and CTMC methods at each time step on homogeneous and heterogeneous networks with average degree <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>a</b>) Homogeneous networks, local amplification of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>b</b>) homogeneous networks, local amplification of <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>) heterogeneous networks, local amplification of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>d</b>) heterogeneous networks, local amplification of <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>.</p> "> Figure 5
<p>Comparison of the fraction of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> with and without immunization measures over time, in BA networks with varying average degree <math display="inline"><semantics> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>. As average degree <math display="inline"><semantics> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> </semantics></math> increases, the impact of bidirectional immunization measures on epidemic spreading gradually diminishes.</p> "> Figure 6
<p>Fraction of <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at steady state on ER and BA networks as a function of <math display="inline"><semantics> <mi>δ</mi> </semantics></math> for distinct values of <math display="inline"><semantics> <mi>β</mi> </semantics></math>. (<b>a</b>) ER network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>b</b>) ER network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>; (<b>c</b>) BA network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>d</b>) BA network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>. An augmentation in the parameter <math display="inline"><semantics> <mi>δ</mi> </semantics></math> leads to a discernible decrease in the magnitude of epidemic propagation in both ER and BA networks.</p> "> Figure 7
<p>Fraction of <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at steady state on ER and BA networks as a function of <math display="inline"><semantics> <mi>δ</mi> </semantics></math> for distinct values of <math display="inline"><semantics> <mi>β</mi> </semantics></math>. (<b>a</b>) ER network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>b</b>) ER network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>; (<b>c</b>) BA network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>d</b>) BA network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>. With the incremental rise in <math display="inline"><semantics> <mi>δ</mi> </semantics></math>, there is a notable augmentation in the magnitude of <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mo>∞</mo> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 8
<p>Fraction of <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> at each time step on different types of network datasets under various propagation models. (<b>a</b>) ER network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>b</b>) BA network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>c</b>) Facebook social network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>43.69</mn> </mrow> </semantics></math>; (<b>d</b>) Eneon mail communication network, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>10.02</mn> </mrow> </semantics></math>. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>. In various datasets, bidirectional immunization measures can effectively reduce the infection peaks and steady-state infection density of epidemics.</p> "> Figure 9
<p>Comparison of the basic reproduction number <math display="inline"><semantics> <msub> <mi>R</mi> <mn>0</mn> </msub> </semantics></math> in homogeneous and heterogeneous networks: impact of epidemic spreading parameters, bidirectional immunization rates and the rates of birth and death. (<b>a</b>) Variations in <math display="inline"><semantics> <mi>β</mi> </semantics></math> and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>b</b>) variations in <math display="inline"><semantics> <mi>δ</mi> </semantics></math> and <math display="inline"><semantics> <mi>λ</mi> </semantics></math>, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>; (<b>c</b>) variations in <span class="html-italic">b</span> and <span class="html-italic">d</span>, <math display="inline"><semantics> <mrow> <mfenced open="〈" close="〉"> <mi>k</mi> </mfenced> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. Setup of other parameters is same as <a href="#entropy-26-00227-f001" class="html-fig">Figure 1</a>.</p> ">
Abstract
:1. Introduction
2. Model
2.1. Mean-Field Equations and Analysis
2.2. Modeling and Analysis Based on Continuous-Time Markov Chain
3. Numerical Simulations
3.1. Impact of Replenishing of Susceptible Individuals on the Model
3.2. Comparison between MCS and CTMC Methods
3.3. Comparison between MF and CTMC Methods
3.4. Impact of Bidirectional Immunization on Epidemic Spreading
3.5. Sensitivity Analysis of Basic Reproduction Numbers
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115, 700–721. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics. II.—The problem of endemicity. Proc. R. Soc. Lond. Ser. A 1932, 138, 55–83. [Google Scholar]
- Xiao, Y.; Chen, L. Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 2001, 171, 59–82. [Google Scholar] [CrossRef] [PubMed]
- Brauer, F.; van den Driessche, P. Models for transmission of disease with immigration of infectives. Math. Biosci. 2001, 171, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, J.; Li, J. Stability analysis for differential infectivity epidemic models. Nonlinear Anal. Real World Appl. 2003, 4, 841–856. [Google Scholar] [CrossRef]
- Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef]
- Hyman, J.M.; Li, J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. Math. Biosci. 2000, 167, 65–86. [Google Scholar] [CrossRef]
- Cooke, K.; Van den Driessche, P.; Zou, X. Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 1999, 39, 332–352. [Google Scholar] [CrossRef]
- Pastor-Satorras, R.; Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 2001, 86, 3200. [Google Scholar] [CrossRef]
- Pastor-Satorras, R.; Vespignani, A. Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 2001, 63, 066117. [Google Scholar] [CrossRef]
- Moore, S.; Rogers, T. Predicting the speed of epidemics spreading in networks. Phys. Rev. Lett. 2020, 124, 068301. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Tsai, C.C.; Yang, S.Y. Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks. Commun. Nonlinear Sci. 2014, 19, 1042–1054. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, F.; Xue, Y.; Liu, M. Global stability of an SIR model with differential infectivity on complex networks. Phys. A 2018, 499, 443–456. [Google Scholar] [CrossRef]
- Yang, P.; Jia, J.; Shi, W.; Feng, J.; Fu, X. Stability analysis and optimal control in an epidemic model on directed complex networks with nonlinear incidence. Commun. Nonlinear Sci. 2023, 121, 107206. [Google Scholar] [CrossRef]
- Pei, H.; Yan, G.; Huang, Y. Impact of contact rate on epidemic spreading in complex networks. Eur. Phys. J. B 2023, 96, 44. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Duan, X.; Li, X. Dynamical analysis of an immumo-epidemiological coupled system on complex networks. Commun. Nonlinear Sci. 2023, 119, 107116. [Google Scholar] [CrossRef]
- Pires, M.A.; Crokidakis, N. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement. Phys. A 2017, 467, 167–179. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, Y.G.; Cang, L.Q. Correlation and trust mechanism-based rumor propagation model in complex social networks. Chin. Phys. B 2022, 31, 050202. [Google Scholar] [CrossRef]
- Li, K.Z.; Xu, Z.P.; Zhu, G.H.; Ding, Y. Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness. Chin. Phys. B 2014, 23, 118904. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Jin, Z. SIR dynamics with infection age in complex heterogeneous networks. Commun. Nonlinear Sci. 2023, 121, 107183. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, G. Dynamical analysis of a rumor spreading model with self-discrimination and time delay in complex networks. Phys. A 2019, 533, 121953. [Google Scholar] [CrossRef]
- Huo, J.; Zhao, H. Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks. Phys. A 2016, 448, 41–56. [Google Scholar] [CrossRef]
- Chen, L.; Sun, J. Global stability and optimal control of an SIRS epidemic model on heterogeneous networks. Phys. A 2014, 410, 196–204. [Google Scholar] [CrossRef]
- Cai, C.R.; Wu, Z.X.; Guan, J.Y. Behavior of susceptible-vaccinated–infected–recovered epidemics with diversity in the infection rate of individuals. Phys. Rev. E 2013, 88, 062805. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.R.; Wu, Z.X.; Guan, J.Y. Effect of vaccination strategies on the dynamic behavior of epidemic spreading and vaccine coverage. Chaos Solitons Fractals 2014, 62, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.J. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infect. Dis. Model. 2017, 2, 128–142. [Google Scholar] [CrossRef]
- Allen, L.J.; van den Driessche, P. Relations between deterministic and stochastic thresholds for disease extinction in continuous-and discrete-time infectious disease models. Math. Biosci. 2013, 243, 99–108. [Google Scholar] [CrossRef]
- Gómez, S.; Gómez-Gardenes, J.; Moreno, Y.; Arenas, A. Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks. Phys. Rev. E 2011, 84, 036105. [Google Scholar] [CrossRef]
- Cai, C.R.; Wu, Z.X.; Guan, J.Y. Effective degree Markov-chain approach for discrete-time epidemic processes on uncorrelated networks. Phys. Rev. E 2014, 90, 052803. [Google Scholar] [CrossRef]
- Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, M.; Boguná, M.; Pastor-Satorras, R. Generation of uncorrelated random scale-free networks. Phys. Rev. E 2005, 71, 027103. [Google Scholar] [CrossRef]
- Mislove, A.; Viswanath, B.; Gummadi, K.P.; Druschel, P. You are who you know: Inferring user profiles in online social networks. In Proceedings of the third ACM International Conference on Web Search and Data Mining, New York, NY, USA, 4–6 February 2010; pp. 251–260. [Google Scholar]
- Leskovec, J.; Lang, K.J.; Dasgupta, A.; Mahoney, M.W. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math. 2009, 6, 29–123. [Google Scholar] [CrossRef]
- Nabti, A.; Ghanbari, B. Global stability analysis of a fractional SVEIR epidemic model. Math. Methods Appl. Sci. 2021, 44, 8577–8597. [Google Scholar] [CrossRef]
- Elazzouzi, A.; Lamrani Alaoui, A.; Tilioua, M.; Tridane, A. Global stability analysis for a generalized delayed SIR model with vaccination and treatment. Adv. Differ. Equ. 2019, 2019, 532. [Google Scholar] [CrossRef]
- Yao, Y.; Xiao, X.; Zhang, C.; Dou, C.; Xia, S. Stability analysis of an SDILR model based on rumor recurrence on social media. Phys. A 2019, 535, 122236. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.; Lu, J.; Li, Y. Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks. Appl. Math. Comput. 2020, 383, 125381. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Ding, L.; Wei, W. Knowledge transmission model with consideration of self-learning mechanism in complex networks. Appl. Math. Comput. 2017, 304, 83–92. [Google Scholar] [CrossRef]
- Huang, C.; Cao, J.; Wen, F.; Yang, X. Stability analysis of SIR model with distributed delay on complex networks. PLoS ONE 2016, 11, e0158813. [Google Scholar] [CrossRef]
- Hu, H.; Yuan, X.; Huang, L.; Huang, C. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 2019, 16, 5729–5749. [Google Scholar] [CrossRef]
- Kang, H.; Sun, M.; Yu, Y.; Fu, X.; Bao, B. Spreading dynamics of an SEIR model with delay on scale-free networks. IEEE Trans. Netw. Sci. Eng. 2018, 7, 489–496. [Google Scholar] [CrossRef]
- Bulai, I.M.; Montefusco, F.; Pedersen, M.G. Stability analysis of a model of epidemic dynamics with nonlinear feedback producing recurrent infection waves. Appl. Math. Lett. 2023, 136, 108455. [Google Scholar] [CrossRef]
- El-Mesady, A.; Adel, W.; Elsadany, A.; Elsonbaty, A. Stability analysis and optimal control strategies of a fractional-order monkeypox virus infection model. Phys. Scr. 2023, 98, 095256. [Google Scholar] [CrossRef]
- Yaagoub, Z.; Allali, K. Global Stability of Multi-Strain SEIR Epidemic Model with Vaccination Strategy. Math. Comput. Appl. 2023, 28, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Yan, G.; Pei, H.; Chang, W. Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network. Entropy 2024, 26, 227. https://doi.org/10.3390/e26030227
Han S, Yan G, Pei H, Chang W. Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network. Entropy. 2024; 26(3):227. https://doi.org/10.3390/e26030227
Chicago/Turabian StyleHan, Shixiang, Guanghui Yan, Huayan Pei, and Wenwen Chang. 2024. "Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network" Entropy 26, no. 3: 227. https://doi.org/10.3390/e26030227
APA StyleHan, S., Yan, G., Pei, H., & Chang, W. (2024). Dynamical Analysis of an Improved Bidirectional Immunization SIR Model in Complex Network. Entropy, 26(3), 227. https://doi.org/10.3390/e26030227