Influence of Removing Leaf Node Neighbors on Network Controllability
<p>Controllability robustness of networks with <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Controllability robustness of networks with <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Controllability robustness of real-world networks.</p> "> Figure 4
<p>Visualization of targeted nodes in the attack process of LNNA.</p> "> Figure 5
<p>The proportion of attacked node types in the three networks under LNNA, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>k</mi> <mo>〉</mo> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- (1)
- A novel attack strategy is proposed, which can effectively disrupt the controllability of undirected networks.
- (2)
- The impact of removing nodes with degree 1 and 2 on network controllability is analyzed, revealing that nodes with low degree are not beneficial to the robustness of network controllability.
- (3)
- The findings provide valuable insights for identifying key nodes and designing networks with improved controllability robustness in future research.
2. Network Controllability and Controllability Robustness
3. Leaf Node Neighbor-Based Attack Strategy
3.1. Leaf Node Neighbor-Based Attack Strategy
Algorithm 1 Leaf Node Neighbor-based Attack Strategy. |
Input: a network G with N nodes Output: index t of target node to be attacked 1: 2: 3: // get node degrees and neighbors 4: for to N do 5: 6: if then 7: 8: 9: end if 10: end for 11: if then 12: // get the nodes and their neighbors with smallest degree k, generally, k equals to 1 13: 14: 15: 16: for do 17: if then 18: 19: 20: end if 21: end for 22: 23: for to do 24: for do 25: if in then 26: 27: end if 28: end for 29: end for 30: 31: else 32: 33: end if 34: return t |
3.2. Influence of Leaf Node Neighbor Failures
4. Experimental Studies
4.1. Results on Synthetic Networks for Different Average Degrees
4.2. Results on Synthetic Networks for Different Network Sizes
4.3. Results on Real-World Networks
4.4. Attack Process Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.; Wang, X.; Li, X. Fundamentals of Complex Networks: Models, Structures and Dynamics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Menichetti, G.; Dall’Asta, L.; Bianconi, G. Network Controllability Is Determined by the Density of Low In-Degree and Out-Degree Nodes. Phys. Rev. Lett. 2014, 113, 078701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhou, T. Controllability Analysis for a Networked Dynamic System with Autonomous Subsystems. IEEE Trans. Autom. Control 2017, 62, 3408–3415. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of Complex Networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.D.; Lao, S.Y.; Hou, L.L.; Bai, L. Optimization of robustness of network controllability against malicious attacks. Chin. Phys. B 2014, 23, 118902. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, L.; Chen, G. A Framework of Hierarchical Attacks to Network Controllability. Commun. Nonlinear Sci. Numer. Simul. 2021, 98, 105780. [Google Scholar] [CrossRef]
- Wandelt, S.; Lin, W.; Sun, X.; Zanin, M. From random failures to targeted attacks in network dismantling. Reliab. Eng. Syst. Saf. 2022, 218, 108146. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Wu, R.; Li, J. An adaptive attack model to network controllability. Reliab. Eng. Syst. Saf. 2023, 235, 109252. [Google Scholar] [CrossRef]
- Borgatti, S.P. Centrality and network flow. Soc. Netw. 2005, 27, 55–71. [Google Scholar] [CrossRef]
- Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
- Ruan, Y.-R.; Yang, L.S.; Wang, J.-D.; Bai, L.; Chen, L.D. Node importance measurement based on neighborhood similarity in complex network. Acta Phys. Sin. 2017, 66, 038902. [Google Scholar] [CrossRef]
- Šimon, M.; Luptáková, I.D.; Huraj, L.; Hosťovecký, M.; Pospíchal, J. Combined Heuristic Attack Strategy on Complex Networks. Math. Probl. Eng. 2017, 2017, 6108563. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; An, S. Critical Nodes Identification in Complex Networks. Symmetry 2020, 12, 123. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Control Centrality and Hierarchical Structure in Complex Networks. PLoS ONE 2012, 7, e44459. [Google Scholar] [CrossRef] [Green Version]
- da Cunha, B.R.; González-Avella, J.C.; Gonçalves, S. Fast Fragmentation of Networks Using Module-Based Attacks. PLoS ONE 2015, 10, e0142824. [Google Scholar] [CrossRef] [Green Version]
- Shai, S.; Kenett, D.Y.; Kenett, Y.N.; Faust, M.; Dobson, S.; Havlin, S. Critical tipping point distinguishing two types of transitions in modular network structures. Phys. Rev. E 2015, 92, 062805. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhao, G.; Kong, Z.; Zhao, Y. Controllability and Optimization of Complex Networks Based on Bridges. Complexity 2020, 2020, 6695026. [Google Scholar] [CrossRef]
- Fan, C.; Zeng, L.; Sun, Y.; Liu, Y.Y. Finding key players in complex networks through deep reinforcement learning. Nat. Mach. Intell. 2020, 2, 317–324. [Google Scholar] [CrossRef]
- Lou, Y.; He, Y.; Wang, L.; Tsang, K.F.; Chen, G. Knowledge-Based Prediction of Network Controllability Robustness. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5739–5750. [Google Scholar] [CrossRef]
- Wu, C.; Lou, Y.; Wu, R.; Liu, W.; Li, J. CNN-based Prediction of Network Robustness With Missing Edges. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Lou, Y.; He, Y.; Wang, L.; Chen, G. Predicting Network Controllability Robustness: A Convolutional Neural Network Approach. IEEE Trans. Cybern. 2022, 52, 4052–4063. [Google Scholar] [CrossRef]
- Lou, Y.; Wu, R.; Li, J.; Wang, L.; Li, X.; Chen, G. A Learning Convolutional Neural Network Approach for Network Robustness Prediction. IEEE Trans. Cybern. 2022, 1–14. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, J.; Qi, M.; Tan, Y. Optimal disintegration strategy in spatial networks with disintegration circle model. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 061102. [Google Scholar] [CrossRef] [PubMed]
- Ventresca, M. Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Comput. Oper. Res. 2012, 39, 2763–2775. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, L.; Chen, G. Toward Stronger Robustness of Network Controllability: A Snapback Network Model. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2983–2991. [Google Scholar] [CrossRef]
- Yuan, Z.Z.; Zhao, C.; Di, Z.R.; Wang, W.X.; Lai, Y.C. Exact Controllability of Complex Networks. Nat. Commun. 2013, 4, 2447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Wu, R.; Li, J.; Wang, L.; Chen, G. A Convolutional Neural Network Approach to Predicting Network Connectedness Robustness. IEEE Trans. Netw. Sci. Eng. 2021, 8, 3209–3219. [Google Scholar] [CrossRef]
- Lou, Y.; Wu, R.; Li, J.; Wang, L.; Tang, C.B.; Chen, G. Classification-based prediction of network connectivity robustness. Neural Netw. 2023, 157, 136–146. [Google Scholar] [CrossRef]
- Freitas, S.; Yang, D.; Kumar, S.; Tong, H.; Chau, D.H. Graph Vulnerability and Robustness: A Survey. IEEE Trans. Knowl. Data Eng. 2023, 35, 5915–5934. [Google Scholar] [CrossRef]
- Erdös, P.; Rényi, A. On the Strength of Connectedness of a Random Graph. Acta Math. Hung. 1964, 12, 261–267. [Google Scholar] [CrossRef]
- Goh, K.I.; Kahng, B.; Kim, D. Universal Behavior of Load Distribution in Scale-free Networks. Phys. Rev. Lett. 2001, 87, 278701. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.; Watts, D.J. Renormalization Group Analysis of the Small-world Network Model. Phys. Lett. A 1999, 263, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Rossi, R.; Ahmed, N. The Network Data Repository with Interactive Graph Analytics and Visualization. Proc. AAAI Conf. Artif. Intell. 2015, 29, 9277. [Google Scholar] [CrossRef]
Method | LNNA | DEG | BET | CLO |
---|---|---|---|---|
Time complexity |
Networks | LNNA | DEG | BET | CLO | |
---|---|---|---|---|---|
ER | 3 | 0.5893 | 0.5258 | 0.4274 | 0.4921 |
5 | 0.4759 | 0.3942 | 0.3139 | 0.3619 | |
7 | 0.3382 | 0.2537 | 0.2012 | 0.2299 | |
SF | 3 | 0.8836 | 0.8808 | 0.8259 | 0.8759 |
5 | 0.8085 | 0.8027 | 0.7322 | 0.7938 | |
7 | 0.6636 | 0.6421 | 0.5683 | 0.6273 | |
SW | 3 | 0.4961 | 0.382 | 0.1612 | 0.3656 |
5 | 0.4324 | 0.3354 | 0.1802 | 0.3073 | |
7 | 0.3236 | 0.2375 | 0.166 | 0.2173 |
Network | N | LNNA | DEG | BET | CLO |
---|---|---|---|---|---|
ER | 500 | 0.4759 | 0.3942 | 0.3139 | 0.3619 |
1000 | 0.4803 | 0.3963 | 0.318 | 0.3654 | |
1500 | 0.4815 | 0.3966 | 0.3211 | 0.3676 | |
SF | 500 | 0.8085 | 0.8027 | 0.7322 | 0.7938 |
1000 | 0.8357 | 0.8312 | 0.765 | 0.8242 | |
1500 | 0.8519 | 0.848 | 0.787 | 0.8422 | |
SW | 500 | 0.4324 | 0.3354 | 0.1802 | 0.3073 |
1000 | 0.4347 | 0.3368 | 0.1788 | 0.3066 | |
1500 | 0.1238 | 0.072 | 0.0582 | 0.061 |
Network | N | M |
---|---|---|
econ-mahindas | 1258 | 7682 |
soc-wiki-Vote | 889 | 2914 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Xu, S.; Yu, Z.; Li, J. Influence of Removing Leaf Node Neighbors on Network Controllability. Entropy 2023, 25, 945. https://doi.org/10.3390/e25060945
Wu C, Xu S, Yu Z, Li J. Influence of Removing Leaf Node Neighbors on Network Controllability. Entropy. 2023; 25(6):945. https://doi.org/10.3390/e25060945
Chicago/Turabian StyleWu, Chengpei, Siyi Xu, Zhuoran Yu, and Junli Li. 2023. "Influence of Removing Leaf Node Neighbors on Network Controllability" Entropy 25, no. 6: 945. https://doi.org/10.3390/e25060945
APA StyleWu, C., Xu, S., Yu, Z., & Li, J. (2023). Influence of Removing Leaf Node Neighbors on Network Controllability. Entropy, 25(6), 945. https://doi.org/10.3390/e25060945