Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies
<p>Diagram of the basic workflow for training a QA-based QNN.</p> "> Figure 2
<p>Diagram of the basic workflow for training a PQC-based QNN.</p> "> Figure 3
<p>Examples of common quantum layers used for constructing QNNs: an encoding/embedding layer using a circuit block <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> as Hamiltonian encoding, a variational layer with a unitary gate <span class="html-italic">U</span> with four parameters (<math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>3</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>4</mn> </msub> </semantics></math>), a simple entangling layer with rotation operation (<span class="html-italic">R</span>) and CNOT gates operating on neighbor qubits, a pooling layer used for quantum convolutional networks, and finally a measurement layer.</p> ">
Abstract
:1. Introduction
2. Quantum Neural Network Technologies and Methodologies
2.1. Target NISQ Architectures for QNN
- Quantum Annealers (QA). In this quantum computing approach, the loss function is expressed as the cost function of a QUBO (Quadratic Unconstrained Binary Optimization) problem, equivalent to the Hamiltonian of an Ising system [22]. Currently, the most established QA machines are from the Canadian D-Wave. Additional companies working on and researching the development of QA platforms are Fujitsu, with its Digital Annealer [23,24], Toshiba, with its Simulated Bifurcation Machine (SBM) [25], NEC (developing a QA processor using the so-called Lechner-Hauke-Zoller architecture [26]), and Qilimanjaro Quantum Tech, a spinoff of the Barcelona Supercomputing Center.
- Universal Gate Quantum Computers. In this quantum computing model, the QNN loss function is expressed in terms of a measurement associated with a parametrized quantum circuit using universal quantum gates. Differently from QAs, universal quantum computers can solve problems beyond optimization tasks, formulated as the minimization of an Ising Hamiltonian.There are two formulations for the universal quantum gates that can be used to express the QNN loss function:
- (a)
- Discrete Qubit-Based Quantum Computing. Qubit-based architectures are the most established general-purpose quantum computing approach. They use the discrete formulation of a quantum state equivalent to a bit [27]. The qubit is expressed as the combination (or a superposition) of the states and as . We use a set of discrete complex-valued coefficients, such as and , whose modulus squared corresponds to the probability of measuring and in the qubit system measurement.Discrete-qubit QNNs rely on parametrizing discrete quantum gates, such as rotation and Pauli gates. Discrete qubit-based QNNs are generally considered a good match for classification tasks because of the discrete nature of the problem. Among the most famous hardware implementations (and associated software) in this category, there are IBM (Qiskit), Google (Cirq), Rigetti (Forest), and OriginQ (Qpanda) quantum computers. All these implementations use superconducting/transmon qubit technologies. Another prominent company is Pasqal, with a neutral atom quantum computer that can be used in analog and digital versions [28].
- (b)
- Continuous Variable (CV) Quantum Computing. The CV quantum computing approach is the analog version of quantum computing [29], still using a QC gate formulation [30]. CV is based on the concept of qumode, the continuous analogous of the qubit.The qumode is expressed in the basis expansion of quantum states, as , where x are the real-valued eigenvalues and are the eigenstates of the quadrature, . CV quantum computing and CV QNN use continuous quantum gates, such as displacement, squeeze, rotation, and Kerr gates, to express the quantum circuit operations. Because of the continuous approach, CV QPC is regarded as an excellent fit for QNN regression-like tasks. In addition, CV QNNs are a critical building block for developing quantum Physics Informed Neural Networks (PINN) using CV gates [31].The most established technology to implement CV quantum gates is photonics. The Canadian Xanadu is among the most active and established companies developing photonics quantum chips. Among others, Xanadu is one of the leading companies for the development of QNN programming frameworks: Strawberry Fields (and, most importantly, its integration with a TensorFlow backend) and PennyLane are important examples of programming frameworks that allow for CV QNNs.
2.2. Quantum Neural Network Input Data
- Classical Data. In this case, the training datasets consist of classical data, such as the pixel values of an image. When QNN uses classical data, then an encoding of the classical data into quantum states is required. The most used encoding techniques are amplitude, angle, basis, and Hamiltonian encodings [5,32]. The encoding often requires the usage of an additional QNN layer.
- Quantum Data and Integration with Quantum Simulators. Quantum data are encoded as a superposition of quantum states, where each quantum state has an associated amplitude and a phase. Quantum data cannot be generated classically but might result from quantum sensing or quantum circuit running a quantum algorithm or quantum simulations. An example of code using quantum data is the TensorFlow Quantum Hello Many-Worlds code [33] (https://github.com/tensorflow/quantum/blob/research/binary_classifier/binary_classifier.ipynb, accessed on 3 April 2023) that classifies two classes of quantum data points distributed in the Bloch sphere [27].Classical NN cannot operate on quantum data, and QNN provides the only mean to process quantum data directly. If the QNN uses quantum data, then a special data loader or integration with quantum simulations programming frameworks, such as OpenFermion [34], and PySCF [35] are required. All the main QNN frameworks provide integration of quantum simulations as part of the same package or integration with OpenFermion and PySCF.
2.3. Quantum Neural Network Approaches
2.3.1. QNN with Quantum Annealers
2.3.2. QNN with Parametrized Quantum Circuits
2.4. Quantum Neural Network Architectures
- Encoding/Embedding Layers. These layers are used to encode classical data into quantum Hilbert space. Basically, the encoding process is equivalent to a feature map that assigns data to quantum states [58,59]. Inner products of such data-encoding quantum states give rise to quantum kernels. These feature maps are used in QNNs as a way to perform nonlinear transformations, akin to activation functions in NN, on the input data.Common feature maps used in the QNNs are amplitude, angle, basis, and Hamiltonian encodings. Amplitude and angle encodings map classical data to the amplitudes and phases of a quantum state, respectively. Basis embedding encodes the binary feature vector into a basis state. Hamiltonian encoding associates a system’s Hamiltonian with a matrix representing the data transformation. An example of Hamiltonian encoding is using a quantum circuit with single-qubit rotations to encode the input data. This encoding using multiple quantum rotation gates, for instance, allows us to express quantum models as Fourier-type sums [60]. In CV QNNs, the most used encoding is displacement embedding, which encodes features into the displacement of qumodes amplitudes or phases.Encoding layers are critical for developing QNN as the data-encoding strategy largely defines the QNN expressivity, e.g., the features QNN can represent [59,61]. Feature maps are critical building blocks for developing scientific quantum machine learning and Differentiable Quantum Circuit (DQC) [62,63,64].
- Variational Layers. These layers are the PQC building block and include trainable parameters (w and b) in the quantum circuit. These parameters are optimized during the QNN training. They typically consist of a series of single- and two-qubit gates, with associated gate parameters optimized during training.
- Entangling Layers. An important subclass of variational layers is the entangling layers class that creates entangled quantum states. These layers comprise one-parameter single-qubit rotations on each qubit, followed by a CNOT gate chain. Basic entangling layers have a CNOT gate chain connecting every qubit with its neighbor. Strongly entangling layers feature a CNOT gate chain also connecting non-neighbor qubits [65]. Random entangling layers have single qubit rotations and CNOT gates, acting on randomly chosen qubits. Another entangling layer is the so-called 2-design, consisting of qubit rotations and Controlled-Z (CZ gate) entangling layers [56].
- Pooling Layers. Pooling layers reduce the quantum circuit size by typically grouping together several qubits and performing operations that reduce the quantum state dimensionality. The way to implement pooling layers is to measure a qubit subset of the qubits and then use the measurement to control the following operations. Pooling layers are an important component of quantum convolutional networks [66].
- Measurement Layers. Measurement layers are used to measure classical information (bit) from the superposition of quantum states in the QNN. Measurements layers typically are single-qubit measurements of the output qubits that provide classical values for the QNN output.
2.5. Optimizers for Parametrized Quantum Circuits
- Gradient-free Optimizers. Gradient-free optimization methods are techniques that do not require the calculation of the gradient for the back-propagation step [69], reducing the complexity of performing differentiation on a quantum circuit. For this reason, they were widely used in developing the first QNNs. This optimizer class includes the Nelder–Mead [70] and COBYLA algorithms [71]. These gradient-free optimizer methods are often provided within the QNN frameworks (e.g., they are readily available in Qiskit) or available via external packages, such as SciPy [72].
- Gradient-based Optimizers. Gradient-based optimizers require gradient calculation on the QNN. Compared to gradient-free optimizers, gradient-based optimizers provide advantages from convergence guarantees [73] and are the method of choice in modern QNNs. Examples of gradient-based optimizers are the deep-learning workhorse algorithms, such as the Stochastic Gradient Descent (SGD) and Adam. These optimizers are readily available in many QNN frameworks or are obtained from integrating QNN programming frameworks with TensorFlow/Keras and PyTorch. For instance, Quantum TensorFlow and Strawberry Fields can readily use TensorFlow 2 and Keras optimizers.Together with traditional ML optimizers, additional optimizers are used to reduce evaluation costs and address the problem of the barren plateau. For instance, a popular optimizer, robust to noise, is the Simultaneous Perturbation Stochastic Approximation (SPSA) [74], which is a stochastic method to approximate the loss function gradient. In this optimizer, the loss function is evaluated using perturbed parameter vectors: each component of the parameter vector is shifted by a random value. Another example is the doubly stochastic gradient descent method [73] that reduces the cost of evaluating the gradient at each iteration by evaluating only a random subset of the gradient components. Additionally, the Quantum Natural Gradient (QNGOptimizer) [75,76] improves the quality of our optimization landscape (affected by the barren plateau problem) by moving along the steepest direction in the Hilbert space instead of the parameter space.
2.6. Differentiation for Parametrized Quantum Circuits
- Parameter Shift Rule/Quantum Automatic Differentiation. This differentiation technique allows calculating derivatives using the same PQC with a difference only in a shift of the argument [80,81]. The basic idea of this technique is to consider these quantum functions as Fourier series. The partial derivative of a function can then be formulated as a linear combination of them. An intuitive example of the parameter shift rule workings (https://pennylane.ai/qml/glossary/parameter_shift.html, accessed on 3 April 2023) is the calculation of that is equivalent to a shifted formulation: . The same underlying algorithm can be reused to compute both and its derivative at . This works for many PQCs of interest, and the same PQC can be used to evaluate both the loss function and its gradient on a quantum computer.
- Numerical Derivative. Numerical derivative methods are based on finite-different discretization. This differentiation calculation can run on a quantum computer as a black box as it requires PQC evaluations common at two separated points in the parameter w at a distance : in a simple case of forward finite-difference. The challenge with this technique is the number of PQC evaluations that this method requires and the accuracy (given the dependency on ).
- Adjoint Derivative (for quantum simulators). This differentiation method applies only to quantum computer simulators, as the method requires examining and modifying the full quantum state vector. This method works iteratively by applying the inverse (adjoint) gate [82] and has significantly lower memory usage and a similar runtime than the backprop. For this reason, this is the method of choice for HPC implementation of automatic differentiation on quantum computer simulators.
- Quantum analytic descent (on classical computers). This method constructs a classical model approximating the optimization landscape in the minimum proximity by using a sum of multilinear trigonometric terms in each parameter so that the gradients can be easily calculated on a classical computer that is computationally convenient [83].
2.7. Applications
3. Quantum Neural Network Software Frameworks
3.1. Amazon Braket SDK
3.2. D-Wave Ocean
- Problem Definition. This software layer provides tools for defining optimization problems that can be solved using quantum annealing. It includes tools for defining variables, constraints, and objective functions.
- Samplers. The Ocean sampler allows us to access different compute resource (CPU/GPU/QPU) and different optimization techniques.
- Embedding. This software layer provides tools for mapping high-level problem definitions onto the hardware constraints defined by the sampler. Using a QA, Ocean allows us to map the problem defined in the problem definition phase onto the hardware qubits of the QA.
- Utilities. This component provides a set of utility functions that can be used to analyze the results of the quantum annealing runs, visualize the embeddings, and debug the models.
3.3. Intel HQCL
3.4. Microsoft Azure QDK
3.5. Nvidia CUDA Quantum
3.6. OriginQ QPanda
3.7. PennyLane
- Pennylane Templates. The software component provides higher-level building blocks for constructing QNNs. Templates are a library of ready-to-use templates of widely used PQC architectures. For instance, templates can be used to encode data into quantum states or to select pre-made QNN layers.
- Quantum Operators and Measurements. This software layer provides different quantum operators, including quantum gates, noisy channels, state preparations, and measurements. As for the measurement, PennyLane supports results from quantum devices: observable expectation, its variance, single measurement samples, and computational basis state probabilities.
- Quantum Circuit/Device The software component provides the interface between the software and the hardware. In PennyLane, calculations involving the execution of one or more quantum circuits are formulated as quantum node objects. The quantum nodes are used to express the quantum circuit, pin the computation to a specific device, and execute it. This software layer comprises PennyLane plugins for different quantum hardware devices and simulators. These plugins enable users to execute quantum circuits on different devices and return the measurement outcomes.
3.8. Qiskit Machine Learning
- Data Preparation. This component is responsible for preprocessing the input data before it is used to train or test a quantum machine learning model.
- Feature Maps. The feature maps layer defines the quantum circuits that map the input data onto a quantum state. It includes pre-built feature maps for common ML tasks.
- Neural Networks. This component contains a programming interface for the QNNs (called NeuralNetwork) and two specific implementations (i) EstimatorQNN: this network is based on evaluating quantum mechanical observables, and (ii) SamplerQNN: a network based on the samples measuring a quantum circuit. These high-level classes provide methods for configuring the PQC, its initialization, and performing the forward and backward passes.
- Classifiers and Regressors. To train and use Quantum Neural Networks, qiskitmachine-learning provides different learning algorithms such as the NeuralNetworkClassifier and NeuralNetworkRegressor. These take a QNN as input and then use it for classification or regression. Two convenience implementations are provided to allow an easy start: the Variational Quantum Classifier (VQC) and the Variational Quantum Regressor (VQR).
- Qiskit. At the bottom of the qiskit-machine-learning software stack, there is Qiskit that provides quantum gate and circuits primitives (including parametrized gates), gradients, and optimizers.
3.9. Rigetti Grove
3.10. Strawberry Fields
3.11. TensorFlow Quantum
- Classical and Quantum Data. TFQ allows the processing of classical and quantum data (in the form of quantum circuits and operators).
- Keras API. TQ integrates with the core TensorFlow and Keras [109], providing NN models and optimizers.
- Quantum Layers and Differentiators. This part of the software stack provides hybrid quantum-classical automatic differentiation in connection with classical TensorFlow layers.
- TensorFlow Ops. This software component instantiates the dataflow graph, and custom operations regulate the quantum circuit execution.
3.12. Torch Quantum
3.13. Zapata Orquestra
3.14. Summary
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AWS | Amazon Web Services |
CV | Continuous Variable |
DBN | Deep Belief Network |
DQC | Differentiable Quantum Circuit |
GPU | Graphical Processing Unit |
HHL | Harrow–Hassidim–Lloyd |
HPC | High-Performance Computing |
ML | Machine Learning |
NISQ | Noisy Intermediate-Scale Quantum |
NN | Neural Network |
PCA | Principal Component Analysis |
PINN | Physics-Informed Neural Network |
PQC | Parametrized Quantum Circuit |
QA | Quantum Annealer |
qBLAS | Quantum Basic Linear Algebra Subprograms |
QCBM | Quantum Circuit Born Machine |
QFT | Quantum Fourier Transform |
QML | Quantum Machine Learning |
QNN | Quantum Neural Network |
QPE | Quantum Phase Estimation |
QUBO | Quadratic Unconstrained Binary Optimization |
RBM | Restricted Boltzmann Machine |
SDK | Software Development Toolkit |
SPSA | Simultaneous Perturbation Stochastic Approximation |
SVD | Singular Value Decomposition |
TQ | TensorFlow Quantum |
VQC | Variational Quantum Circuits |
References
- Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Rieffel, E.G.; Polak, W.H. Quantum Computing: A Gentle Introduction; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Bravyi, S.; Gosset, D.; König, R. Quantum advantage with shallow circuits. Science 2018, 362, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2018; Volume 17. [Google Scholar]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum principal component analysis. Nat. Phys. 2014, 10, 631–633. [Google Scholar] [CrossRef]
- Wiebe, N.; Braun, D.; Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 2012, 109, 050505. [Google Scholar] [CrossRef]
- Lloyd, S.; Garnerone, S.; Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 2016, 7, 10138. [Google Scholar] [CrossRef]
- Low, G.H.; Yoder, T.J.; Chuang, I.L. Quantum inference on Bayesian networks. Phys. Rev. A 2014, 89, 062315. [Google Scholar] [CrossRef]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum random access memory. Phys. Rev. Lett. 2008, 100, 160501. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Schuld, M.; Killoran, N. Is quantum advantage the right goal for quantum machine learning? Prx Quantum 2022, 3, 030101. [Google Scholar] [CrossRef]
- Boixo, S.; Smelyanskiy, V.N.; Shabani, A.; Isakov, S.V.; Dykman, M.; Denchev, V.S.; Amin, M.H.; Smirnov, A.Y.; Mohseni, M.; Neven, H. Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 2016, 7, 10327. [Google Scholar] [CrossRef] [PubMed]
- Heim, B.; Soeken, M.; Marshall, S.; Granade, C.; Roetteler, M.; Geller, A.; Troyer, M.; Svore, K. Quantum programming languages. Nat. Rev. Phys. 2020, 2, 709–722. [Google Scholar] [CrossRef]
- Cross, A.; Javadi, A.; Alexander, T.; Bishop, L.; Ryan, C.A.; Heidel, S.; de Beaudrap, N.; Smolin, J.; Gambetta, J.; Johnson, B.R. Open Quantum Assembly Language. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, Virtual, 20 June 2021. [Google Scholar]
- Wille, R.; Van Meter, R.; Naveh, Y. IBM’s Qiskit tool chain: Working with and developing for real quantum computers. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (2019), Florence, Italy, 25–29 March 2019; pp. 1234–1240. [Google Scholar]
- Smith, R.S.; Curtis, M.J.; Zeng, W.J. A practical quantum instruction set architecture. arXiv 2016, arXiv:1608.03355. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the Osdi, Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 8 December 2019; pp. 8026–8037. [Google Scholar]
- Yarkoni, S.; Raponi, E.; Bäck, T.; Schmitt, S. Quantum annealing for industry applications: Introduction and review. Rep. Prog. Phys. 2022, 85, 104001. [Google Scholar] [CrossRef] [PubMed]
- Aramon, M.; Rosenberg, G.; Valiante, E.; Miyazawa, T.; Tamura, H.; Katzgraber, H.G. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 2019, 7, 48. [Google Scholar] [CrossRef]
- Nakayama, H.; Koyama, J.; Yoneoka, N.; Miyazawa, T. Description: Third Generation Digital Annealer Technology; Fujitsu Limited: Tokyo, Japan, 2021. [Google Scholar]
- Goto, H. Quantum computation based on quantum adiabatic bifurcations of Kerr-nonlinear parametric oscillators. J. Phys. Soc. Jpn. 2019, 88, 061015. [Google Scholar] [CrossRef]
- Susa, Y.; Nishimori, H. Variational optimization of the quantum annealing schedule for the Lechner-Hauke-Zoller scheme. Phys. Rev. A 2021, 103, 022619. [Google Scholar] [CrossRef]
- Kaye, P.; Laflamme, R.; Mosca, M. An Introduction to Quantum Computing; OUP: Oxford, UK, 2006. [Google Scholar]
- Henriet, L.; Beguin, L.; Signoles, A.; Lahaye, T.; Browaeys, A.; Reymond, G.O.; Jurczak, C. Quantum computing with neutral atoms. Quantum 2020, 4, 327. [Google Scholar] [CrossRef]
- Lloyd, S.; Braunstein, S.L. Quantum computation over continuous variables. Phys. Rev. Lett. 1999, 82, 1784. [Google Scholar] [CrossRef]
- Killoran, N.; Bromley, T.R.; Arrazola, J.M.; Schuld, M.; Quesada, N.; Lloyd, S. Continuous-variable quantum neural networks. Phys. Rev. Res. 2019, 1, 033063. [Google Scholar] [CrossRef]
- Markidis, S. On the Physics-Informed Neural Networks for Quantum Computers. arXiv 2022, arXiv:2209.14754. [Google Scholar] [CrossRef]
- LaRose, R.; Coyle, B. Robust data encodings for quantum classifiers. Phys. Rev. A 2020, 102, 032420. [Google Scholar] [CrossRef]
- Broughton, M.; Verdon, G.; McCourt, T.; Martinez, A.J.; Yoo, J.H.; Isakov, S.V.; Massey, P.; Halavati, R.; Niu, M.Y.; Zlokapa, A.; et al. Tensorflow quantum: A software framework for quantum machine learning. arXiv 2020, arXiv:2003.02989. [Google Scholar]
- McClean, J.R.; Rubin, N.C.; Sung, K.J.; Kivlichan, I.D.; Bonet-Monroig, X.; Cao, Y.; Dai, C.; Fried, E.S.; Gidney, C.; Gimby, B.; et al. OpenFermion: The electronic structure package for quantum computers. Quantum Sci. Technol. 2020, 5, 034014. [Google Scholar] [CrossRef]
- Sun, Q.; Berkelbach, T.C.; Blunt, N.S.; Booth, G.H.; Guo, S.; Li, Z.; Liu, J.; McClain, J.D.; Sayfutyarova, E.R.; Sharma, S.; et al. PySCF: The Python-based simulations of chemistry framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1340. [Google Scholar] [CrossRef]
- Hu, F.; Wang, B.N.; Wang, N.; Wang, C. Quantum machine learning with D-wave quantum computer. Quantum Eng. 2019, 1, e12. [Google Scholar] [CrossRef]
- Nath, R.K.; Thapliyal, H.; Humble, T.S. A review of machine learning classification using quantum annealing for real-world applications. SN Comput. Sci. 2021, 2, 365. [Google Scholar] [CrossRef]
- Boothby, T.; King, A.D.; Roy, A. Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Inf. Process. 2016, 15, 495–508. [Google Scholar] [CrossRef]
- Klymko, C.; Sullivan, B.D.; Humble, T.S. Adiabatic quantum programming: Minor embedding with hard faults. Quantum Inf. Process. 2014, 13, 709–729. [Google Scholar] [CrossRef]
- MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bauckhage, C.; Sanchez, R.; Sifa, R. Problem solving with Hopfield networks and adiabatic quantum computing. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–6. [Google Scholar]
- Dorband, J.E. A Boltzmann machine implementation for the d-wave. In Proceedings of the 2015 12th International Conference on Information Technology-New Generations, Las Vegas, NV, USA, 13–15 April 2015; pp. 703–707. [Google Scholar]
- Dixit, V.; Selvarajan, R.; Alam, M.A.; Humble, T.S.; Kais, S. Training restricted boltzmann machines with a d-wave quantum annealer. Front. Phys. 2021, 9, 589626. [Google Scholar] [CrossRef]
- Adachi, S.H.; Henderson, M.P. Application of quantum annealing to training of deep neural networks. arXiv 2015, arXiv:1510.06356. [Google Scholar]
- Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 2019, 4, 043001. [Google Scholar] [CrossRef]
- Farhi, E.; Neven, H. Classification with quantum neural networks on near term processors. arXiv 2018, arXiv:1802.06002. [Google Scholar]
- Chen, H.; Wossnig, L.; Severini, S.; Neven, H.; Mohseni, M. Universal discriminative quantum neural networks. Quantum Mach. Intell. 2021, 3, 1. [Google Scholar] [CrossRef]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Cong, I.; Choi, S.; Lukin, M.D. Quantum convolutional neural networks. Nat. Phys. 2019, 15, 1273–1278. [Google Scholar] [CrossRef]
- Henderson, M.; Shakya, S.; Pradhan, S.; Cook, T. Quanvolutional neural networks: Powering image recognition with quantum circuits. Quantum Mach. Intell. 2020, 2, 2. [Google Scholar] [CrossRef]
- Huang, H.L.; Du, Y.; Gong, M.; Zhao, Y.; Wu, Y.; Wang, C.; Li, S.; Liang, F.; Lin, J.; Xu, Y.; et al. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 2021, 16, 024051. [Google Scholar] [CrossRef]
- Huggins, W.; Patil, P.; Mitchell, B.; Whaley, K.B.; Stoudenmire, E.M. Towards quantum machine learning with tensor networks. Quantum Sci. Technol. 2019, 4, 024001. [Google Scholar] [CrossRef]
- McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 2018, 9, 4812. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.; Wossnig, L.; Ostaszewski, M.; Benedetti, M. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 2019, 3, 214. [Google Scholar] [CrossRef]
- Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P.J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 2021, 12, 1791. [Google Scholar] [CrossRef]
- Pérez-Salinas, A.; Cervera-Lierta, A.; Gil-Fuster, E.; Latorre, J.I. Data re-uploading for a universal quantum classifier. Quantum 2020, 4, 226. [Google Scholar] [CrossRef]
- Wolf, M.M. Quantum Channels & Operations: Guided Tour; Lecture Notes; Niels-Bohr Institute: Copenhagen, Denmark, 2012; Volume 5, p. 13. Available online: https://mediatum.ub.tum.de/doc/1701036/document.pdf (accessed on 3 April 2023).
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef]
- Schuld, M.; Sweke, R.; Meyer, J.J. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 2021, 103, 032430. [Google Scholar] [CrossRef]
- Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [Google Scholar] [CrossRef]
- Kyriienko, O.; Paine, A.E.; Elfving, V.E. Solving nonlinear differential equations with differentiable quantum circuits. Phys. Rev. A 2021, 103, 052416. [Google Scholar] [CrossRef]
- Paine, A.E.; Elfving, V.E.; Kyriienko, O. Quantum kernel methods for solving differential equations. arXiv 2022, arXiv:2203.08884. [Google Scholar]
- Heim, N.; Ghosh, A.; Kyriienko, O.; Elfving, V.E. Quantum model-discovery. arXiv 2021, arXiv:2111.06376. [Google Scholar]
- Schuld, M.; Bocharov, A.; Svore, K.M.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Q.; Long, S.; Zhu, W.; Yuan, Z.; Wu, Y. Quantum convolutional neural network for image classification. Pattern Anal. Appl. 2022, 26, 655–667. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Y.; Gu, J.; Lin, Y.; Pan, D.Z.; Chong, F.T.; Han, S. QuantumNAS: Noise-adaptive search for robust quantum circuits. In Proceedings of the 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Republic of Korea, 2–6 April 2022; pp. 692–708. [Google Scholar]
- Du, Y.; Huang, T.; You, S.; Hsieh, M.H.; Tao, D. Quantum circuit architecture search for variational quantum algorithms. NPJ Quantum Inf. 2022, 8, 62. [Google Scholar] [CrossRef]
- Zhu, D.; Linke, N.M.; Benedetti, M.; Landsman, K.A.; Nguyen, N.H.; Alderete, C.H.; Perdomo-Ortiz, A.; Korda, N.; Garfoot, A.; Brecque, C.; et al. Training of quantum circuits on a hybrid quantum computer. Sci. Adv. 2019, 5, eaaw9918. [Google Scholar] [CrossRef] [PubMed]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Bonet-Monroig, X.; Wang, H.; Vermetten, D.; Senjean, B.; Moussa, C.; Bäck, T.; Dunjko, V.; O’Brien, T.E. Performance comparison of optimization methods on variational quantum algorithms. arXiv 2021, arXiv:2111.13454. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Sweke, R.; Wilde, F.; Meyer, J.; Schuld, M.; Fährmann, P.K.; Meynard-Piganeau, B.; Eisert, J. Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 2020, 4, 314. [Google Scholar] [CrossRef]
- Spall, J.C. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins Apl Tech. Dig. 1998, 19, 482–492. [Google Scholar]
- Stokes, J.; Izaac, J.; Killoran, N.; Carleo, G. Quantum natural gradient. Quantum 2020, 4, 269. [Google Scholar] [CrossRef]
- Amari, S.I. Natural gradient works efficiently in learning. Neural Comput. 1998, 10, 251–276. [Google Scholar] [CrossRef]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Marchine Learn. Res. 2018, 18, 1–43. [Google Scholar]
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Alam, M.S.; Ahmed, S.; Arrazola, J.M.; Blank, C.; Delgado, A.; Jahangiri, S.; et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968. [Google Scholar]
- Guerreschi, G.G.; Smelyanskiy, M. Practical optimization for hybrid quantum-classical algorithms. arXiv 2017, arXiv:1701.01450. [Google Scholar]
- Schuld, M.; Bergholm, V.; Gogolin, C.; Izaac, J.; Killoran, N. Evaluating analytic gradients on quantum hardware. Phys. Rev. A 2019, 99, 032331. [Google Scholar] [CrossRef]
- Wierichs, D.; Izaac, J.; Wang, C.; Lin, C.Y.Y. General parameter-shift rules for quantum gradients. Quantum 2022, 6, 677. [Google Scholar] [CrossRef]
- Jones, T.; Gacon, J. Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv 2020, arXiv:2009.02823. [Google Scholar]
- Koczor, B.; Benjamin, S.C. Quantum analytic descent. Phys. Rev. Res. 2022, 4, 023017. [Google Scholar] [CrossRef]
- Liu, J.; Spedalieri, F.M.; Yao, K.T.; Potok, T.E.; Schuman, C.; Young, S.; Patton, R.; Rose, G.S.; Chamka, G. Adiabatic quantum computation applied to deep learning networks. Entropy 2018, 20, 380. [Google Scholar] [CrossRef]
- Li, R.Y.; Di Felice, R.; Rohs, R.; Lidar, D.A. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. 2018, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Mott, A.; Job, J.; Vlimant, J.R.; Lidar, D.; Spiropulu, M. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 2017, 550, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Konar, D.; Gelenbe, E.; Bhandary, S.; Sarma, A.D.; Cangi, A. Random quantum neural networks (RQNN) for noisy image recognition. arXiv 2022, arXiv:2203.01764. [Google Scholar]
- Suryotrisongko, H.; Musashi, Y. Evaluating hybrid quantum-classical deep learning for cybersecurity botnet DGA detection. Procedia Comput. Sci. 2022, 197, 223–229. [Google Scholar] [CrossRef]
- Shahwar, T.; Zafar, J.; Almogren, A.; Zafar, H.; Rehman, A.U.; Shafiq, M.; Hamam, H. Automated detection of Alzheimer’s via hybrid classical quantum neural networks. Electronics 2022, 11, 721. [Google Scholar] [CrossRef]
- Blance, A.; Spannowsky, M. Quantum machine learning for particle physics using a variational quantum classifier. J. High Energy Phys. 2021, 2021, 212. [Google Scholar] [CrossRef]
- Guan, W.; Perdue, G.; Pesah, A.; Schuld, M.; Terashi, K.; Vallecorsa, S.; Vlimant, J.R. Quantum machine learning in high energy physics. Mach. Learn. Sci. Technol. 2021, 2, 011003. [Google Scholar] [CrossRef]
- Otgonbaatar, S.; Datcu, M. Classification of remote sensing images with parameterized quantum gates. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8020105. [Google Scholar] [CrossRef]
- Sengupta, K.; Srivastava, P.R. Quantum algorithm for quicker clinical prognostic analysis: An application and experimental study using CT scan images of COVID-19 patients. BMC Med. Inform. Decis. Mak. 2021, 21, 227. [Google Scholar] [CrossRef]
- Garcia-Alonso, J.; Rojo, J.; Valencia, D.; Moguel, E.; Berrocal, J.; Murillo, J.M. Quantum software as a service through a quantum API gateway. IEEE Internet Comput. 2021, 26, 34–41. [Google Scholar] [CrossRef]
- Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Zaman, M.; Tanahashi, K.; Tanaka, S. PyQUBO: Python library for mapping combinatorial optimization problems to QUBO form. IEEE Trans. Comput. 2021, 71, 838–850. [Google Scholar] [CrossRef]
- Wu, X.C.; Khalate, P.; Schmitz, A.; Premaratne, S.; Rasch, K.; Daraeizadeh, S.; Kotlyar, R.; Ren, S.; Paykin, J.; Rose, F.; et al. Intel Quantum SDK Version 1.0: Extended C++ Compiler, Runtime and Quantum Hardware Simulators for Hybrid Quantum-Classical Applications. Bull. Am. Phys. Soc. 2023. Available online: https://meetings.aps.org/Meeting/MAR23/Session/RR08.4 (accessed on 3 April 2023).
- Khalate, P.; Wu, X.C.; Premaratne, S.; Hogaboam, J.; Holmes, A.; Schmitz, A.; Guerreschi, G.G.; Zou, X.; Matsuura, A. An LLVM-based C++ Compiler Toolchain for Variational Hybrid Quantum-Classical Algorithms and Quantum Accelerators. arXiv 2022, arXiv:2202.11142. [Google Scholar]
- Matsuura, A.; Premaratne, S.; Wu, X.C.; Sawaya, N.; Schmitz, A.; Khalate, P.; Daraeizadeh, S.; Guerreschi, G.G.; Khammassi, N.; Rasch, K.; et al. An Intel Quantum Software Development Kit for Efficient Execution of Variational Algorithms. In Proceedings of the APS March Meeting Abstracts, Chicago, IL, USA, 14–18 March 2022; Volume 2022, p. N36-006. [Google Scholar]
- Wecker, D.; Svore, K.M. LIQUi|>: A software design architecture and domain-specific language for quantum computing. arXiv 2014, arXiv:1402.4467. [Google Scholar]
- Ngo, T.A.; Nguyen, T.; Thang, T.C. A Survey of Recent Advances in Quantum Generative Adversarial Networks. Electronics 2023, 12, 856. [Google Scholar] [CrossRef]
- Rao, P.; Chandani, Z.; Wilson, A.; Schweitz, E.; Schmitt, B.; Santana, A.; Lelbach, B.; McCaskey, A. Benchmarking of quantum generative adversarial networks using NVIDIA’s Quantum Optimized Device Architecture. Bull. Am. Phys. Soc. 2023. Available online: https://meetings.aps.org/Meeting/MAR23/Session/AAA05.4 (accessed on 3 April 2023).
- Chen, Z.Y.; Xue, C.; Chen, S.M.; Guo, G.P. Vqnet: Library for a quantum-classical hybrid neural network. arXiv 2019, arXiv:1901.09133. [Google Scholar]
- Bian, H.; Jia, Z.; Dou, M.; Fang, Y.; Li, L.; Zhao, Y.; Wang, H.; Zhou, Z.; Wang, W.; Zhu, W.; et al. VQNet 2.0: A New Generation Machine Learning Framework that Unifies Classical and Quantum. arXiv 2023, arXiv:2301.03251. [Google Scholar]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- Frostig, R.; Johnson, M.J.; Leary, C. Compiling machine learning programs via high-level tracing. Syst. Mach. Learn. 2018, 4, 1–3. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 3 April 2023).
- Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry fields: A software platform for photonic quantum computing. Quantum 2019, 3, 129. [Google Scholar] [CrossRef]
- Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Hibat-Allah, M.; Mauri, M.; Carrasquilla, J.; Perdomo-Ortiz, A. A Framework for Demonstrating Practical Quantum Advantage: Racing Quantum against Classical Generative Models. arXiv 2023, arXiv:2303.15626. [Google Scholar]
- Dou, M.; Zou, T.; Fang, Y.; Wang, J.; Zhao, D.; Yu, L.; Chen, B.; Guo, W.; Li, Y.; Chen, Z.; et al. QPanda: High-performance quantum computing framework for multiple application scenarios. arXiv 2022, arXiv:2212.14201. [Google Scholar]
- Bartolucci, S.; Birchall, P.; Bombin, H.; Cable, H.; Dawson, C.; Gimeno-Segovia, M.; Johnston, E.; Kieling, K.; Nickerson, N.; Pant, M.; et al. Fusion-based quantum computation. Nat. Commun. 2023, 14, 912. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Sarma, S.D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083. [Google Scholar] [CrossRef]
- McCaskey, A.; Nguyen, T. A MLIR dialect for quantum assembly languages. In Proceedings of the 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 17–22 October 2021; pp. 255–264. [Google Scholar]
- Ittah, D.; Häner, T.; Kliuchnikov, V.; Hoefler, T. QIRO: A static single assignment-based quantum program representation for optimization. ACM Trans. Quantum Comput. 2022, 3, 1–32. [Google Scholar] [CrossRef]
- Ittah, D.; Häner, T.; Kliuchnikov, V.; Hoefler, T. Enabling dataflow optimization for quantum programs. arXiv 2021, arXiv:2101.11030. [Google Scholar]
QNN Framework | Website (accessed on 3 April 2023) | Main Target Architecture | Language | QC Simulators | Distinctive Features |
---|---|---|---|---|---|
Amazon Braket SDK | https://github.com/aws/amazon-braket-sdk-python | Support Several QC Systems | Braket SDK, Python | Braket local and on-demand HPC simulators | Support Several QC Systems. |
D-Wave Ocean | https://github.com/dwavesystems/dwave-ocean-sdk | D-Wave QAs | Python | OpenJIJ | QA Platform for Restricted Boltzmann Machines and energy-based ML |
Intel HQCL, [98] | https://github.com/IntelLabs/Hybrid-Quantum-Classical-Library | Intel Quantum Dot-based QC (simulators/hardware) | C++ | Intel Quantum Simulator (IQS) | Integration of compiler technologies and runtime |
MS’s QDK | https://github.com/microsoft/Quantum | Support Several QC Systems | Q#/Python | MS’s QDK Circuit Simulator | Support Several QC Systems |
Nvidia CUDA Quantum, [102] | https://developer.nvidia.com/cuda-quantum | GPU/QPU | C++ | cuQuantum Appliance | Unified programming for heterogeneous QPU, GPU, and CPU systems |
OriginQ QPanda, [111] | https://github.com/OriginQ/QPanda-2 | Origin Quantum QC | Python | Several Simulators | Integration with VQNet library for PQC |
PennyLane, [78] | https://github.com/PennyLaneAI/pennylane | Photonics QC | Python | State simulator of qubit-based quantum systems, Gaussian states, TensorFlow and PyTorch autograd | Ideal for prototyping and designing new methods. Support for discrete and CV QC |
Qiskit-machine-learning | https://github.com/Qiskit/qiskit-machine-learning | IBM QC | Python | Qiskit Aer | QNN, Estimator, and Sampler Abstractions. Integration with PyTorch |
Rigetti Grove | https://github.com/rigetti/grove | Rigetti Quantum Computers | PiQuil/Python | QVM (Quantum Virtual Machine) | Full software stack |
Strawberry Fields, [108] | https://github.com/XanaduAI/strawberryfields | CV Quantum Computing, Photonic CV | Blackbird/Python | Simulator with Gaussian states and Fock states. | Integration with TensorFlow 2 as backend: TF optimizers and automatic differentiation. |
TensorFlow Quantum, [33] | https://github.com/tensorflow/quantum | Gate-based Google QC | Integration with Keras, Tensorflow, Python | qsim | Tight integration with TensorFlow, Keras, and Cirq |
Torch Quantum, [67] | https://github.com/mit-han-lab/torchquantum | IBM | Python | Simulator Backend, Planned pulse simulator | Easy PQC construction, dynamic computation graph, gradient calculations via autograd |
Zapata Orquestra, [110] | https://github.com/zapatacomputing | IBM, D-Wave, Rigetti, IonQ | Python | Qulacs | Quantum-enabled workflows |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markidis, S. Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies. Entropy 2023, 25, 694. https://doi.org/10.3390/e25040694
Markidis S. Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies. Entropy. 2023; 25(4):694. https://doi.org/10.3390/e25040694
Chicago/Turabian StyleMarkidis, Stefano. 2023. "Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies" Entropy 25, no. 4: 694. https://doi.org/10.3390/e25040694
APA StyleMarkidis, S. (2023). Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies. Entropy, 25(4), 694. https://doi.org/10.3390/e25040694