Causality Analysis for COVID-19 among Countries Using Effective Transfer Entropy
<p>Causality network among seventy countries for COVID-19 using effective transfer entropy.</p> "> Figure 2
<p>Filtered causality network: Only arcs whose weights are greater than 0.05 are plotted.</p> "> Figure 3
<p>Filtered causality network: Only arcs whose weights are greater than 0.06 are plotted.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transfer Entropy
2.2. Network Analysis
2.2.1. Eigenvector Centrality
2.2.2. PageRank
2.2.3. Community Detection
3. Results
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | coronavirus disease 2019 |
Appendix A
Country | 1.Q | Median | Mean | 3.Q | Max | Country | 1.Q | Median | Mean | 3.Q | Max |
---|---|---|---|---|---|---|---|---|---|---|---|
AL | 18 | 149 | 292 | 520 | 1648 | KW | 52 | 527 | 576 | 886 | 2246 |
AM | 103 | 273 | 469 | 629 | 2603 | KZ | 310 | 926 | 1462 | 1766 | 10,897 |
AZ | 101 | 352 | 842 | 1215 | 5048 | LB | 34 | 627 | 1008 | 1519 | 6154 |
BA | 38 | 260 | 404 | 644 | 2154 | LT | 17 | 372 | 729 | 1216 | 3926 |
BD | 350 | 1372 | 2160 | 2657 | 16,230 | LU | 14 | 79 | 150 | 184 | 2131 |
BE | 441 | 1512 | 2999 | 3017 | 27,867 | LY | 0 | 440 | 533 | 748 | 4322 |
BG | 65 | 332 | 1046 | 1709 | 6816 | MK | 29 | 162 | 313 | 465 | 1725 |
BR | 9213 | 25,322 | 30,368 | 46,896 | 150,106 | MN | 0 | 19 | 533 | 878 | 3963 |
BY | 229 | 944 | 958 | 1650 | 2170 | MX | 1958 | 3917 | 5475 | 7161 | 25,346 |
CA | 518 | 2156 | 3254 | 4233 | 52,548 | MY | 39 | 1357 | 3773 | 5153 | 24,599 |
CH | 154 | 927 | 1968 | 2264 | 31,336 | NL | 498 | 2714 | 4413 | 6620 | 24,700 |
CL | 864 | 1770 | 2469 | 3733 | 36,179 | NO | 54 | 262 | 572 | 596 | 8385 |
CN | 26 | 50 | 181 | 107 | 15,152 | NP | 108 | 422 | 1129 | 1481 | 9317 |
CO | 1511 | 5016 | 7092 | 10,142 | 33,594 | NZ | 0 | 3 | 19 | 11 | 222 |
CR | 85 | 588 | 786 | 1207 | 3173 | PE | 985 | 2391 | 3150 | 4850 | 13,326 |
CU | 22 | 98 | 1319 | 1057 | 9907 | PK | 505 | 1308 | 1767 | 2754 | 6884 |
CZ | 121 | 510 | 3420 | 5438 | 27,937 | PL | 257 | 758 | 5695 | 9068 | 35,251 |
DE | 812 | 4652 | 10,079 | 14,030 | 76,414 | PT | 306 | 690 | 2091 | 2512 | 39,570 |
DK | 111 | 494 | 1249 | 991 | 28,283 | QA | 136 | 211 | 347 | 440 | 2355 |
EE | 10 | 126 | 339 | 526 | 2300 | RO | 217 | 1144 | 2484 | 3528 | 18,863 |
EG | 136 | 511 | 529 | 870 | 1774 | RU | 6333 | 10,758 | 14,427 | 22,784 | 41,335 |
ES | 1774 | 5376 | 9406 | 10,996 | 136,047 | SA | 96 | 390 | 769 | 1146 | 4919 |
FI | 45 | 206 | 415 | 474 | 9921 | SE | 276 | 784 | 1869 | 2721 | 17,320 |
FR | 1118 | 5878 | 14,813 | 19,806 | 329,558 | SI | 18 | 247 | 651 | 1042 | 4518 |
GB | 1734 | 6591 | 19,042 | 30,923 | 218,705 | SK | 18 | 164 | 1165 | 1746 | 15,278 |
GR | 54 | 866 | 1932 | 2434 | 50,182 | SY | 6 | 50 | 69 | 92 | 442 |
HR | 52 | 278 | 1013 | 1380 | 9058 | TH | 5 | 83 | 3061 | 3624 | 23,418 |
HU | 11 | 208 | 1743 | 2046 | 27,830 | TJ | 0 | 0 | 24 | 41 | 407 |
ID | 435 | 3184 | 5795 | 6217 | 56,757 | TN | 12 | 397 | 995 | 1454 | 9823 |
IE | 125 | 437 | 1235 | 1285 | 23,817 | TR | 2766 | 8402 | 13,297 | 21,706 | 68,413 |
IQ | 554 | 2229 | 2851 | 4315 | 13,515 | TZ | 0 | 0 | 42 | 0 | 24,307 |
IR | 2245 | 6151 | 8437 | 11,414 | 50,228 | UA | 574 | 2564 | 5022 | 7961 | 27,377 |
JP | 179 | 851 | 2369 | 2579 | 26,050 | UZ | 57 | 212 | 271 | 408 | 974 |
KG | 44 | 104 | 252 | 334 | 1965 | VE | 184 | 523 | 606 | 1009 | 1939 |
KR | 63 | 438 | 893 | 1108 | 7850 | VN | 1 | 8 | 2505 | 1046 | 39,132 |
References
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Toda, H.Y.; Yamamoto, T. Statistical inference in vector autoregressions with possibly integrated processes. J. Econom. 1995, 66, 225–250. [Google Scholar] [CrossRef]
- Hatemi, J.A. Asymmetric causality tests with an application. Empir. Econ. 2012, 43, 447–456. [Google Scholar] [CrossRef]
- Hiemstra, C.; Jones, J.D. Testing for linear and nonlinear Granger causality in the stock price-volume relation. J. Financ. 1994, 49, 1639–1664. [Google Scholar]
- Breitung, J.; Candelon, B. Testing for short-and long-run causality: A frequency-domain approach. J. Econom. 2006, 132, 363–378. [Google Scholar] [CrossRef]
- Diks, C.; Panchenko, V. A new statistic and practical guidelines for nonparametric Granger causality testing. J. Econ. Dyn. Control. 2006, 30, 1647–1669. [Google Scholar] [CrossRef]
- Lento, C.; Gradojevic, N. S&P 500 index price spillovers around the COVID-19 market meltdown. J. Risk Financ. Manag. 2021, 14, 330. [Google Scholar]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [Google Scholar] [CrossRef] [PubMed]
- Paluš, M.; Komárek, V.; Hrnčíř, Z.; Štěrbová, K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E 2001, 63, 046211. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Shang, P. Comparison of transfer entropy methods for financial time series. Phys. A Stat. Mech. Its Appl. 2017, 482, 772–785. [Google Scholar] [CrossRef]
- Behrendt, S.; Dimpfl, T.; Peter, F.J.; Zimmermann, D.J. RTransferEntropy—Quantifying information flow between different time series using effective transfer entropy. SoftwareX 2019, 10, 100265. [Google Scholar] [CrossRef]
- Adam, A.M. Susceptibility of stock market returns to international economic policy: Evidence from effective transfer entropy of Africa with the implication for open innovation. J. Open Innov. Technol. Mark. Complex. 2020, 6, 71. [Google Scholar] [CrossRef]
- Jizba, P.; Lavička, H.; Tabachová, Z. Rényi Transfer Entropy Estimators for Financial Time Series. Eng. Proc. 2021, 5, 33. [Google Scholar]
- Assaf, A.; Bilgin, M.H.; Demir, E. Using transfer entropy to measure information flows between cryptocurrencies. Phys. A Stat. Mech. Its Appl. 2022, 586, 126484. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Information; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Kullback, S. Information Theory and Statistics; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Marschinski, R.; Kantz, H. Analysing the information flow between financial time series. Eur. Phys. J. B-Condens. Matter Complex Syst. 2002, 30, 275–281. [Google Scholar] [CrossRef]
- Dimpfl, T.; Peter, F.J. Using transfer entropy to measure information flows between financial markets. Stud. Nonlinear Dyn. Econom. 2013, 17, 85–102. [Google Scholar] [CrossRef]
- Jackson, M.O. Social and Economic Networks; Princeton University: Princeton, NJ, USA, 2008. [Google Scholar]
- Newman, M. Networks; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 2007, 29, 555–564. [Google Scholar] [CrossRef]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Stanford InfoLab: Stanford, CA, USA, 1999. [Google Scholar]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2021. Available online: https://covid19.who.int/info (accessed on 7 January 2022).
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Int. AAAI Conf. Weblogs Soc. Media 2009, 3, 361–362. [Google Scholar]
- Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJ. Complex Syst. 2006, 1695, 1–9. Available online: https://igraph.org (accessed on 20 July 2022).
Country | Eigenvector Centrality | PageRank | Country | Eigenvector Centrality | PageRank |
---|---|---|---|---|---|
Albania (AL) | 0.524989 | 0.022080 | Kuwait (KW) | 0.148186 * | 0.008484 |
Armenia (AM) | 0.452463 | 0.014274 | Kazakhstan (KZ) | 0.048409 | 0.009110 |
Azerbaijan (AZ) | 0.522331 | 0.017451 | Lebanon (LB) | 0.181019 * | 0.003974 |
Bosnia and Herzegovina (BA) | 0.718292 | 0.021916 | Lithuania (LT) | 0.474880 | 0.016001 |
Bangladesh (BD) | 0.028208 | 0.008227 | Luxembourg (LU) | 0.839533 | 0.026285 |
Belgium (BE) | 0.537333 | 0.017652 | Libya (LY) | 0.628994 * | 0.011452 |
Bulgaria (BG) | 0.473694 | 0.016037 | North Macedonia (MK) | 0.384132 | 0.014058 |
Brazil (BR) | 0.200907 | 0.016291 | Mongolia (MN) | 0.117887 | 0.010454 |
Belarus (BY) | 0.296759 | 0.014259 | Mexico (MX) | 0.273776 | 0.015344 |
Canada (CA) | 0.288521 | 0.013702 | Malaysia (MY) | 0.048075 | 0.010252 |
Switzerland (CH) | 0.592722 | 0.021829 | Netherlands (NL) | 0.465379 | 0.017194 |
Chile (CL) | 0.125363 | 0.016200 | Norway (NO) | 1.000000 | 0.033528 |
China (CN) | 0.010420 | 0.003341 | Nepal (NP) | 0.020155 | 0.005171 |
Colombia (CO) | 0.040071 | 0.005974 | New Zealand (NZ) | 0.253361 | 0.010018 |
Costa Rica (CR) | 0.194700 | 0.020956 | Peru (PE) | 0.079954 | 0.006499 |
Cuba (CU) | 0.029443 | 0.009441 | Pakistan (PK) | 0.123575 * | 0.007852 |
Czechia (CZ) | 0.374990 | 0.013695 | Poland (PL) | 0.797845 | 0.024624 |
Germany (DE) | 0.584266 | 0.019286 | Portugal (PT) | 0.495055 | 0.018178 |
Denmark (DK) | 0.472643 | 0.015801 | Qatar (QA) | 0.088225 * | 0.012552 |
Estonia (EE) | 0.434803 | 0.014688 | Romania (RO) | 0.609940 | 0.020255 |
Egypt (EG) | 0.071470 * | 0.009371 | Russian Federation (RU) | 0.598568 | 0.021318 |
Spain (ES) | 0.364177 | 0.017179 | Saudi Arabia (SA) | 0.117345 * | 0.013353 |
Finland (FI) | 0.578325 | 0.021833 | Sweden (SE) | 0.518638 | 0.020728 |
France (FR) | 0.287441 | 0.013241 | Slovenia (SI) | 0.960990 | 0.029255 |
United Kingdom (GB) | 0.252125 | 0.011740 | Slovakia (SK) | 0.524288 | 0.018905 |
Greece (GR) | 0.634762 | 0.023944 | Syrian Arab Republic (SY) | 0.144949 * | 0.010396 |
Croatia (HR) | 0.949647 | 0.029384 | Thailand (TH) | 0.093885 | 0.012641 |
Hungary (HU) | 0.738304 | 0.023563 | Tajikistan (TJ) | 0.010324 | 0.004028 |
Indonesia (ID) | 0.029716 | 0.008124 | Tunisia (TN) | 0.565851 | 0.008409 |
Ireland (IE) | 0.232775 | 0.009269 | Turkey (TR) | 0.307547 | 0.014783 |
Iraq (IQ) | 1.000000 * | 0.012495 | Tanzania (TZ) | 0.059911 | 0.004068 |
Iran (IR) | 0.552977 * | 0.009154 | Ukraine (UA) | 0.364791 | 0.013043 |
Japan (JP) | 0.076052 | 0.009334 | Uzbekistan (UZ) | 0.007412 | 0.003278 |
Kyrgyzstan (KG) | 0.003818 | 0.004563 | Venezuela (VE) | 0.060501 | 0.005083 |
Korea (KR) | 0.543237 | 0.023837 | Vietnam (VN) | 0.340229 | 0.009294 |
Community 1 | Community 2 | Community 3 | Community 4 |
---|---|---|---|
Armenia (AM) | Albania (AL) | Egypt (EG) | Bangladesh (BD) |
Azerbaijan (AZ) | Belarus (BY) | Iraq (IQ) | Brazil (BR) |
Bosnia and Herzegovina (BA) | China (CN) | Iran (IR) | Chile (CL) |
Belgium (BE) | Czechia (CZ) | Kuwait (KW) | Colombia (CO) |
Bulgaria (BG) | Germany (DE) | Lebanon (LB) | Costa Rica (CR) |
Canada (CA) | Denmark (DK) | Libya (LY) | Cuba (CU) |
Switzerland (CH) | Estonia (EE) | Pakistan (PK) | Indonesia (ID) |
Luxembourg (LU) | Spain (ES) | Qatar (QA) | Japan (JP) |
North Macedonia (MK) | Finland (FI) | Saudi Arabia (SA) | Kyrgyzstan (KG) |
Netherlands (NL) | France (FR) | Syrian Arab Republic (SY) | Kazakhstan (KZ) |
Norway (NO) | United Kingdom (GB) | Tunisia (TN) | Mongolia (MN) |
Poland (PL) | Greece (GR) | Mexico (MX) | |
Romania (RO) | Croatia (HR) | Malaysia (MY) | |
Sweden (SE) | Hungary (HU) | Nepal (NP) | |
Turkey (TR) | Ireland (IE) | Peru (PE) | |
Ukraine (UA) | Korea (KR) | Thailand (TH) | |
Venezuela (VE) | Lithuania (LT) | Tajikistan (TJ) | |
New Zealand (NZ) | Uzbekistan (UZ) | ||
Portugal (PT) | Vietnam (VN) | ||
Russian Federation (RU) | |||
Slovenia (SI) | |||
Slovakia (SK) | |||
Tanzania (TZ) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ünal, B. Causality Analysis for COVID-19 among Countries Using Effective Transfer Entropy. Entropy 2022, 24, 1115. https://doi.org/10.3390/e24081115
Ünal B. Causality Analysis for COVID-19 among Countries Using Effective Transfer Entropy. Entropy. 2022; 24(8):1115. https://doi.org/10.3390/e24081115
Chicago/Turabian StyleÜnal, Baki. 2022. "Causality Analysis for COVID-19 among Countries Using Effective Transfer Entropy" Entropy 24, no. 8: 1115. https://doi.org/10.3390/e24081115
APA StyleÜnal, B. (2022). Causality Analysis for COVID-19 among Countries Using Effective Transfer Entropy. Entropy, 24(8), 1115. https://doi.org/10.3390/e24081115