A Multi-Scale Entropy Approach to Study Collapse and Anomalous Diffusion in Shared Mobility Systems
<p>Schematic of the system dynamics. Vehicle flows between stations (blue arcs) can be mapped to a walk in the simplex (inset). As these flows are not symmetrical, the system is destabilising. This figure also shows the loops (orange bars) that produce no energy change in the simplex since adding and subtracting one unit to the same station produces no net change in the system state <math display="inline"><semantics> <mi mathvariant="bold">s</mi> </semantics></math>. INSET: Walks in the simplex. A toy state space with only <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> stations, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> units with capacity <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>. Each vertex represents a possible state of the network and labels show the occupancies of each station. Colours are proportional to the distance from each point to the barycentre of the simplex located at <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> </semantics></math>. The lowest energy state <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">s</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> is also indicated. The possible directions in which states can transit are shown by the black arrows in the inset. For example, <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>−</mo> <mn>3</mn> </mrow> </semantics></math> means moving a unit from station 2 to station 3. This way, starting at state <math display="inline"><semantics> <mrow> <mi mathvariant="bold">s</mi> <mo>=</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics></math>, the corresponding flow would take us to state <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">s</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. A path of three possible transitions is represented in the inset as red arrows.</p> "> Figure 2
<p>Mobility patterns for a fleet of 29 bike sharing stations in the city of Salamanca. <b>Top</b>: on-map representation of aggregated trips at different hours. <b>Bottom left</b>: evolution of the number of trips (blue) and loops (green) observed during workdays (full line and filled arrows) and weekends (dashed line and hollow arrows). Notice the trimodal behaviour of the A–B trips during workdays, compared to the bimodal pattern during the weekend. <b>Bottom right</b>: matrix-like representation of the frequency of trips highlighting a large asymmetry present in the empirical trip probabilities <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 3
<p>Inter-arrival times (IAT) for A–B trips and loops. Left: Log–log plot of the distribution and the corresponding fit (red) to a Poisson distribution for both A–B trips and loops (inset). The fitted <math display="inline"><semantics> <mi>μ</mi> </semantics></math> values are <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.0925</mn> </mrow> </semantics></math> min ≈ 1 event per 10 min (A–B trips) and <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.016</mn> </mrow> </semantics></math> min ≈ 1 events per hour (loops). Right: IATs probability density for all trips (blue) and loops (green). The dotted line shows the separation of the two time scales in the case of A–B trips: one for trips lasting <math display="inline"><semantics> <mrow> <mo><</mo> <mn>15</mn> </mrow> </semantics></math> min and one for longer trips. This effect is not observed for loops. Finally, in the distributions of IATs, we show the percentages of short (<math display="inline"><semantics> <mrow> <mo><</mo> <mn>15</mn> </mrow> </semantics></math> min) and longer (<math display="inline"><semantics> <mrow> <mo>></mo> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> min) trips.</p> "> Figure 4
<p>Super diffusive behaviour. Normalized energy—Equation (<a href="#FD11-entropy-24-00606" class="html-disp-formula">11</a>) (re-scaled between 0 and 1)—as a function of the number of steps <span class="html-italic">n</span> for different randomisation strengths. The maximum randomisation limit is also shown in the black line.</p> "> Figure 5
<p>Super diffusion and loops. <b>Left</b>: diffusion exponent in Equation (<a href="#FD12-entropy-24-00606" class="html-disp-formula">12</a>) as a function of the randomization strength. <b>Right</b>: Effect of loop trips in system diffusion: as the number of loops increases, the system becomes less and less super-diffusive. Each curve represents the normalized energy—Equation (<a href="#FD11-entropy-24-00606" class="html-disp-formula">11</a>) (re-scaled between 0 (blue) and 1 (green)) as a function of the number of steps <span class="html-italic">n</span> obtained by Monte-Carlo walks in the simplex.</p> "> Figure 6
<p>Multi-scale entropy. <b>Left</b>: comparison between the MSE of the real data and the simulated random walk. The vertical black dotted line represents the closest point between the real data and the random version. Each data point represents the averaged MSE of 1000 samples. We also show the fitted lines obtained with local polynomial regression (shaded regions representing <math display="inline"><semantics> <mrow> <mn>95</mn> <mo>%</mo> </mrow> </semantics></math> confidence level intervals). <b>Right</b>: MSE obtained under different data-rewiring conditions—with probability <math display="inline"><semantics> <mrow> <mi>l</mi> <mi>o</mi> <mi>o</mi> <mi>p</mi> <mi>P</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> </mrow> </semantics></math> randomly selected <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>→</mo> <mi>B</mi> </mrow> </semantics></math> trips in the data are transformed into loops <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>→</mo> <mi>A</mi> </mrow> </semantics></math>. The scale axis refers to the time coarse-grain level used in the computation of the MSE.</p> "> Figure 7
<p>Complexity profile. <b>Left</b>: comparison between the real data and the simulated random walk. <b>Right</b>: profile obtained under different data-rewiring conditions, with probability <math display="inline"><semantics> <mrow> <mi>l</mi> <mi>o</mi> <mi>o</mi> <mi>p</mi> <mi>P</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> </mrow> </semantics></math> randomly selected <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>→</mo> <mi>B</mi> </mrow> </semantics></math> trips in the data are transformed into loops <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>→</mo> <mi>A</mi> </mrow> </semantics></math>. The scale axis refers to the time coarse-grain level used in the computation of the MSE.</p> "> Figure 8
<p>Birth and death model for imbalance. Consider a generic station <span class="html-italic">i</span> with occupancy <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>≤</mo> <mi>C</mi> </mrow> </semantics></math>. When some unit travels from station <span class="html-italic">i</span> to station <span class="html-italic">j</span>, the value of <math display="inline"><semantics> <msub> <mi>s</mi> <mi>i</mi> </msub> </semantics></math> decreases by one unit with probability <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math>. Conversely, <math display="inline"><semantics> <msub> <mi>s</mi> <mi>i</mi> </msub> </semantics></math> grows by one unit with probability <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> </semantics></math> when a transition <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>j</mi> <mo>,</mo> <mi>i</mi> <mo>)</mo> </mrow> </semantics></math> has occurred. Loops make <math display="inline"><semantics> <msub> <mi>s</mi> <mi>i</mi> </msub> </semantics></math> remain constant with probability <math display="inline"><semantics> <msub> <mi>l</mi> <mi>i</mi> </msub> </semantics></math>. In this chain, the states 0 and <span class="html-italic">C</span> are absorbing states because once one of these states is reached, the system collapses.</p> "> Figure 9
<p>Absorption times: normalised collapse times as a function of normalised energy are shown for different levels of randomisation. Starting from states with a certain energy, their minimum time to collapse is computed. States with higher energy and shorter time to collapse correspond to more unstable situations. The empirical data correspond to <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math> random and are shown in cyan. The case of maximum randomisation (light green) corresponds to the model of the collapse times given by Equation (<a href="#FD21-entropy-24-00606" class="html-disp-formula">21</a>).</p> ">
Abstract
:1. Introduction
2. The Whole Picture: Simplex and Microstates
- (there is at least one unit at the origin);
- (the destination is not overfull).
3. Asymmetry and Super Diffusion: The Effect of Self-Journeys (Loops)
- <30% random trips: diffusion is less rapid than that found in the data ().
- 30–90% random trips: the super-diffusive regime spreads faster than that observed in the data and peaks at for .
- >90% random trips (near total random): the super-diffusion drops abruptly, and the system starts to diffuse as a random walk in which the normalized energy (unbalance) grows linearly with n and .
4. Measuring System’s Complexity: Multi-Scale Entropy and Complexity Profile
- : number of vectors such that the distance lies below threshold r.
- : same as but using -sized vectors instead of vectors of length m.
5. System’s Collapse and Mean Absorption Times
5.1. System’s Collapse
5.2. Analytical Limit of the Fundamental Matrix for Random Walks
5.3. Imbalance and System’s Performance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini, M. Human mobility: Models and applications. Phys. Rep. 2018, 734, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Noulas, A.; Scellato, S.; Lambiotte, R.; Pontil, M.; Mascolo, C. A tale of many cities: Universal patterns in human urban mobility. PLoS ONE 2012, 7, e37027. [Google Scholar] [CrossRef]
- Borgnat, P.; Abry, P.; Flandrin, P.; Robardet, C.; Rouquier, J.B.; Fleury, E. Shared Bicycles in a City: A Signal Processing and Data Analysis Perspective. Adv. Complex Syst. 2011, 14, 415–438. [Google Scholar] [CrossRef] [Green Version]
- Fricker, C.; Gast, N.; Mohamed, H.; Fricker, C.; Gast, N.; Mohamed, H.; Fricker, C.; Gast, N.; Mohamed, H. Mean field analysis for inhomogeneous bike sharing systems. In Discrete Mathematics and Theoretical Computer Science; Cambridge University Press: Cambridge, UK, 2014; pp. 1–12. [Google Scholar]
- Hamon, R.; Borgnat, P.; Flandrin, P.; Robardet, C. Networks as signals, with an application to a bike sharing system. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013—Proceedings, Austin, TX, USA, 3–5 December 2013; pp. 611–614. [Google Scholar] [CrossRef] [Green Version]
- Zaltz Austwick, M.; O’Brien, O.; Strano, E.; Viana, M. The Structure of Spatial Networks and Communities in Bicycle Sharing Systems. PLoS ONE 2013, 8, e74685. [Google Scholar] [CrossRef]
- Santi, P.; Resta, G.; Szell, M.; Sobolevsky, S.; Strogatz, S.; Ratti, C. Quantifying the benefits of vehicle pooling with shareability networks. Proc. Natl. Acad. Sci. USA 2013, 111, 13290–13294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crisostomi, E.; Faizrahnemoon, M.; Schlote, A.; Shorten, R. A Markov-chain based model for a bike-sharing system. In Proceedings of the 2015 International Conference on Connected Vehicles and Expo, ICCVE 2015—Proceedings, Shenzhen, China, 19–23 October 2015; pp. 367–372. [Google Scholar] [CrossRef] [Green Version]
- Labadi, K.; Benarbia, T.; Barbot, J.P.; Hamaci, S.; Omari, A. Stochastic Petri Net Modeling, Simulation and Analysis of Public Bicycle Sharing Systems. IEEE Trans. Autom. Sci. Eng. 2014, 12, 1380–1395. [Google Scholar] [CrossRef]
- Purnama, I.B.I.; Bergmann, N.; Jurdak, R.; Zhao, K. Characterising and predicting urban mobility dynamics by mining bike sharing system data. In Proceedings of the 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, Beijing, China, 10–14 August 2015; pp. 159–167. [Google Scholar] [CrossRef]
- Çolak, S.; Lima, A.; González, M.C. Understanding congested travel in urban areas. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Preisler, T.; Dethlefs, T.; Renz, W. Self-Organizing Redistribution of Bicycles in a Bike-Sharing System based on Decentralized Control. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11–14 September 2016; Volume 8, pp. 1471–1480. [Google Scholar] [CrossRef] [Green Version]
- Tachet, R.; Sagarra, O.; Santi, P.; Resta, G.; Szell, M.; Strogatz, S.H.; Ratti, C. Scaling law of urban ride sharing. Sci. Rep. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazifeh, M.M. Addressing the minimum fleet problem in on-demand urban mobility. Nature 2018, 557, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Chiariotti, F.; Pielli, C.; Zanella, A.; Zorzi, M. A dynamic approach to rebalancing bike-sharing systems. Sensors 2018, 18, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto-Castrillo, F.; Benito, R.M.; Borondo, J. Understanding Imbalance Mechanisms in Shared Mobility Systems. In Complex Networks & Their Applications X; Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 757–768. [Google Scholar]
- Atmanspacher, H. On macrostates in complex multi-scale systems. Entropy 2016, 18, 426. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Mathematics 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol. 1994, 266, H1643–H1656. [Google Scholar] [CrossRef]
- Richman, J.S.; Lake, D.E.; Moorman, J. Sample Entropy. Methods Enzymol. 2004, 384, 172–184. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 2005, 71, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humeau-Heurtier, A. The multiscale entropy algorithm and its variants: A review. Entropy 2015, 17, 3110–3123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Complexity 1/f noise. A phase space approach. J. Phys. Arch. 1991, 1, 533–537. [Google Scholar] [CrossRef]
- Fogedby, H.C. On the phase space approach to complexity. J. Stat. Phys. 1992, 69, 411–425. [Google Scholar] [CrossRef]
- Bar-Yam, Y. Multiscale variety in complex systems. Complexity 2004, 9, 37–45. [Google Scholar] [CrossRef]
- Hu, G.Y.; O’Connell, R.F. Analytical inversion of symmetric tridiagonal matrices. J. Phys. Math. Gen. 1996, 29, 1511–1513. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto-Castrillo, F.; Borondo, J.; García, R.M.; Benito, R.M. A Multi-Scale Entropy Approach to Study Collapse and Anomalous Diffusion in Shared Mobility Systems. Entropy 2022, 24, 606. https://doi.org/10.3390/e24050606
Prieto-Castrillo F, Borondo J, García RM, Benito RM. A Multi-Scale Entropy Approach to Study Collapse and Anomalous Diffusion in Shared Mobility Systems. Entropy. 2022; 24(5):606. https://doi.org/10.3390/e24050606
Chicago/Turabian StylePrieto-Castrillo, Francisco, Javier Borondo, Rubén Martín García, and Rosa M. Benito. 2022. "A Multi-Scale Entropy Approach to Study Collapse and Anomalous Diffusion in Shared Mobility Systems" Entropy 24, no. 5: 606. https://doi.org/10.3390/e24050606
APA StylePrieto-Castrillo, F., Borondo, J., García, R. M., & Benito, R. M. (2022). A Multi-Scale Entropy Approach to Study Collapse and Anomalous Diffusion in Shared Mobility Systems. Entropy, 24(5), 606. https://doi.org/10.3390/e24050606