Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates
<p>Schematic illustrations for the setup and atomic levels of the three-Rydberg-atom system. Each atom includes two ground states <math display="inline"><semantics> <mrow> <mo>|</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>〉</mo> </mrow> </semantics></math> and one Rydberg state <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>r</mi> <mo>〉</mo> </mrow> </semantics></math>. The Rydberg state is dispersively coupled to the ground states via one common Rydberg pulse with effective Rabi frequency <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Ω</mi> <mo>≈</mo> <mrow> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>3.5</mn> </mrow> </mrow> </semantics></math> MHz and adjustable detuning <math display="inline"><semantics> <mi>δ</mi> </semantics></math>. The Rydberg–Rydberg interaction between the <span class="html-italic">i</span>- and <span class="html-italic">j</span>-th atoms is described as <math display="inline"><semantics> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 2
<p>(<b>a</b>) The average gate fidelity with respect to <math display="inline"><semantics> <mi>δ</mi> </semantics></math> as well as the gate operation time, where the system is governed by the full Hamiltonian of Equation (<a href="#FD1-entropy-24-01371" class="html-disp-formula">1</a>) to realize the gate of Equation (<a href="#FD4-entropy-24-01371" class="html-disp-formula">4</a>). (<b>b</b>) The average gate fidelity without the three single qubit logical gates as functions of <math display="inline"><semantics> <mi>δ</mi> </semantics></math> and <span class="html-italic">t</span>. For the two sub-pictures, the Rabi frequencies and the interaction strengths are <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Ω</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>3.5</mn> </mrow> </semantics></math> MHz and <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>U</mi> <mo>≈</mo> <mn>2</mn> <mi>π</mi> <mo>×</mo> <mn>35</mn> </mrow> </semantics></math> MHz corresponding the atomic distance <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>r</mi> <mo>≈</mo> <mn>5.4</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m.</p> "> Figure 3
<p>Contour plot of average gate fidelity of <math display="inline"><semantics> <msubsup> <mi>U</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> <mn>3</mn> </msubsup> </semantics></math> with respect to the detuning and the gate operation time. The relevant parameters are the same as those of <a href="#entropy-24-01371-f002" class="html-fig">Figure 2</a>a.</p> "> Figure 4
<p>Fidelity of the state searched for as functions of the iteration number with different Rydberg–Rydberg interaction strength. The marked state is <math display="inline"><semantics> <mrow> <mo>|</mo> <mn>101</mn> <mo>〉</mo> </mrow> </semantics></math> and the initial state is <math display="inline"><semantics> <mrow> <mo>|</mo> <mn>000</mn> <mo>〉</mo> </mrow> </semantics></math>. The relevant parameters are the same as those of <a href="#entropy-24-01371-f002" class="html-fig">Figure 2</a>a and the gate operation time for <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> is set as <math display="inline"><semantics> <mrow> <mn>0.8049</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>s. For simplicity, the Rydberg–Rydberg interaction strength between the <span class="html-italic">i</span>- and <span class="html-italic">j</span>-th atom are assumed as <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>U</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Principle of the Fast Three-Rydberg-Atom CCZ Gate
3. Applications of Quantum Algorithms
3.1. Refined Deutsch–Jozsa Algorithm
3.2. Grover Search
4. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1981, 21, 467–488. [Google Scholar] [CrossRef]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153–185. [Google Scholar] [CrossRef]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.; et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef]
- Bauer, B.; Bravyi, S.; Motta, M.; Chan, G.K.L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 2020, 120, 12685–12717. [Google Scholar] [CrossRef] [PubMed]
- Orús, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 2019, 4, 100028. [Google Scholar] [CrossRef]
- Montanaro, A. Quantum algorithms: An overview. Npj Quantum Inf. 2016, 2, 1–8. [Google Scholar] [CrossRef]
- Wendin, G. Quantum information processing with superconducting circuits: A review. Rep. Prog. Phys. 2017, 80, 106001. [Google Scholar] [CrossRef]
- Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Cerezo, M.; Poremba, A.; Cincio, L.; Coles, P.J. Variational Quantum Fidelity Estimation. Quantum 2020, 4, 248. [Google Scholar] [CrossRef]
- Xin, T.; Wei, S.; Cui, J.; Xiao, J.; Arrazola, I.N.; Lamata, L.; Kong, X.; Lu, D.; Solano, E.; Long, G. Quantum algorithm for solving linear differential equations: Theory and experiment. Phys. Rev. A 2020, 101, 032307. [Google Scholar] [CrossRef] [Green Version]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Gao, P.; Li, K.; Wei, S.; Gao, J.; Long, G. Quantum gradient algorithm for general polynomials. Phys. Rev. A 2021, 103, 042403. [Google Scholar] [CrossRef]
- Bennett, C.H.; DiVincenzo, D.P. Quantum information and computation. Nature 2000, 404, 247–255. [Google Scholar] [CrossRef] [PubMed]
- DiCarlo, L.; Chow, J.M.; Gambetta, J.M.; Bishop, L.S.; Johnson, B.R.; Schuster, D.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S.; et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 2009, 460, 240–244. [Google Scholar] [CrossRef]
- Dewes, A.; Ong, F.R.; Schmitt, V.; Lauro, R.; Boulant, N.; Bertet, P.; Vion, D.; Esteve, D. Characterization of a Two-Transmon Processor with Individual Single-Shot Qubit Readout. Phys. Rev. Lett. 2012, 108, 057002. [Google Scholar] [CrossRef]
- Paik, H.; Mezzacapo, A.; Sandberg, M.; McClure, D.T.; Abdo, B.; Córcoles, A.D.; Dial, O.; Bogorin, D.F.; Plourde, B.L.T.; Steffen, M.; et al. Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System. Phys. Rev. Lett. 2016, 117, 250502. [Google Scholar] [CrossRef]
- Chow, J.M.; Córcoles, A.D.; Gambetta, J.M.; Rigetti, C.; Johnson, B.R.; Smolin, J.A.; Rozen, J.R.; Keefe, G.A.; Rothwell, M.B.; Ketchen, M.B.; et al. Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits. Phys. Rev. Lett. 2011, 107, 080502. [Google Scholar] [CrossRef]
- Shor, P.W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 1995, 52, R2493–R2496. [Google Scholar] [CrossRef]
- Grover, L.K. Quantum Computers Can Search Rapidly by Using Almost Any Transformation. Phys. Rev. Lett. 1998, 80, 4329–4332. [Google Scholar] [CrossRef]
- Mølmer, K.; Sørensen, A. Multiparticle Entanglement of Hot Trapped Ions. Phys. Rev. Lett. 1999, 82, 1835–1838. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.Q.; Zhu, A.D.; Zhang, S.; Chung, J.S.; Yeon, K.H. Efficient scheme for implementing an N-qubit Toffoli gate by a single resonant interaction with cavity quantum electrodynamics. Phys. Rev. A 2007, 75, 034307. [Google Scholar] [CrossRef]
- Chen, A.M.; Cho, S.Y.; Kim, M.D. Implementation of a three-qubit Toffoli gate in a single step. Phys. Rev. A 2012, 85, 032326. [Google Scholar] [CrossRef]
- Levine, H.; Keesling, A.; Semeghini, G.; Omran, A.; Wang, T.T.; Ebadi, S.; Bernien, H.; Greiner, M.; Vuletić, V.; Pichler, H.; et al. Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms. Phys. Rev. Lett. 2019, 123, 170503. [Google Scholar] [CrossRef] [PubMed]
- Monz, T.; Kim, K.; Hänsel, W.; Riebe, M.; Villar, A.S.; Schindler, P.; Chwalla, M.; Hennrich, M.; Blatt, R. Realization of the Quantum Toffoli Gate with Trapped Ions. Phys. Rev. Lett. 2009, 102, 040501. [Google Scholar] [CrossRef]
- Sun, L.N.; Yan, L.L.; Su, S.L.; Jia, Y. One-Step Implementation of Time-Optimal-Control Three-Qubit Nonadiabatic Holonomic Controlled Gates in Rydberg Atoms. Phys. Rev. Appl. 2021, 16, 064040. [Google Scholar] [CrossRef]
- Li, D.X.; Shao, X.Q. Unconventional Rydberg pumping and applications in quantum information processing. Phys. Rev. A 2018, 98, 062338. [Google Scholar] [CrossRef]
- Fedorov, A.; Steffen, L.; Baur, M.; da Silva, M.P.; Wallraff, A. Implementation of a Toffoli gate with superconducting circuits. Nature 2012, 481, 170–172. [Google Scholar] [CrossRef]
- Cory, D.G.; Price, M.D.; Maas, W.; Knill, E.; Laflamme, R.; Zurek, W.H.; Havel, T.F.; Somaroo, S.S. Experimental Quantum Error Correction. Phys. Rev. Lett. 1998, 81, 2152–2155. [Google Scholar] [CrossRef]
- Lanyon, B.P.; Barbieri, M.; Almeida, M.P.; Jennewein, T.; Ralph, T.C.; Resch, K.J.; Pryde, G.J.; O’Brien, J.L.; Gilchrist, A.; White, A.G. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 2009, 5, 134–140. [Google Scholar] [CrossRef]
- Saffman, M.; Mølmer, K. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade. Phys. Rev. Lett. 2009, 102, 240502. [Google Scholar] [CrossRef] [Green Version]
- Li, D.X.; Shao, X.Q.; Wu, J.H.; Yi, X.X. Dissipation-induced W state in a Rydberg-atom-cavity system. Opt. Lett. 2018, 43, 1639–1642. [Google Scholar] [CrossRef] [PubMed]
- Weimer, H.; Müller, M.; Lesanovsky, I.; Zoller, P.; Büchler, H.P. A Rydberg quantum simulator. Nat. Phys. 2010, 6, 382–388. [Google Scholar] [CrossRef]
- Li, D.X.; Shao, X.Q. Directional quantum state transfer in a dissipative Rydberg-atom-cavity system. Phys. Rev. A 2019, 99, 032348. [Google Scholar] [CrossRef]
- Saffman, M.; Walker, T.G.; Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 2010, 82, 2313–2363. [Google Scholar] [CrossRef]
- Jaksch, D.; Cirac, J.I.; Zoller, P.; Rolston, S.L.; Côté, R.; Lukin, M.D. Fast Quantum Gates for Neutral Atoms. Phys. Rev. Lett. 2000, 85, 2208–2211. [Google Scholar] [CrossRef]
- Müller, M.M.; Murphy, M.; Montangero, S.; Calarco, T.; Grangier, P.; Browaeys, A. Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms. Phys. Rev. A 2014, 89, 032334. [Google Scholar] [CrossRef]
- Han, R.; Ng, H.K.; Englert, B.G. Implementing a neutral-atom controlled-phase gate with a single Rydberg pulse. Europhys. Lett. 2016, 113, 40001. [Google Scholar] [CrossRef]
- Fu, Z.; Xu, P.; Sun, Y.; Liu, Y.Y.; He, X.D.; Li, X.; Liu, M.; Li, R.B.; Wang, J.; Liu, L.; et al. High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-phase gate. Phys. Rev. A 2022, 105, 042430. [Google Scholar] [CrossRef]
- Li, X.X.; Shao, X.Q.; Li, W.B. Single temporal-pulse-modulated parameterized controlled-phase gate for neutral atoms under symmetrically optical pumping. Phys. Rev. Appl. 2022; accepted. [Google Scholar]
- Müller, M.; Lesanovsky, I.; Weimer, H.; Büchler, H.P.; Zoller, P. Mesoscopic Rydberg Gate Based on Electromagnetically Induced Transparency. Phys. Rev. Lett. 2009, 102, 170502. [Google Scholar] [CrossRef]
- Shao, X.Q.; Wang, H.F.; Chen, L.; Zhang, S.; Yeon, K.H. One-step implementation of the Toffoli gate via quantum Zeno dynamics. Phys. Lett. A 2009, 374, 28. [Google Scholar] [CrossRef]
- Shao, X.Q.; Zheng, T.Y.; Zhang, S. Robust Toffoli gate originating from Stark shifts. J. Opt. Soc. Am. B 2012, 29, 1203. [Google Scholar] [CrossRef]
- Khazali, M.; Mølmer, K. Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits. Phys. Rev. X 2020, 10, 021054. [Google Scholar] [CrossRef]
- Yin, H.D.; Li, X.X.; Wang, G.C.; Shao, X.Q. One-step implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping. Opt. Express 2020, 28, 35576. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.D.; Shao, X.Q. Gaussian soft control-based quantum fan-out gate in ground-state manifolds of neutral atoms. Opt. Lett. 2021, 46, 2541. [Google Scholar] [CrossRef]
- Jandura, S.; Pupillo, G. Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms. Quantum 2022, 6, 712. [Google Scholar] [CrossRef]
- Collins, D.; Kim, K.W.; Holton, W.C. Deutsch–Jozsa algorithm as a test of quantum computation. Phys. Rev. A 1998, 58, R1633–R1636. [Google Scholar] [CrossRef]
- Yang, W.L.; Chen, C.Y.; Xu, Z.Y.; Feng, M. Cavity QED implementation of the multi-qubit refined Deutsch–Jozsa algorithm. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 055501. [Google Scholar] [CrossRef]
- Grover, L.K. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 1997, 79, 325–328. [Google Scholar] [CrossRef]
- Yang, W.L.; Chen, C.Y.; Feng, M. Implementation of three-qubit Grover search in cavity quantum electrodynamics. Phys. Rev. A 2007, 76, 054301. [Google Scholar] [CrossRef]
- Šibalić, N.; Pritchard, J.; Adams, C.; Weatherill, K. ARC: An open-source library for calculating properties of alkali Rydberg atoms. Comput. Phys. Commun. 2017, 220, 319–331. [Google Scholar] [CrossRef]
- Nielsen, M.A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 2002, 303, 249–252. [Google Scholar] [CrossRef]
- White, A.G.; Gilchrist, A.; Pryde, G.J.; O’Brien, J.L.; Bremner, M.J.; Langford, N.K. Measuring two-qubit gates. J. Opt. Soc. Am. B 2007, 24, 172–183. [Google Scholar] [CrossRef]
- Deutsch, D.; Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A 1992, 439, 553–558. [Google Scholar] [CrossRef]
- Chuang, I.L.; Vandersypen, L.M.; Zhou, X.; Leung, D.W.; Lloyd, S. Experimental realization of a quantum algorithm. Nature 1998, 393, 143–146. [Google Scholar] [CrossRef]
- Scholz, M.; Aichele, T.; Ramelow, S.; Benson, O. Deutsch–Jozsa Algorithm Using Triggered Single Photons from a Single Quantum Dot. Phys. Rev. Lett. 2006, 96, 180501. [Google Scholar] [CrossRef]
- Mohseni, M.; Lundeen, J.S.; Resch, K.J.; Steinberg, A.M. Experimental Application of Decoherence-Free Subspaces in an Optical Quantum-Computing Algorithm. Phys. Rev. Lett. 2003, 91, 187903. [Google Scholar] [CrossRef]
- GuiLu, L.; WeiLin, Z.; YanSong, L.; Li, N. Arbitrary Phase Rotation of the Marked State Cannot Be Used for Grover’s Quantum Search Algorithm. Commun. Theor. Phys. 1999, 32, 335–338. [Google Scholar] [CrossRef]
- Long, G.L.; Li, Y.S.; Zhang, W.L.; Tu, C.C. Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A 2000, 61, 042305. [Google Scholar] [CrossRef]
- Long, G.L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A 2001, 64, 022307. [Google Scholar] [CrossRef]
- Hsu, L.Y. Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 2003, 68, 022306. [Google Scholar] [CrossRef]
- Wang, C.; Hao, L.; Song, S.Y.; Long, G.L. Quantum direct communication based on quantum search algorithm. Int. J. Quant. Inform. 2010, 8, 443–450. [Google Scholar] [CrossRef]
- Hao, L.; Li, J.; Long, G. Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 2010, 53, 491–495. [Google Scholar] [CrossRef]
- Hao, L.; Wang, C.; Long, G.L. Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 2011, 284, 3639–3642. [Google Scholar] [CrossRef]
- Feng, M. Grover search with pairs of trapped ions. Phys. Rev. A 2001, 63, 052308. [Google Scholar] [CrossRef]
- Beterov, I.I.; Ryabtsev, I.I.; Tretyakov, D.B.; Entin, V.M. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n ≤ 80. Phys. Rev. A 2009, 79, 052504. [Google Scholar] [CrossRef]
- Wintermantel, T.M.; Wang, Y.; Lochead, G.; Shevate, S.; Brennen, G.K.; Whitlock, S. Unitary and Nonunitary Quantum Cellular Automata with Rydberg Arrays. Phys. Rev. Lett. 2020, 124, 070503. [Google Scholar] [CrossRef]
- Li, D.X.; Yang, C.; Shao, X.Q. Dissipative engineering of a tripartite Greenberger-Horne-Zeilinger state for neutral atoms. Quantum Eng. 2021, 3, e66. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Yang, C.; Li, D.; Shao, X. Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates. Entropy 2022, 24, 1371. https://doi.org/10.3390/e24101371
Tang S, Yang C, Li D, Shao X. Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates. Entropy. 2022; 24(10):1371. https://doi.org/10.3390/e24101371
Chicago/Turabian StyleTang, Shiqing, Chong Yang, Dongxiao Li, and Xiaoqiang Shao. 2022. "Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates" Entropy 24, no. 10: 1371. https://doi.org/10.3390/e24101371
APA StyleTang, S., Yang, C., Li, D., & Shao, X. (2022). Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates. Entropy, 24(10), 1371. https://doi.org/10.3390/e24101371