Information Submanifold Based on SPD Matrices and Its Applications to Sensor Networks
<p>(<b>a</b>) IFD between two closely spaced targets for range-bearing measurement model; (<b>b</b>) The contour map of <a href="#entropy-19-00131-f001" class="html-fig">Figure 1</a>a.</p> "> Figure 2
<p>(<b>a</b>) <math display="inline"> <semantics> <msub> <mi>D</mi> <mi>F</mi> </msub> </semantics> </math> between two closely spaced targets for range-bearing measurement model; (<b>b</b>) The contour map of <a href="#entropy-19-00131-f002" class="html-fig">Figure 2</a>a.</p> "> Figure 3
<p>(<b>a</b>) IFD between two closely spaced targets for two-bearings measurement model; (<b>b</b>) The contour map of <a href="#entropy-19-00131-f003" class="html-fig">Figure 3</a>a.</p> "> Figure 4
<p>(<b>a</b>) <math display="inline"> <semantics> <msub> <mi>D</mi> <mi>F</mi> </msub> </semantics> </math> between two closely spaced targets for two-bearings measurement model; (<b>b</b>) The contour map of <a href="#entropy-19-00131-f004" class="html-fig">Figure 4</a>a.</p> "> Figure 5
<p>(<b>a</b>) <math display="inline"> <semantics> <msub> <mi>D</mi> <mi>F</mi> </msub> </semantics> </math> between two closely spaced targets for 3D range-bearings measurement sensor network; (<b>b</b>) The contour map of <a href="#entropy-19-00131-f005" class="html-fig">Figure 5</a>a.</p> "> Figure 6
<p>(<b>a</b>) <math display="inline"> <semantics> <msub> <mi>D</mi> <mi>F</mi> </msub> </semantics> </math> between two closely spaced targets for 3D range-bearings measurement sensor network; (<b>b</b>) The contour map of <a href="#entropy-19-00131-f006" class="html-fig">Figure 6</a>a.</p> "> Figure 7
<p>(<b>a</b>) Target information for the sensor network with two-bearings passive sensor networks; (<b>b</b>) The contour map of target information.</p> "> Figure 8
<p>Optimal sensor movement direction for given radius.</p> ">
Abstract
:1. Introduction
2. Manifold of Symmetric Positive-Definite Matrices
3. Information Submanifold
- All the ’s have a common support so that for all , where X is the support.
- For every fixed θ, are linearly independent, where .
- The moments of random variables exist up to necessary orders.
- The partial derivatives and the integration with respect to the measure F can always be exchanged as
3.1. The Information Submanifold for the Normal Distribution
3.2. The Information Submanifold for the Von Mises Distribution
3.3. The Information Submanifold for Curved Gaussian Distribution
4. Application of Information Submanifold for Sensor Networks
4.1. Information Resolution Based on Information Submanifold
4.1.1. Range-Bearing Measurement
4.1.2. Two-Bearings Measurement
4.1.3. 3D Range-Bearings Measurement
4.2. Bearing-Only Tracking With Single Sensor
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fiori, S. Learning the Fre’chet Mean over the Manifold of Symmetric Positive-Definite Matrices. Cognit. Comput. 2009, 1, 279–291. [Google Scholar] [CrossRef]
- Harandi, M.T.; Salzmann, M.; Hartley, R. From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices; Springer: Basel, Switzerland, 2014; Volume 8690, pp. 17–32. [Google Scholar]
- Arsigny, V.; Fillard, P.; Pennec, X.; Ayache, N. Geometric Means in a Novel Vector Space Structures on Symmetrics Positive-Definite Matrices. Siam J. Matrix Anal. Appl. 2007, 29, 328–347. [Google Scholar] [CrossRef]
- Le Bihan, D. Diffusion MNR Imaging. Magn. Reson. Q. 1991, 7, 1–30. [Google Scholar] [PubMed]
- Fillard, P.; Arsigny, V.; Pennec, X.; Hayashi, K.M.; Thompson, P.M.; Ayache, N. Measuring Brain Variability by Extrapolating Sparse Tensor Fields Measured on Sulcal Lines. Neuroimage 2007, 34, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Harandi, M.T.; Sanderson, C.; Hartley, R.; Lovell, B.C. Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach. Lect. Notes Comput. Sci. 2012, 7573, 216–229. [Google Scholar]
- Jayasumana, S.; Hartley, R.; Salzmann, M.; Li, H.; Harandi, M. Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 73–80.
- Moakher, M. A Differential Geometric Approach to The Geometric Mean of Symmetric Positive-Definite Matrices. Siam J. Matrix Anal. Appl. 2005, 26, 735–747. [Google Scholar] [CrossRef]
- Hall, B. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Menendez, M.L.; Morales, D.; Pardo, L.; Salicrij, M. Statistical Test Based on Geodesic Distances. Appl. Math. Lett. 1995, 8, 65–69. [Google Scholar] [CrossRef]
- Fiori, S. A Theory for Learning by Weight Flow on Stiefel-Grassman Manifold. Neural Comput. 2001, 13, 1625–1647. [Google Scholar] [CrossRef]
- Fiori, S. Solving Minimal-Distance Problems over the Manifold of Real-Symplectic Matrices. Siam J. Matrix Anal. Appl. 2011, 32, 938–968. [Google Scholar] [CrossRef]
- Bini, D.A.; Iannazzo, B. Computing the Karcher Mean of Symmetric Positive Definite Matrices. Stat. Methodol. 2007, 4, 341–353. [Google Scholar] [CrossRef]
- Barbaresco, F. Interactions Between Symmetric Cones and Information Geometrics: Bruhat-Tits and Siegel Spaces Models for High Resolution Autregressive Doppler Imagery. Springer Lect. Notes Comput. Sci. 2009, 5416, 124–163. [Google Scholar]
- Barbaresco, F. Innovative Tools for Radar Signal Processing based on Cartan’s Geometry of SPD Matrices and Information Geometry. In Proceedings of the IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 26–30.
- Nielsen, F.; Bhatia, R. Matrix Information Geometry; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mahata, K.; Schoukens, J.; de Cock, A. Information Matrix and D-optimal Design with Gaussian Inputs for Wiener Model Identification. Automatica 2016, 69, 65–77. [Google Scholar] [CrossRef]
- Stoica, P.; Marzetta, T.L. Parameter Estimation Problems with Singular Information Matrices. IEEE Trans. Signal Proc. 2001, 49, 87–90. [Google Scholar] [CrossRef]
- Amari, A.; Weiss, A.J. Fundamental resolution limits of closely spaced random signals. IET Radar Sonar Navig. 2008, 2, 170–179. [Google Scholar] [CrossRef]
- Amari, A.; Weiss, A.J. Fundamental limitations on the resolution of deterministic signals. IEEE Trans. Signal Proc. 2008, 56, 5309–5318. [Google Scholar] [CrossRef]
- Hero, A.O., III; Castañón, D.; Cochran, D.; Kastella, K. Foundations and Applications of Sensor Management; Springer: New York, NY, USA, 2008. [Google Scholar]
- Nardone, S.C.; Aidala, V.J. Observability Criteria for Bearings-Only Target Motion Analysis. IEEE Trans. Autom. Control 1981, 17, 162–166. [Google Scholar] [CrossRef]
- Jauffret, C.; Pillon, D. Observability in Passive Target Motion Analysis. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1290–1300. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Caelli, T.; Li, X.; Moran, B. On Information Resolution of Radar Systems. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3084–3102. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, X.; Moran, B. Sensor Network Performance Evaluation in Statistical Manifolds. In Proceedings of the 2010 13th Conference on Information Fusion (FUSION), Edinburgh, UK, 26–29 July 2010.
- Barton, D.K.; Leonov, S.A. Radar Technology Encyclopedia; Artech House: Massachusetts, MA, USA, 1997. [Google Scholar]
- Amari, S.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Lang, S. Foundations of Differential Geometry; Springer: New York, NY, USA, 1999. [Google Scholar]
- Amari, S. Differential Geometry of Curved Exponential Families-Curvatures and Information Loss. Ann. Stat. 1982, 10, 357–385. [Google Scholar] [CrossRef]
(3,8) | (5,10) | (7,12) | (9,14) | (11,16) | (13,18) | (15,20) | (17,22) | |
Ed | 9.90(7.07) | 7.07(4.24) | 4.24(1.41) | 1.41(1.41) | 1.41(4.24) | 4.24(7.07) | 7.07(9.90) | 9.90(12.73) |
1.28(1.12) | 0.97(0.73) | 0.62(0.26) | 0.22(0.26) | 0.22(0.73) | 0.62(1.12) | 0.97(1.47) | 1.28(1.78) | |
IFD | 2.15(1.67) | 1.37(0.89) | 0.74(0.27) | 0.23(0.25) | 0.21(0.69) | 0.59(1.07) | 0.93(1.40) | 1.23(1.70) |
(3,22) | (5,20) | (7,18) | (9,16) | (11,14) | (13,12) | (15,10) | (17,8) | |
Ed | 9.90(10.30) | 7.07(7.62) | 4.24(5.10) | 1.41(3.16) | 1.41(3.16) | 4.24(5.10) | 7.07(7.62) | 9.90(10.30) |
2.73(3.65) | 1.98(2.67) | 1.19(1.61) | 0.39(0.56) | 0.39(0.72) | 1.19(1.43) | 1.98(2.21) | 2.73(2.97) | |
IFD | 0.94(1.26) | 0.68(0.99) | 0.41(0.73) | 0.14(0.53) | 0.14(0.48) | 0.40(0.62) | 0.65(0.85) | 0.87(1.09) |
(11,11) | (15,15) | (19,19) | (23,23) | (27,27) | (31,31) | (35,35) | (39,39) | |
Ed | 21.0(15.2) | 15.8(10.2) | 11.1(6.3) | 7.6(6.3) | 7.6(10.2) | 11.1(15.2) | 15.8(20.3) | 21.0(26.1) |
0.38(0.53) | 0.29(0.32) | 0.21(0.16) | 0.21(0.26) | 0.21(0.33) | 0.31(0.46) | 0.43(0.60) | 0.55(0.72) | |
IFD | 1.88(1.71) | 1.31(1.05) | 0.90(0.59) | 0.60(0.52) | 0.38(0.81) | 0.36(1.20) | 0.58(1.59) | 0.91(1.97) |
(2,33) | (5,30) | (8,27) | (11,24) | (14,21) | (17,18) | (20,15) | (23,12) | |
Ed | 18.3(28.0) | 15.0(23.9) | 12.4(19.7) | 10.8(15.7) | 10.8(11.7) | 12.4(8.5) | 15.0(5.4) | 18.3(5.4) |
0.53(0.64) | 0.43(0.52) | 0.34(0.46) | 0.27(0.38) | 0.23(0.30) | 0.23(0.22) | 0.47(0.17) | 0.62(0.19) | |
IFD | 1.05(2.07) | 0.76(1.80) | 0.56(1.55) | 0.58(1.30) | 0.76(1.04) | 0.99(0.78) | 1.24(0.54) | 1.50(0.53) |
(6,6,6) | (10,10,10) | (14,14,14) | (18,18,18) | (22,22,22) | (26,26,26) | (30,30,30) | (34,34,34) | |
Ed | 24.3(17.3) | 17.3(10.4) | 10.4(3.5) | 3.5(3.5) | 3.5(10.4) | 10.4(17.3) | 17.3(24.3) | 24.3(31.2) |
70.0(50.0) | 50.0(30.0) | 30.0(10.0) | 10.0(10.0) | 10.0(30.0) | 30.0(50.0) | 50.0(70.0) | 70.0(90.0) | |
IFD | 2.41(1.96) | 1.3(0.94) | 0.71(0.27) | 0.21(0.24) | 0.19(0.64) | 0.52(0.97) | 0.81(1.26) | 1.06(1.51) |
(6,6,34) | (10,10,30) | (14,14,26) | (18,18,22) | (22,22,18) | (26,26,14) | (30,30,10) | (34,34,6) | |
Ed | 24.3(22.9) | 17.3(16.4) | 10.4(10.4) | 3.5(6.6) | 3.5(8.7) | 10.4(14.3) | 17.3(20.7) | 24.3(27.4) |
70.0(90.0) | 50.0(70.0) | 30.0(50.0) | 10.0(30.0) | 10.0(10.0) | 30.0(10.0) | 50.0(30.0) | 70.0(50.0) | |
IFD | 2.47(1.96) | 1.49(0.95) | 0.84(0.27) | 0.27(0.36) | 0.26(0.89) | 0.76(1.39) | 1.20(1.83) | 1.58(2.21) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Sun, H.; Win, A.N. Information Submanifold Based on SPD Matrices and Its Applications to Sensor Networks. Entropy 2017, 19, 131. https://doi.org/10.3390/e19030131
Xu H, Sun H, Win AN. Information Submanifold Based on SPD Matrices and Its Applications to Sensor Networks. Entropy. 2017; 19(3):131. https://doi.org/10.3390/e19030131
Chicago/Turabian StyleXu, Hao, Huafei Sun, and Aung Naing Win. 2017. "Information Submanifold Based on SPD Matrices and Its Applications to Sensor Networks" Entropy 19, no. 3: 131. https://doi.org/10.3390/e19030131
APA StyleXu, H., Sun, H., & Win, A. N. (2017). Information Submanifold Based on SPD Matrices and Its Applications to Sensor Networks. Entropy, 19(3), 131. https://doi.org/10.3390/e19030131