Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels
<p>(<b>a</b>) The isolated two-compartment system, enclosed by rigid adiabatic walls, for describing entropy change in irreversible processes; (<b>b</b>) The two-compartment system separated by a cell membrane containing an ion channel in the voltage-clamp patch-clamp recording.</p> "> Figure 2
<p>The K<sup>+</sup> ion conduction model is shown with the structure of the KcsA channel using Rasmol. The K<sup>+</sup> channel switches rapidly between (S2, S4) and (S1, S3) configurations to transport K<sup>+</sup> ions. The ratio of the outward transport event to the inward transport event can be estimated from the fluctuation theorem.</p> "> Figure 3
<p>(<b>a</b>) The structure model of the inward rectifier K<sup>+</sup> (Kir) channel reveals an elongated multi-ion single-file cytoplasmic pore beyond the selectivity filter [<a href="#B32-entropy-19-00040" class="html-bibr">32</a>,<a href="#B33-entropy-19-00040" class="html-bibr">33</a>], facilitating the flux-coupled blockage. The strands presentation of the Kir2.1 channel is retrieved from the SWISS-MODEL Repository based on the X-ray crystallography template structure of a Kir2.2 channel (PDB: 3sph) [<a href="#B34-entropy-19-00040" class="html-bibr">34</a>]; (<b>b</b>) The current–voltage relationship of the Kir channel at symmetrical K<sup>+</sup> concentrations (<math display="inline"> <semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mtext> </mtext> <mi>mV</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> in the presence of the intracellular blocker. The strong inward rectification results from the “driving force”-dependent or flux-coupled block by the intracellular blocker [<a href="#B1-entropy-19-00040" class="html-bibr">1</a>,<a href="#B2-entropy-19-00040" class="html-bibr">2</a>].</p> ">
Abstract
:1. Introduction
2. Results
2.1. Entropy Production Due to the Ion Flux across the Membrane in a Two-Compartment System
2.2. The Empirical Linear Relationship between the Ion Flux and the Driving Force across the Membrane
2.3. Electrodiffusion in the Continuous Ion Solution by the Electrochemical Potential Gradient
2.4. Nonequilibrium Thermodynamics in Small Systems: Fluctuation Theorem and the Ussing Flux Ratio
2.5. The Magnitude of the Unidirectional Outward Flux and Inward Flux in Nonequilibirium and Equilibrium Conditions
2.6. The Roles of the Multi-Ion Single-File Pores in “Driving Force”-Dependent Processes in the Membrane
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hsieh, C.P.; Chiang, C.C.; Huang, C.W. The mechanism of inward rectification in Kir channels: A novel kinetic model with non-equilibrium thermodynamics approach. Biophys. Chem. 2016, 212, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.P.; Kuo, C.C.; Huang, C.W. Driving force-dependent block by internal Ba2+ on the Kir2.1 channel: Mechanistic insight into inward rectification. Biophys. Chem. 2015, 202, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Boyer, P.D. The ATP synthase—A splendid molecular machine. Annu. Rev. Biochem. 1997, 66, 717–749. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Takahashi, A.; Adachi, K.; Noji, H.; Yasuda, R.; Yoshida, M.; Kinosita, K. Mechanically driven ATP synthesis by F1-ATPase. Nature 2004, 427, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Kinosita, K., Jr.; Yasuda, R.; Noji, H.; Adachi, K. A rotary molecular motor that can work at near 100% efficiency. Philos. Trans. R Soc. Lond. B Biol. Sci. 2000, 355, 473–489. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Muneyuki, E.; Hisabori, T. ATP synthase—A marvellous rotary engine of the cell. Nat. Rev. Mol. Cell. Biol. 2001, 2, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Katchalsky, A.; Kedem, O. Thermodynamics of flow processes in biological systems. Biophys. J. 1962, 2, 53–78. [Google Scholar] [CrossRef]
- Katchalsky, A.; Curran, P.F. Nonequilibrium Thermodynamics in Biophysics; Harvard University Press: Cambridge, MA, USA, 1965. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes, 3rd ed.; Interscience Publishers: New York, NY, USA, 1968. [Google Scholar]
- Dill, K.A.; Bromberg, S. Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, 2nd ed.; Garland Science: New York, NY, USA, 2011. [Google Scholar]
- Hsieh, C.P. Interpretation of the ussing flux ratio from the fluctuation theorem. Biophys. Chem. 2009, 139, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Guggenheim, E. The conceptions of electrical potential difference between two phases and the individual activities of ions. J. Phys. Chem. 1929, 33, 842–849. [Google Scholar] [CrossRef]
- Hamill, O.P.; Marty, A.; Neher, E.; Sakmann, B.; Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981, 391, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Hille, B. Ion Channels of Excitable Membranes, 2nd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2001. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley: Reading, MA, USA, 1963; Volume 1. [Google Scholar]
- Bustamante, C.; Ritort, F.; Liphardt, J. The nonequilibrium thermodynamics of small systems. Phys. Today 2005, 58, 43–48. [Google Scholar] [CrossRef]
- Evans, D.J.; Cohen, E.; Morriss, G. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 1993, 71, 2401. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.J.; Searles, D.J. The fluctuation theorem. Adv. Phys. 2002, 51, 1529–1585. [Google Scholar] [CrossRef]
- Wang, G.M.; Sevick, E.M.; Mittag, E.; Searles, D.J.; Evans, D.J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 2002, 89, 50601. [Google Scholar] [CrossRef] [PubMed]
- Beard, D.A.; Qian, H. Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS ONE 2007, 2, e144. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, A.L.; Keynes, R.D. The potassium permeability of a giant nerve fibre. J. Physiol. 1955, 128, 61–88. [Google Scholar] [CrossRef] [PubMed]
- Ussing, H.H. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 1949, 19, 43–56. [Google Scholar] [CrossRef]
- Stampe, P.; Arreola, J.; Perez-Cornejo, P.; Begenisich, T. Nonindependent K+ movement through the pore in IRK1 potassium channels. J. Gen. Physiol. 1998, 112, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Stampe, P.; Begenisich, T. Unidirectional K+ fluxes through recombinant shaker potassium channels expressed in single xenopus oocytes. J. Gen. Physiol. 1996, 107, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Doyle, D.A.; Cabral, J.M.; Pfuetzner, R.A.; Kuo, A.; Gulbis, J.M.; Cohen, S.L.; Chait, B.T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Berneche, S.; Roux, B. A microscopic view of ion conduction through the K+ channel. Proc. Natl. Acad. Sci. USA 2003, 100, 8644–8648. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Morais-Cabral, J.H.; Mann, S.; MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 2001, 411, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Morais-Cabral, J.H.; Kaufman, A.; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-fab complex at 2.0 angstrom resolution. Nature 2001, 414, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, A.L. The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 1951, 26, 339–409. [Google Scholar] [CrossRef]
- Lu, Z. Mechanism of rectification in inward-rectifier K+ channels. Annu. Rev. Physiol. 2004, 66, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Nishida, M.; Cadene, M.; Chait, B.T.; MacKinnon, R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 2007, 26, 4005–4015. [Google Scholar] [CrossRef] [PubMed]
- Pegan, S.; Arrabit, C.; Zhou, W.; Kwiatkowski, W.; Collins, A.; Slesinger, P.A.; Choe, S. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat. Neurosci. 2005, 8, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.B.; Tao, X.; MacKinnon, R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 2011, 477, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Schewe, M.; Nematian-Ardestani, E.; Sun, H.; Musinszki, M.; Cordeiro, S.; Bucci, G.; de Groot, B.L.; Tucker, S.J.; Rapedius, M.; Baukrowitz, T. A non-canonical voltage-sensing mechanism controls gating in K2P K+ channels. Cell 2016, 164, 937–949. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, W. Maxwell’s demon. Sci. Am. 1967, 217, 103–110. [Google Scholar] [CrossRef]
- Junge, W.; Lill, H.; Engelbrecht, S. ATP synthase: An electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 1997, 22, 420–423. [Google Scholar] [CrossRef]
- Junge, W.; Nelson, N. ATP synthase. Annu. Rev. Biochem. 2015, 84, 631–657. [Google Scholar] [CrossRef] [PubMed]
- Leone, V.; Faraldo-Gomez, J.D. Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling. J. Gen. Physiol. 2016, 148, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Matthies, D.; Zhou, W.; Klyszejko, A.L.; Anselmi, C.; Yildiz, O.; Brandt, K.; Muller, V.; Faraldo-Gomez, J.D.; Meier, T. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nat. Commun. 2014, 5, 5286. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, C.-P. Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels. Entropy 2017, 19, 40. https://doi.org/10.3390/e19010040
Hsieh C-P. Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels. Entropy. 2017; 19(1):40. https://doi.org/10.3390/e19010040
Chicago/Turabian StyleHsieh, Chi-Pan. 2017. "Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels" Entropy 19, no. 1: 40. https://doi.org/10.3390/e19010040
APA StyleHsieh, C. -P. (2017). Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels. Entropy, 19(1), 40. https://doi.org/10.3390/e19010040