Temporal Predictability of Online Behavior in Foursquare
"> Figure 1
<p>Distribution of inter-event times of Foursquare check-ins for all the 43 users (<b>a</b>) and one typical user (<b>b</b>).</p> "> Figure 2
<p>Frequency count of measured <span class="html-italic">H<sup>0</sup></span>, <span class="html-italic">H<sup>1</sup></span> and <span class="html-italic">H<sup>2</sup></span> for the 43 users.</p> "> Figure 3
<p>Relationship between the measured <span class="html-italic">H<sup>1</sup></span> and <span class="html-italic">H<sup>2</sup></span> for the 43 users. Black dots correspond to different users’ sequences of inter-event time symbols.</p> "> Figure 4
<p>Mutual information (<span class="html-italic">I<sub>A</sub></span>) in the original sequence and the statistics of mutual information in the shuffled sequences for the 43 users. The red line represents the mutual information <span class="html-italic">I<sub>A</sub></span> in original sequences in increasing order. The lower and upper ends of the blue columns are the smallest value and 95th percentile of the mutual information of the shuffled sequences for each user. The index represents the user numbered by the order of the mutual information in its original sequence.</p> "> Figure 5
<p>Original mutual information and statistics of the mutual information from randomized sequences preserving consecutive identical symbols for the 43 users. The red line represents the mutual information in the original sequences in increasing order. The error bars indicate one standard deviation around the mean of the mutual information from randomized sequences. The ticks at the middle of the error bars indicate the means. The index represents the user numbered by the order of the mutual information in its original sequence.</p> "> Figure 6
<p>Mutual information of modified sequences and statistics of mutual information from shuffled modified sequence for the 43 users. The red line represents the mutual information from the modified sequences for each user in increasing order. The lower and upper ends of the blue columns are the smallest value and 95th percentile of the mutual information from the shuffled modified sequences for each user. The index represents the user numbered by the order of the mutual information in its modified sequence.</p> "> Figure 7
<p>Cumulative distribution of <span class="html-italic">G<sub>weekday</sub></span> and <span class="html-italic">G<sub>weekend</sub></span> for the 43 users.</p> "> Figure 8
<p>Cumulative distribution of <span class="html-italic">G<sub>first</sub></span>, <span class="html-italic">G<sub>second</sub></span> and <span class="html-italic">G<sub>third</sub></span> for the 43 users.</p> ">
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Temporal Predictability of Foursquare Online Activity
3.2. Origins of the Temporal Predictability
3.3. Effect of Weekday-Weekend Difference and Location’s Visit Frequency on the Temporal Predictability
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, D.; Hufnagel, L.; Geisel, T. The scaling laws of human travel. Nature 2006, 439, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Kovanen, L.; Kaski, K.; Kertész, J.; Saramäki, J. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. USA 2013, 110, 18070–18075. [Google Scholar] [CrossRef] [PubMed]
- Centola, D. The spread of behavior in an online social network experiment. Science 2010, 329, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Balcan, D.; Colizza, V.; Gonçalves, B.; Hu, H.; Ramasco, J.J.; Vespignani, A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Bengtsson, L.; Holme, P. Predictability of population displacement after the 2010 Haiti earthquake. Proc. Natl. Acad. Sci. USA 2012, 109, 11576–11581. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.D.; Cai, S.M.; Lu, Y. Non-Markovian character in human mobility: Online and offline. Chaos 2015, 25, 063106. [Google Scholar] [CrossRef] [PubMed]
- Takaguchi, T.; Nakamura, M.; Sato, N.; Yano, K.; Masuda, N. Predictability of conversation partners. Phys. Rev. X 2011, 1, 011008. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Wu, Y.; Xiao, J. Analysis of the origin of predictability in human communications. Physica A 2014, 393, 513–518. [Google Scholar] [CrossRef]
- Krumme, C.; Llorente, A.; Cebrian, M.; Moro, E. The predictability of consumer visitation patterns. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Baumann, P.; Kleiminger, W.; Santini, S. How long are you staying: Predicting residence time from human mobility traces. In Proceedings of the 19th ACM International Conference on Mobile Computing and Networking, Miami, FL, USA, 30 September–4 October 2013; pp. 231–234.
- Wang, J.; Mao, Y.; Li, J.; Xiong, Z.; Wang, W.X. Predictability of road traffic and congestion in urban areas. PLoS ONE 2015, 10, e0121825. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.M.; Verkasalo, H.; Mohtaschemi, M.; Hartonen, T.; Alava, M. Patterns, entropy, and predictability of human mobility and life. PLoS ONE 2012, 7, e51353. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wetter, E.; Bharti, N.; Tatem, A.J.; Bengtsson, L. Approaching the limit of predictability in human mobility. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Austin, D.; Cross, R.M.; Hayes, T.; Kaye, J. Regularity and predictability of human mobility in personal space. PLoS ONE 2014, 9, e90256. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huberman, B.A. How random are online social interactions. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [PubMed]
- Sinatra, R.; Szell, M. Entropy and the predictability of online life. Entropy 2014, 16, 543–556. [Google Scholar] [CrossRef]
- Lian, D.; Zhu, Y.; Xie, X.; Chen, E. Analyzing location predictability on location-based social networks. In Proceedings of the 2014 Pacific-Asia Conference on Knowledge Discovery and Data Mining, Tainan, Taiwan, 13–16 May 2014; pp. 102–113.
- Zhao, Z.D.; Yang, Z.; Zhang, Z.; Zhou, T.; Huang, Z.G.; Lai, Y.C. Emergence of scaling in human-interest dynamics. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Chierichetti, F.; Kumar, R.; Raghavan, P.; Sarlos, T. Are web users really markovian? In Proceedings of the 2012 ACM International Conference on World Wide Web, Lyon, France, 16–20 April 2012; pp. 609–618.
- Kleinberg, J. Computing: The wireless epidemic. Nature 2007, 449, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Karsai, M.; Kivelä, M.; Pan, R.K.; Kaski, K.; Kertész, J.; Barabasi, A.L.; Saramäki, J. Small but slow world: How network topology and burstiness slow down spreading. Phys. Rev. E 2011, 83, 025102. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, X. The spread of computer viruses over a reduced scale-free network. Physica A 2014, 396, 173–184. [Google Scholar] [CrossRef]
- Cortez, P.; Rio, M.; Rocha, M.; Sousa, P. Multiscale Internet traffic forecasting using neural networks and time series methods. Expert Syst. 2012, 29, 143–155. [Google Scholar]
- Yin, H.; Lin, C.; Sebastien, B.; Li, B.; Min, G. Network traffic prediction based on a new time series model. Int. J. Commun. Syst. 2005, 18, 711–729. [Google Scholar] [CrossRef]
- Yin, H.; Jiang, Y.; Lin, C.; Luo, Y.; Liu, Y. Big data: Transforming the design philosophy of future internet. IEEE Netw. 2014, 28, 14–19. [Google Scholar] [CrossRef]
- Altshuler, Y.; Fire, M.; Shmueli, E.; Elovici, Y.; Bruckstein, A.; Pentland, A.S.; Lazer, D. The social amplifier-reaction of human communities to emergencies. J. Stat. Phys. 2013, 152, 399–418. [Google Scholar] [CrossRef]
- Bagrow, J.P.; Wang, D.; Barabasi, A.L. Collective response of human populations to large-scale emergencies. PLoS ONE 2011, 6, e17680. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Zhang, B.; Li, X.; Bai, X.; Xuan, D. E-shadow: Lubricating social interaction using mobile phones. IEEE Trans. Comput. 2014, 63, 1422–1433. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Zheng, B.; Lee, K.C. High utility K-anonymization for social network publishing. Knowl. Inf. Syst. 2014, 41, 697–725. [Google Scholar] [CrossRef]
- Dey, L. Anomaly detection from call data records. In Proceedings of 2009 International Conference on Pattern Recognition and Machine Intelligence, New Delhi, India, 16–20 December 2009; pp. 237–242.
- Jiang, Z.Q.; Xie, W.J.; Li, M.X.; Podobnik, B.; Zhou, W.X.; Stanley, H.E. Calling patterns in human communication dynamics. Proc. Natl. Acad. Sci. USA 2013, 110, 1600–1605. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Wicker, S.B. Spatial subterfuge: An experience sampling study to predict deceptive location disclosures. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and UbiQuitous Computing, Osaka, Japan, 7–11 September 2015; pp. 1131–1135.
- Li, Y.; Ren, W.; Jin, D.; Hui, P.; Zeng, L.; Wu, D. Potential predictability of vehicular staying time for large-scale urban environment. IEEE Trans. Veh. Technol. 2014, 63, 322–333. [Google Scholar] [CrossRef]
- Boulle, M. Optimal bin number for equal frequency discretizations in supervized learning. Intell. Data Anal. 2005, 9, 175–188. [Google Scholar]
- Panzeri, S.; Senatore, R.; Montemurro, M.A.; Petersen, R.S. Correcting for the sampling bias problem in spike train information measures. J. Neurophysiol. 2007, 98, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Deshpande, U.; Kozat, U.C.; Kotz, D.; Jain, R. Predictability of WLAN mobility and its effects on bandwidth provisioning. In Proceedings of the 25th IEEE International Conference on Computer Communications, Hong Kong, China, 26 April–1 May 2006.
- Scellato, S.; Musolesi, M.; Mascolo, C.; Latora, V.; Campbell, A.T. NextPlace: A spatio-temporal prediction framework for pervasive systems. In Proceedings of the 9th International Conference on Pervasive Computing, Istanbul, Turkey, 20–23 May 2011; pp. 152–169.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Gao, Q.; Xiong, H. Temporal Predictability of Online Behavior in Foursquare. Entropy 2016, 18, 296. https://doi.org/10.3390/e18080296
Chen W, Gao Q, Xiong H. Temporal Predictability of Online Behavior in Foursquare. Entropy. 2016; 18(8):296. https://doi.org/10.3390/e18080296
Chicago/Turabian StyleChen, Wang, Qiang Gao, and Huagang Xiong. 2016. "Temporal Predictability of Online Behavior in Foursquare" Entropy 18, no. 8: 296. https://doi.org/10.3390/e18080296
APA StyleChen, W., Gao, Q., & Xiong, H. (2016). Temporal Predictability of Online Behavior in Foursquare. Entropy, 18(8), 296. https://doi.org/10.3390/e18080296