Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra
"> Figure 1
<p>Absorption probability for α = 5.4 in red. The result of (3) in blue with β = 1.54.</p> "> Figure 2
<p>(<b>a</b>) The simulated signal for the optimum parameter set with the addition of noise (red) and the noiseless lineshape (blue). The red signal corresponds to a signal to noise ratio of 7. (<b>b</b>) The simulated signal for the optimum parameter set with the addition of noise (red) and the noiseless lineshape (blue). The red signal corresponds to a signal to noise ratio of 70.</p> "> Figure 3
<p>Probability mass function (8) evaluated at the optimal parameter set and SNR = 70.</p> "> Figure 4
<p>The simulated signal for the optimum parameter set with SNR = 70 in red and the model lineshape evaluated at α = 5.2, β = 1.49 in blue.</p> "> Figure 5
<p>Probability mass function (8) evaluated at α = 5.2 and β = 1.49 and SNR = 70.</p> "> Figure 6
<p>A flow chart of the algorithm developed for the computations reported on in this work.</p> "> Figure 7
<p>(<b>a</b>) The partition function (7) at SNR = 7 for α values from 4.5 to 6.5 and β values from 0.5 to 1.5. (<b>b</b>) The partition function (7) at SNR = 70 for α values from 4.5 to 6.5 and β from 0.5 to 1.5. For both plots, the red vertical line indicates the optimum parameter set.</p> "> Figure 8
<p>(<b>a</b>) Results of the algorithm described in this work for SNR = 7 yield α = 5.4067 ± 0.26G. (<b>b</b>) Results of the algorithm described in this work for SNR = 7 yield β = 1.5099 ± 0.77G.</p> "> Figure 9
<p>(<b>a</b>) Results of the algorithm described in this work for SNR = 70 yield α = 5.3996 ± 2.09 × 10<sup>−4</sup>G. (<b>b</b>) Results of the algorithm described in this work for SNR = 70 yield β = 1.5391 ± 1.4 × 10<sup>−3</sup>G.</p> "> Figure 10
<p>Path of the algorithm cast on the surface of the partition function.</p> "> Figure 11
<p>(<b>a</b>) A scan comparing the Nelder–Mead optimization algorithm (red) with the MCMC algorithm discussed in this paper (blue) for various starting parameters of alpha and beta and the final value for alpha. (<b>b</b>) A scan comparing the Nelder-Mead optimization algorithm (red) with the MCMC algorithm discussed in this paper (blue) for various starting parameters of alpha and beta and the final value for beta.</p> "> Figure 12
<p>(<b>a</b>) Gaussian curvature K as a function of model parameters for SNR = 7. (<b>b</b>) Gaussian curvature K as a function of model parameters for SNR = 70.</p> ">
Abstract
:1. Intoduction
2. Methods
2.1. MCMC Simulation
2.2. Computation of Parameter Uncertainties
3. Results
MCMC Simulation Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
References
- Bretthorst, G.L. Bayesian Analysis I. Parameter Estimation Using Quadrature NMR Models. J. Magn. Reson. 1990, 88, 533–551. [Google Scholar] [CrossRef]
- Bretthorst, G.L. Bayesian Analysis II. Parameter Estimation Using Quadrature NMR Models. J. Magn. Reson. 1990, 88, 552–570. [Google Scholar]
- Bretthorst, G.L. Bayesian Analysis III. Parameter Estimation Using Quadrature NMR Models. J. Magn. Reson. 1990, 88, 571–595. [Google Scholar]
- Berliner, L.J.; Eaton, S.S.; Eaton, G.R. (Eds.) Distance Measurements in Biological Systems by EPR. In Biological Magnetic Resonance; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2000.
- Pake, G.E. Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line. J. Chem. Phys. 1948, 16, 327–336. [Google Scholar] [CrossRef]
- Abragam, A. The Principles of Nuclear Magnetism; Oxford University Press: London, UK, 1961. [Google Scholar]
- Earle, K.A.; Mainali, L.; Dev Sahu, I.; Schneider, D.J. Magnetic Resonance Spectra and Statistical Geometry. Appl. Magn. Reson. 2010, 37, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Sivia, D.S.; Skilling, J. Data Analysis: A Bayesian Tutorial; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Ben-Naim, A. A Farewell to Entropy: Statistical Thermodynamics Based on Information; World Scientific Publishing: Singapore, 2011. [Google Scholar]
- Hock, K.; Earle, K. Information Theory Applied to Parameter Inference of Pake Doublet Spectra. Appl. Magn. Reson. 2014, 45, 859–879. [Google Scholar] [CrossRef]
- Rao, C.R. Information and the Accuracy Attainable in the Estimation of Statistical Parameters. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992. [Google Scholar]
- Lee, J.M. Riemannian Manifolds: An Introduction to Curvature; Springer: New York, NY, USA, 1997. [Google Scholar]
- Lagaris, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hock, K.; Earle, K. Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra. Entropy 2016, 18, 57. https://doi.org/10.3390/e18020057
Hock K, Earle K. Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra. Entropy. 2016; 18(2):57. https://doi.org/10.3390/e18020057
Chicago/Turabian StyleHock, Kiel, and Keith Earle. 2016. "Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra" Entropy 18, no. 2: 57. https://doi.org/10.3390/e18020057
APA StyleHock, K., & Earle, K. (2016). Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra. Entropy, 18(2), 57. https://doi.org/10.3390/e18020057