Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities under the Influence of Magnetic Field
<p>Schematic description of the physical model.</p> "> Figure 2
<p>Code validation study, comparison of streamlines and isotherms with Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>], <math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Da</mtext> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Pr</mtext> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>. (<b>a</b>) streamline, Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>]; (<b>b</b>) isotherm, Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>]; (<b>c</b>) streamline, present solver; (<b>d</b>) isotherm, present solver.</p> "> Figure 2 Cont.
<p>Code validation study, comparison of streamlines and isotherms with Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>], <math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Da</mtext> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Pr</mtext> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>. (<b>a</b>) streamline, Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>]; (<b>b</b>) isotherm, Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>]; (<b>c</b>) streamline, present solver; (<b>d</b>) isotherm, present solver.</p> "> Figure 3
<p>Code validation study, comparison of local Nusselt numbers along the top and bottom wall with Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>], <math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Da</mtext> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Pr</mtext> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>, (<b>a</b>) local Nusselt numbers, Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>]; (<b>b</b>) top wall, present solver; (<b>c</b>) bottom wall, present solver.</p> "> Figure 3 Cont.
<p>Code validation study, comparison of local Nusselt numbers along the top and bottom wall with Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>], <math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <mn>5</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Da</mtext> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mspace width="4pt"/> <mtext>Pr</mtext> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>, (<b>a</b>) local Nusselt numbers, Basak <span class="html-italic">et al.</span> [<a href="#B49-entropy-18-00043" class="html-bibr">49</a>]; (<b>b</b>) top wall, present solver; (<b>c</b>) bottom wall, present solver.</p> "> Figure 4
<p>Effects of varying Rayleigh number on the streamlines for various Hartmann number combinations (<math display="inline"> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>01</mn> </mrow> </math>), <math display="inline"> <mrow> <mo>(</mo> <mtext>Ra</mtext> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>)</mo> </mrow> </math>, (<b>a</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>b</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>)</mo> </mrow> </math> ; (<b>c</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>d</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </math>; (<b>e</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>f</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>g</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>h</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </math>; (<b>i</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>j</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>k</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>l</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </math>.</p> "> Figure 5
<p>Isotherms for various Rayleigh numbers and different Hartmann number combinations (<math display="inline"> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>01</mn> </mrow> </math>), <math display="inline"> <mrow> <mo>(</mo> <mtext>Ra</mtext> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>)</mo> </mrow> </math>. (<b>a</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>b</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>)</mo> </mrow> </math> ; (<b>c</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>d</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </math>; (<b>e</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>f</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>g</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>h</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </math>; (<b>i</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>j</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>k</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>l</b>) <math display="inline"> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </math>.</p> "> Figure 6
<p>Local Nusselt number distributions along the bottom and lower side wall for various Rayleigh numbers (<math display="inline"> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>01</mn> </mrow> </math>). (<b>a</b>) L1; (<b>b</b>) L3.</p> "> Figure 6 Cont.
<p>Local Nusselt number distributions along the bottom and lower side wall for various Rayleigh numbers (<math display="inline"> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>01</mn> </mrow> </math>). (<b>a</b>) L1; (<b>b</b>) L3.</p> "> Figure 7
<p>Local Nusselt number distributions along the top and upper side wall for various Rayleigh numbers (<math display="inline"> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>01</mn> </mrow> </math>). (<b>a</b>) L2; (<b>b</b>) L4.</p> "> Figure 8
<p>Effects of varying Hartmann numbers of the upper and lower domains on the streamline distributions (<math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>), (<b>a</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </math> ; (<b>b</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>c</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>)</mo> </mrow> </math>; (<b>d</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>e</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>f</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>)</mo> </mrow> </math>; (<b>g</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>h</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>i</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>)</mo> </mrow> </math>.</p> "> Figure 9
<p>Effects of varying Hartmann numbers of the upper and lower domains on the isotherm distributions (<math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>), (<b>a</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </math> ; (<b>b</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>c</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>)</mo> </mrow> </math>; (<b>d</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>e</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>f</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>)</mo> </mrow> </math>; (<b>g</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </math>; (<b>h</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>)</mo> </mrow> </math>; (<b>i</b>) <math display="inline"> <mrow> <mo>(</mo> <msub> <mtext>Ha</mtext> <mn>1</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mtext>Ha</mtext> <mn>2</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>)</mo> </mrow> </math>.</p> "> Figure 10
<p>Local Nusselt number distributions along the bottom and lower side wall for various Hartmann numbers of the upper and lower domains (<math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>), (<b>a</b>) L1; (<b>b</b>) L3.</p> "> Figure 10 Cont.
<p>Local Nusselt number distributions along the bottom and lower side wall for various Hartmann numbers of the upper and lower domains (<math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>), (<b>a</b>) L1; (<b>b</b>) L3.</p> "> Figure 11
<p>Local Nusselt number distributions along the top and upper side wall for various Hartmann numbers of the upper and lower domains (<math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math>), (<b>a</b>) L2; (<b>b</b>) L4.</p> "> Figure 12
<p>Normalized entropy generation for the upper and lower trapezoidal domains, (<b>a</b>) for <math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> <mo>,</mo> <mi>ϕ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>015</mn> </mrow> </math> and various Hartmann numbers; (<b>b</b>) for <math display="inline"> <mrow> <mtext>Ra</mtext> <mo>=</mo> <msup> <mn>10</mn> <mn>5</mn> </msup> </mrow> </math>, Ha<math display="inline"> <msub> <mrow/> <mn>1</mn> </msub> </math> = Ha<math display="inline"> <msub> <mrow/> <mn>2</mn> </msub> </math> = 10 and various nanoparticle volume fractions.</p> ">
Abstract
:1. Introduction
2. Physical Model and Mathematical Formulation
Property | Water | CuO | AlO |
---|---|---|---|
ρ (kg/m) | 997.1 | 6500 | 3970 |
(J/kg·K) | 4179 | 540 | 765 |
(W·m·K) | 0.6 | 18 | 25 |
β (1/K) | |||
(Ω·m) |
- For the inclined walls of the trapezoidal enclosures:
- For the top and bottom horizontal walls:
- Along the interface of the trapezoidal domains (continuity condition):a-b-
3. Solution Method and Validation of Code
Grid Name | Grid Size | Nu (L1) | Nu (L2) |
---|---|---|---|
G1 | 938 | 11.92 | 7.67 |
G2 | 2684 | 12.08 | 8.63 |
G3 | 33182 | 14.13 | 11.33 |
G4 | 48772 | 14.56 | 11.77 |
G5 | 64672 | 14.89 | 11.82 |
4. Results and Discussion
Ra | Ha | Ha | Nu (L1) | Nu (L2) |
---|---|---|---|---|
10 | 0 | 0 | 10.638 | 10.602 |
10 | 0 | 20 | 10.635 | 10.604 |
10 | 20 | 0 | 10.634 | 10.605 |
10 | 30 | 30 | 10.632 | 10.607 |
10 | 0 | 0 | 10.737 | 10.553 |
10 | 0 | 20 | 10.717 | 10.564 |
10 | 20 | 0 | 10.659 | 10.599 |
10 | 30 | 30 | 10.639 | 10.601 |
10 | 0 | 0 | 13.238 | 9.999 |
10 | 0 | 20 | 12.942 | 10.143 |
10 | 20 | 0 | 11.177 | 10.603 |
10 | 30 | 30 | 10.793 | 10.554 |
10 | 0 | 0 | 18.061 | 10.172 |
10 | 0 | 20 | 17.753 | 9.671 |
10 | 20 | 0 | 16.315 | 10.188 |
10 | 30 | 30 | 14.995 | 9.521 |
Ha | Ha | Nu (L1) | Nu (L2) |
---|---|---|---|
0 | 0 | 13.245 | 9.996 |
0 | 10 | 13.112 | 9.976 |
0 | 20 | 12.949 | 10.137 |
0 | 30 | 12.877 | 10.242 |
0 | 50 | 12.819 | 10.329 |
10 | 0 | 12.370 | 10.172 |
10 | 10 | 12.300 | 10.124 |
10 | 20 | 12.208 | 10.217 |
10 | 30 | 12.165 | 10.292 |
10 | 50 | 12.130 | 10.363 |
20 | 0 | 11.180 | 10.606 |
20 | 10 | 11.174 | 10.521 |
20 | 20 | 11.163 | 10.464 |
20 | 30 | 11.156 | 10.457 |
20 | 50 | 11.149 | 10.471 |
30 | 0 | 10.816 | 10.748 |
30 | 10 | 10.810 | 10.667 |
30 | 20 | 10.801 | 10.585 |
30 | 30 | 10.794 | 10.555 |
30 | 50 | 10.787 | 10.546 |
50 | 0 | 10.716 | 10.796 |
50 | 10 | 10.708 | 10.720 |
50 | 20 | 10.696 | 10.635 |
50 | 30 | 10.686 | 10.599 |
50 | 50 | 10.675 | 10.583 |
φ | Ha | Ha | Nu (L1) | Nu (L2) |
---|---|---|---|---|
0 | 0 | 0 | 10.993 | 9.954 |
0.01 | 0 | 0 | 11.316 | 10.213 |
0.02 | 0 | 0 | 11.644 | 10.478 |
0.03 | 0 | 0 | 11.977 | 10.749 |
0.04 | 0 | 0 | 12.315 | 11.025 |
0 | 0 | 20 | 10.921 | 10.00 |
0.01 | 0 | 20 | 11.241 | 10.263 |
0.02 | 0 | 20 | 11.565 | 10.531 |
0.03 | 0 | 20 | 11.893 | 10.804 |
0.04 | 0 | 20 | 12.227 | 11.082 |
0 | 20 | 0 | 10.478 | 10.163 |
0.01 | 20 | 0 | 10.776 | 10.438 |
0.02 | 20 | 0 | 11.079 | 10.717 |
0.03 | 20 | 0 | 11.388 | 11.001 |
0.04 | 20 | 0 | 11.702 | 11.292 |
0 | 30 | 30 | 10.438 | 10.139 |
0.01 | 30 | 30 | 10.734 | 10.409 |
0.02 | 30 | 30 | 11.035 | 10.685 |
0.03 | 30 | 30 | 11.342 | 10.965 |
0.04 | 30 | 30 | 11.655 | 11.251 |
φ | Ha | Ha | Nu (L1) | Nu (L2) |
---|---|---|---|---|
0 | 0 | 0 | 16.283 | 10.043 |
0.01 | 0 | 16.758 | 16.299 | 10.318 |
0.02 | 0 | 0 | 17.240 | 10.599 |
0.03 | 0 | 0 | 17.728 | 10.885 |
0.04 | 0 | 0 | 18.222 | 11.176 |
0 | 0 | 20 | 15.918 | 9.739 |
0.01 | 0 | 20 | 16.394 | 9.990 |
0.02 | 0 | 20 | 16.876 | 10.247 |
0.03 | 0 | 20 | 17.364 | 10.510 |
0.04 | 0 | 20 | 17.857 | 10.779 |
0 | 20 | 0 | 14.438 | 10.180 |
0.01 | 20 | 0 | 14.863 | 10.461 |
0.02 | 20 | 0 | 15.293 | 10.747 |
0.03 | 20 | 0 | 15.727 | 11.038 |
0.04 | 20 | 0 | 16.166 | 11.336 |
0 | 30 | 30 | 13.022 | 9.992 |
0.01 | 30 | 30 | 13.411 | 10.248 |
0.02 | 30 | 30 | 13.803 | 10.509 |
0.03 | 30 | 30 | 14.199 | 10.777 |
0.04 | 30 | 30 | 14.599 | 11.052 |
Ha | Ha | S* (D1) | S* (D2) |
---|---|---|---|
0 | 0 | 1.0000 | 1.0000 |
0 | 10 | 1.0029 | 0.9811 |
0 | 20 | 1.0087 | 0.9716 |
0 | 30 | 1.0145 | 0.9703 |
0 | 50 | 1.0174 | 0.9685 |
10 | 0 | 0.9449 | 0.9905 |
10 | 10 | 0.9478 | 0.9716 |
10 | 20 | 0.9536 | 0.9653 |
10 | 30 | 0.9594 | 0.9621 |
10 | 50 | 0.9652 | 0.9590 |
20 | 0 | 0.8922 | 0.9685 |
20 | 10 | 0.8928 | 0.9621 |
20 | 20 | 0.8942 | 0.9527 |
20 | 30 | 0.8957 | 0.9495 |
20 | 50 | 0.8971 | 0.9464 |
30 | 0 | 0.8725 | 0.9685 |
30 | 10 | 0.8725 | 0.9590 |
30 | 20 | 0.8725 | 0.9502 |
30 | 30 | 0.8739 | 0.9464 |
30 | 50 | 0.8754 | 0.9432 |
50 | 0 | 0.8693 | 0.9685 |
50 | 10 | 0.8690 | 0.9590 |
50 | 20 | 0.8684 | 0.9495 |
50 | 30 | 0.8681 | 0.9461 |
50 | 50 | 0.8681 | 0.9435 |
φ | Ha | Ha | S* (D1) | S* (D2) |
---|---|---|---|---|
0 | 0 | 0 | 1.0000 | 1.0000 |
0.01 | 0 | 0 | 1.0292 | 1.0277 |
0.02 | 0 | 0 | 1.0584 | 1.0563 |
0.03 | 0 | 0 | 1.0882 | 1.0856 |
0.04 | 0 | 0 | 1.1185 | 1.1154 |
0 | 0 | 20 | 1.0022 | 0.9961 |
0.01 | 0 | 20 | 1.0308 | 1.0236 |
0.02 | 0 | 20 | 1.0639 | 1.0514 |
0.03 | 0 | 20 | 1.0904 | 1.0802 |
0.04 | 0 | 20 | 1.1185 | 1.1088 |
0 | 20 | 0 | 0.9713 | 0.9956 |
0.01 | 20 | 0 | 0.9989 | 1.0235 |
0.02 | 20 | 0 | 1.0271 | 1.0518 |
0.03 | 20 | 0 | 1.0552 | 1.0806 |
0.04 | 20 | 0 | 1.0844 | 1.1099 |
0 | 30 | 30 | 0.9708 | 0.9901 |
0.01 | 30 | 30 | 0.9978 | 1.0172 |
0.02 | 30 | 30 | 1.0260 | 1.0448 |
0.03 | 30 | 30 | 1.0541 | 1.0729 |
0.04 | 30 | 30 | 1.0833 | 1.1016 |
5. Conclusions
- At the highest value of the Rayleigh number, the magnetic field is more effective on the reduction of the natural convection of the upper and lower cavities.
- When the Hartmann number of the lower cavity incraeses, the local heat transfer along the bottom wall is deteriorated and it is enhanced partly for locations at and along the top wall of the upper cavity.
- In the absence of magnetic field in the lower cavity, the averaged heat transfer increases with increasing values of the Hartmann number of the upper cavity. When the Hatmann number of the lower cavity is greater than 10, convection is reduced for the upper domain.
- The averaged Nusselt number increments are in the range of 10% and 12% for the highest solid volume fraction of the nanoparticle compared to base fluid. The heat transfer enhancement rates with nanofluids are not influenced by the presence of the magnetic field.
- The normalized entropy generation increases with increasing values of solid volume fraction of the nanoparticles and decreasing values of magnetic field strength for both domains. The entropy generation ratio decreases for the lower trapezoidal domain is more pronounced compared to upper one with increasing Hartmann number.
Author Contributions
Conflicts of Interest
Abbreviations
B magnetic field strength |
Gr Grashof number, |
h local heat transfer coefficient, (W/mK) |
Ha Hartmann number, |
k thermal conductivity, (W/m·K) |
H length of the enclosure, (m) |
n unit normal vector |
Nu local Nusselt number |
p pressure, (Pa) |
P non-dimensional pressure |
Pr Prandtl number, |
T temperature, (K) |
u, v x-y velocity components, (m/s) |
x, y Cartesian coordinates, (m) |
X, Y dimensionless coordinates |
Greek Characters |
α thermal diffusivity, (m/s) |
β expansion coefficient, (1/K) |
ϕ nanoparticle volume fraction |
θ non-dimensional temperature, |
ν kinematic viscosity, (m/s) |
ρ density of the fluid, (kg/m) |
γ strength of the dipole |
σ electrical conductivity, (S/m) |
Subscripts |
c cold wall |
m average |
h hot wall |
References
- Ostrach, S. Natural convection in enclosures. J. Heat Transf. 1988, 110, 1175–1190. [Google Scholar] [CrossRef]
- Natarajan, E.; Roy, S.; Basak, T. Effect of Various Thermal Boundary Conditions on Natural Convection in a Trapezoidal Cavity with Linearly Heated Side Wall(s). Numer. Heat Transf. Part B 2007, 52, 551–568. [Google Scholar] [CrossRef]
- Fontana, É.; da Silva, A.; Mariani, V.C.; Marcondes, F. The Influence of Baffles on the Natural Convection in Trapezoidal Cavities. Numer. Heat Transf. Part A 2010, 58, 125–145. [Google Scholar] [CrossRef]
- Moukalled, F.; Darwish, M. Natural Convection in a Partitioned Trapezoidal Cavity Heated from the Side. Numer. Heat Transf. Part A 2003, 43, 543–563. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T.; Öztop, H.F.; Varol, Y. Mixed convection and role of multiple solutions in lid-driven trapezoidal enclosures. Int. J. Heat Mass Transf. 2013, 63, 366–388. [Google Scholar] [CrossRef]
- Basak, T.; Roy, S.; Pop, I. Heat flow analysis for natural convection within trapezoidal enclosures based on heatline concept. Int. J. Heat Mass Transf. 2009, 52, 2471–2483. [Google Scholar] [CrossRef]
- Basak, T.; Roy, S.; Singh, S.K.; Pop, I. Finite element simulation of natural convection within porous trapezoidal enclosures for various inclination angles: Effect of various wall heating. Int. J. Heat Mass Transf. 2009, 52, 4135–4150. [Google Scholar] [CrossRef]
- Da Silva, A.; Fontana, É.; Mariani, V.C.; Marcondes, F. Numerical investigation of several physical and geometric parameters in the natural convection into trapezoidal cavities. Int. J. Heat Mass Transf. 2012, 55, 6808–6818. [Google Scholar] [CrossRef]
- Varol, Y. Natural convection in divided trapezoidal cavities filled with fluid saturated porous media. Int. Commun. Heat Mass Transf. 2010, 37, 1350–1358. [Google Scholar] [CrossRef]
- Natarajan, E.; Basak, T.; Roy, S. Natural convection flows in a trapezoidal enclosure with uniform and non-uniform heating of bottom wall. Int. J. Heat Mass Transf. 2008, 51, 747–756. [Google Scholar] [CrossRef]
- Van der Eyden, J.T.; van der Meer, T.H.; Hanjalić, K. Double-diffusive natural convection in trapezoidal enclosures. Inf. J. Heat Mass Transf. 1998, 41, 1885–1898. [Google Scholar] [CrossRef]
- Sathiyamoorthy, M.; Chamkha, A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side walls. Int. J. Therm. Sci. 2010, 49, 1856–1865. [Google Scholar] [CrossRef]
- Chamkha, A.J. Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int. J. Eng. Sci. 2004, 42, 217–230. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Forced convection of ferrofluids in a vented cavity with a rotating cylinder. Int. J. Therm. Sci. 2014, 86, 258–275. [Google Scholar] [CrossRef]
- Rahman, M.; Alim, M.; Sarker, M. Numerical study on the conjugate effect of joule heating and magnato-hydrodynamics mixed convection in an obstructed lid-driven square cavity. Int. Commun. Heat Mass Transf. 2010, 37, 524–534. [Google Scholar] [CrossRef]
- Yu, P.; Qiu, J.; Qin, Q.; Tian, Z. Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 2013, 67, 1131–1144. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.; Soleimani, S.; Seyyedi, S.M. Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field. Int. Commun. Heat Mass Transf. 2012, 39, 1435–1443. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Effect of a rotating cylinder in forced convection of ferrofluid over a backward facing step. Int. J. Heat Mass Transf. 2014, 71, 142–148. [Google Scholar] [CrossRef]
- Öztop, H.F.; Al-Salem, K.; Pop, I. MHD mixed convection in a lid-driven cavity with corner heater. Int. J. Heat Mass Transf. 2011, 54, 3494–3504. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Öztop, H.F.; Rahman, M.; Rahim, N.; Saidur, R.; Varol, Y. Magnetohydrodynamic natural convection in trapezoidal cavities. Int. Commun. Heat Mass Transf. 2012, 39, 1384–1394. [Google Scholar] [CrossRef]
- Hossain, M.S.; Alim, M.A. MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall. Int. J. Heat Mass Transf. 2014, 69, 327–336. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Mixed convection in a two-sided elastic walled and SiO2 nanofluid filled cavity with internal heat generation: Effects of inner rotating cylinder and nanoparticle’s shape. J. Mol. Liq. 2015, 212, 509–516. [Google Scholar] [CrossRef]
- Li, G.; Aktas, M.; Bayazitoglu, Y. A Review on the Discrete Boltzmann Model for Nanofluid Heat Transfer in Enclosures and Channels. Numer. Heat Transf. Part B 2015, 67, 463–488. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid. Int. Commun. Heat Mass Transf. 2013, 45, 111–121. [Google Scholar] [CrossRef]
- Rahman, M.M.; Saha, S.; Mojumder, S.; Naim, A.G.; Saidur, R.; Ibrahim, T.A. Effect of Sine-Squared Thermal Boundary Condition on Augmentation of Heat Transfer in a Triangular Solar Collector Filled with Different Nanofluids. Numer. Heat Transf. Part B 2015, 68, 53–74. [Google Scholar] [CrossRef]
- Wang, P.; Bai, M.; Lv, J.; Zhang, L.; Cui, W.; Li, G. Comparison of Multidimensional Simulation Models for Nanofluids Flow Characteristics. Numer. Heat Transf. Part B 2013, 63, 62–83. [Google Scholar]
- Selimefendigil, F.; Öztop, H.F. Pulsating nanofluids jet impingement cooling of a heated horizontal surface. Int. J. Heat Mass Transf. 2014, 69, 54–65. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Gros, T.; Pop, I. Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. Eur. J. Mech. B-Fluid. 2015, 53, 241–250. [Google Scholar] [CrossRef]
- Sheremet, M.; Pop, I.; Rahman, M. Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 2015, 82, 396–405. [Google Scholar] [CrossRef]
- Kefayati, G.R. Simulation of Ferrofluid Heat Dissipation Effect on Natural Convection at an Inclined Cavity Filled with Kerosene/Cobalt Utilizing the Lattice Boltzmann Method. Numer. Heat Transf. Part A 2014, 65, 509–530. [Google Scholar] [CrossRef]
- Ghasemi, B.; Aminossadati, S.M.; Raisi, A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 2011, 50, 1748–1756. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D. Numerical investigation of MHD effects on Al2O3-water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 2013, 60, 501–510. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int. J. Heat Mass Transf. 2014, 78, 741–754. [Google Scholar] [CrossRef]
- Sarkar, S.; Ganguly, S.; Biswas, G. Buoyancy Driven Convection of Nanofluids in an Infinitely Long Channel under the Effect of a Magnetic Field. Int. J. Heat Mass Transf. 2014, 71, 328–340. [Google Scholar] [CrossRef]
- Mahmoudi, A.H.; Pop, I.; Shahi, M. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int. J. Therm. Sci. 2012, 59, 126–140. [Google Scholar] [CrossRef]
- Basak, T.; Gunda, P.; Anandalakshmi, R. Analysis of entropy generation during natural convection in porous right-angled triangular cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 2012, 55, 4521–4535. [Google Scholar] [CrossRef]
- Basak, T.; Anandalakshmi, R.; Gunda, P. Role of entropy generation during convective thermal processing in right-angled triangular enclosures with various wall heatings. Chem. Eng. Res. Des. 2012, 90, 1779–1799. [Google Scholar] [CrossRef]
- Varol, Y.; Öztop, H.F.; Pop, I. Entropy generation due to natural convection in non-uniformly heated porous isosceles triangular enclosures at different positions. Int. J. Heat Mass Transf. 2009, 52, 1193–1205. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Dalal, A. Analysis of natural convection heat transfer and entropy generation inside porous right-angled triangular enclosure. Int. J. Heat Mass Transf. 2013, 65, 500–513. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J. Taiwan Inst. Chem. Eng. 2015, 56, 42–56. [Google Scholar] [CrossRef]
- Bejan, A. Second law analysis in heat transfer. Energy 1980, 5, 720–732. [Google Scholar] [CrossRef]
- Öztop, H.F.; Al-Salem, K. A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew. Sustain. Energy Rev. 2012, 16, 911–920. [Google Scholar] [CrossRef]
- Mahian, O.; Öztop, H.; Pop, I.; Mahmud, S.; Wongwises, S. Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature. Int. Commun. Heat Mass Transf. 2013, 44, 87–92. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Abdollahzadeh, M. Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int. J. Therm. Sci. 2012, 52, 127–136. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Al-Nimr, M.A.; Pop, I.; Sahin, A.Z.; Wongwises, S. A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 2013, 65, 514–532. [Google Scholar] [CrossRef]
- Hajialigol, N.; Fattahi, A.; Ahmadi, M.H.; Qomi, M.E.; Kakoli, E. MHD mixed convection and entropy generation in a 3-D microchannel using Al2O3-water nanofluid. J. Taiwan Inst. Chem. Eng. 2015, 46, 30–42. [Google Scholar] [CrossRef]
- Ramakrishna, D.; Basak, T.; Roy, S.; Momoniat, E. Analysis of thermal efficiency via analysis of heat flow and entropy generation during natural convection within porous trapezoidal cavities. Int. J. Heat Mass Transf. 2014, 77, 98–113. [Google Scholar] [CrossRef]
- Varol, Y. Natural convection for hot materials confined within two entrapped porous trapezoidal cavities. Int. Commun. Heat Mass Transf. 2012, 39, 282–290. [Google Scholar] [CrossRef]
- Basak, T.; Roy, S.; Ramakrishna, D.; Pandey, B.D. Analysis of heat recovery and heat transfer within entrapped porous triangular cavities via heatline approach. Int. J. Heat Mass Transf. 2010, 53, 3655–3669. [Google Scholar] [CrossRef]
- Koo, J.; Kleinstreuer, C. Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. 2005, 48, 2652–2661. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Oxford University Press: Oxford, UK, 1873. [Google Scholar]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571–581. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selimefendigil, F.; Öztop, H.F.; Abu-Hamdeh, N. Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities under the Influence of Magnetic Field. Entropy 2016, 18, 43. https://doi.org/10.3390/e18020043
Selimefendigil F, Öztop HF, Abu-Hamdeh N. Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities under the Influence of Magnetic Field. Entropy. 2016; 18(2):43. https://doi.org/10.3390/e18020043
Chicago/Turabian StyleSelimefendigil, Fatih, Hakan F. Öztop, and Nidal Abu-Hamdeh. 2016. "Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities under the Influence of Magnetic Field" Entropy 18, no. 2: 43. https://doi.org/10.3390/e18020043
APA StyleSelimefendigil, F., Öztop, H. F., & Abu-Hamdeh, N. (2016). Natural Convection and Entropy Generation in Nanofluid Filled Entrapped Trapezoidal Cavities under the Influence of Magnetic Field. Entropy, 18(2), 43. https://doi.org/10.3390/e18020043