Local Band Spectral Entropy Based on Wavelet Packet Applied to Surface EMG Signals Analysis
<p>Experimental setup. (<b>A</b>) Schematic diagram of EMG signal acquisition experiment showed the position of elbow flexion and electrodes placement; (<b>B</b>) 100° intermediate state; (<b>C</b>) 180° of elbow extension; (<b>D</b>) 40° of elbow flexion.</p> "> Figure 2
<p>The WPE and frequency band local-energy of EMG signal under three action states (40°, 100° and 180°of elbow flexion).(<b>a</b>) is WPE calculated by the WPT method. (<b>b</b>) shows the frequency band local-energy.</p> "> Figure 3
<p>Scatter diagram of WP-LBSE of EMG signals in BB muscle and TB muscle under three motor patterns (40°, 100° and 180°of elbow flexion).</p> "> Figure 4
<p>The tendency graphs of WP-LBSE in BB muscle and TB muscle in three time intervals were showed respectively. The WP-LBSEs of each subject were showed under three joint angles (40°, 100° and 180° of elbow flexion).</p> "> Figure 5
<p>Correlation between the mean WP-LBSE values and the angles. (<b>a</b>) Error bar of the average WP-LBSE values across all subjects in three time intervals under three angles; (<b>b</b>) Line graph of the mean WP-LBSE values across all subjects in three time intervals under three angles.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants
2.2. Data Recording and Experimental Paradigm
2.2.1. Experiment Paradigm
2.2.2. Data Recording
2.3. Data Analysis
2.3.1. Data Preprocessing
2.3.2. Wavelet-Packet-Based Local Band Spectral Entropy
2.4. Statistical Analysis
3. Results and Discussion
3.1. Results
3.1.1. Wavelet Packet Energy and Frequency Band Local-Energy
3.1.2. WP-LBSE Distribution
3.2. Relationship between the WP-LBSE and the Angles
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dalley, S.A.; Varol, H.A.; Goldfarb, M. A method for the control of multigrasp myoelectric prosthetic hands. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Oskoei, M.A.; Hu, H. Myoelectric control systems—A survey. Biomed. Signal Process. Control 2007, 2, 275–294. [Google Scholar] [CrossRef]
- Dipietro, L.; Ferraro, M.; Palazzolo, J.J.; Krebs, H.I.; Volpe, B.T.; Hogan, N. Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.; Narendran, K.; McBean, J.; Krebs, K.; Hughes, R. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. Am. J. Phys. Med. Rehabil. 2007, 86, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, M.; Schindler-Ivens, S.; Williams, D.; Chandran, R.; Sharma, S. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J. Electromyogr. Kinesiol. 2003, 13, 83–92. [Google Scholar] [CrossRef]
- Jenkins, N.D.; Housh, T.J.; Buckner, S.L.; Bergstrom, H.C.; Cochrane, K.C.; Smith, C.M.; Hill, E.C.; Schmidt, R.J.; Cramer, J.T. Individual Responses for Muscle Activation, Repetitions, and Volume during Three Sets to Failure of High- (80% 1RM) versus Low-Load (30% 1RM) Forearm Flexion Resistance Exercise. Sports 2015, 3, 269–280. [Google Scholar] [CrossRef]
- Zhou, P.; Barkhaus, P.E.; Zhang, X.; Rymer, W.Z. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy. J. Neural Eng. 2011, 8, 066010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Barkhaus, P.E.; Zhou, P. Multiscale entropy analysis of different spontaneous motor unit discharge patterns. IEEE J. Biomed. Health Inform. 2013, 17, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.Y.; Echeimberg, J.O.; Pompeu, J.E.; Lucareli, P.R.G.; Garbelotti, S.; Gimenes, R.O.; Apolinário, A. Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. J. Appl. Res. 2010, 10, 32–39. [Google Scholar]
- Hannaford, B.; Lehman, S. Short time Fourier analysis of the electromyogram: Fast movements and constant contraction. IEEE Trans. Biomed. Eng. 1986, 12, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Green, L.A.; McGuire, J.; Gabriel, D.A. Flexor carpi radialis surface EMG electrode placement for evoked and voluntary measures. Muscle Nerve 2015, 25, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Canal, M.R. Comparison of wavelet and short time Fourier transform methods in the analysis of EMG signals. J. Med. Syst. 2010, 34, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xiao, S. Digital filter design for peak detection of surface EMG. J. Electromyogr. Kinesiol. 2000, 10, 275–281. [Google Scholar] [CrossRef]
- Englehart, K.; Hudgins, B.; Parker, P.; Stevenson, M. Improving Myoelectric Signal Classification Using Wavelet Packets and Principal Components Analysis. In Proceedings of the 21st Annual International Conference of the IEEE Engineesing in Medicine and Biology Society, Atlanta, GA, USA, 13–16 October 1999.
- Englehart, K.; Hudgins, B.; Parker, P.A.; Stevenson, M. Classification of the myoelectric signal using time-frequency based representations. Med. Eng. Phys. 1999, 21, 431–438. [Google Scholar] [CrossRef]
- Karlsson, S.; Yu, J.; Akay, M. Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods. IEEE Trans. Biomed. Eng. 1999, 46, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Englehart, K.; Hudgin, B.; Parker, P. A wavelet-based continuous classification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2001, 48, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2003, 50, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.G.; Lin, K.-C. Wavelet packet feature extraction for vibration monitoring. IEEE Trans. Ind. Electron. 2000, 47, 650–667. [Google Scholar] [CrossRef]
- Kiatpanichagij, K.; Afzulpurkar, N. Use of supervised discretization with PCA in wavelet packet transformation-based surface electromyogram classification. Biomed. Signal Process. Control 2009, 4, 127–138. [Google Scholar] [CrossRef]
- Hu, X.; Ren, X. Identification of Surface EMG Signals Using Wavelet Packet Entropy. In Proceedings of the 6th WSEAS International Conference on Wavelet Analysis & Multirate Systems, Bucharest, Romania, 16–18 October 2006.
- Jutten, C.; Herault, J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process. 1991, 24, 1–10. [Google Scholar] [CrossRef]
- Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002; pp. 135–169. [Google Scholar]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process.Syst. 2001, 32, 556–562. [Google Scholar]
- Liu, J. Feature dimensionality reduction for myoelectric pattern recognition: A comparison study of feature selection and feature projection methods. Med. Eng. Phys. 2014, 36, 1716–1720. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.R.; Baker, K.G.; Nguyen, H.T. Dependency independency measure for posterior and anterior EMG sensors used in simple and complex finger flexion movements: Evaluation using SDICA. IEEE J. Biomed. Health Inf. 2014, 19, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Riillo, F.; Quitadamo, L.; Cavrini, F.; Gruppioni, E.; Pinto, C.; Pastò, N.C.; Sbernini, L.; Albero, L.; Saggio, G. Optimization of EMG-based hand gesture recognition: Supervised vs. unsupervised data preprocessing on healthy subjects and transradial amputees. Biomed. Signal Process. Control 2014, 14, 117–125. [Google Scholar] [CrossRef]
- Naik, G.R.; Kumar, D.K. Identification of hand and finger movements using multi run ICA of surface electromyogram. J. Med. Syst. 2012, 36, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.R.; Kumar, D.K.; Palaniswami, M. Signal processing evaluation of myoelectric sensor placement in low-level gestures: Sensitivity analysis using independent component analysis. Expert Syst. 2014, 31, 91–99. [Google Scholar] [CrossRef]
- Geethanjali, P. Comparative study of pca in classification of multichannel EMG signals. Australas. Phys. Eng. Sci. Med. 2015, 38, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.R.; Nguyen, H.T. Nonnegative matrix factorization for the identification of EMG finger movements: Evaluation using matrix analysis. IEEE J. Biomed. Health Inf. 2015, 19, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Broock, W.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A test for independence based on the correlation dimension. Econom. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Physica D 1985, 16, 285–317. [Google Scholar] [CrossRef]
- McCabe, T.J. A complexity measure. IEEE Trans. Softw. Eng. 1976, 4, 308–320. [Google Scholar] [CrossRef]
- Białynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Faure, P.; Korn, H. A new method to estimate the Kolmogorov entropy from recurrence plots: Its application to neuronal signals. Physica D 1998, 122, 265–279. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disord. 2006, 8, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol. Heart Circ. Physiol. 1994, 266, H1643–H1656. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Liang, Z.; Wang, Y.; Sun, X.; Li, D.; Voss, L.J.; Sleigh, J.W.; Hagihira, S.; Li, X. EEG entropy measures in anesthesia. Front. Comput. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods 2001, 105, 65–75. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Z.; Ren, X. Classification of surface EMG signal using relative wavelet packet energy. Comput. Methods Programs Biomed. 2005, 79, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, X.; Zou, Y.; Zhang, Z. Local power feature extraction method of frequency bands based on wavelet packet decomposition. Trans. Chin. Soc. Agric. Mach. 2004, 5, 177–180. [Google Scholar]
- Wu, B.-F.; Wang, K.-C. Robust endpoint detection algorithm based on the adaptive band-partitioning spectral entropy in adverse environments. IEEE Trans. Speech Audio Process. 2005, 13, 762–775. [Google Scholar]
- Oldfield, R.C. The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Wong, J.W. Signal-to-Noise Ratio (SNR). In Encyclopedia of Radiation Oncology; Brady, L.W., Yeager, T.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 789–790. [Google Scholar]
- Komi, P.V.; Tesch, P. EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Prochazka, A.; Ellaway, P. Sensory systems in the control of movement. Compr. Physiol. 2012, 2, 2615–2627. [Google Scholar] [PubMed]
- Granit, R. The functional role of the muscle spindles? Facts and hypotheses. Brain 1975, 98, 531–556. [Google Scholar] [CrossRef] [PubMed]
- Mattews, P. Muscle spindles and their motor control. Physiol. Rev. 1964, 44, 219–288. [Google Scholar]
- Li, S.; Zhuang, C.; Hao, M.; He, X.; Marquez, J.C.; Niu, C.M.; Lan, N. Coordinated alpha and gamma control of muscles and spindles in movement and posture. Front. Comput. Neurosci. 2015, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lan, N.; He, X. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles. Front. Comput. Neurosci. 2012, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Merletti, R.; Nazzaro, M.; Caruso, I. Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng. Med. Biol. Mag. 2001, 20, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Wang, Z.-Z.; Ren, X.-M. Characterization of surface EMG signals using improved approximate entropy. J. Zhejiang Univ. Sci. B 2006, 7, 844–848. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xie, P.; Liu, H.; Song, Y.; Du, Y. Local Band Spectral Entropy Based on Wavelet Packet Applied to Surface EMG Signals Analysis. Entropy 2016, 18, 41. https://doi.org/10.3390/e18020041
Chen X, Xie P, Liu H, Song Y, Du Y. Local Band Spectral Entropy Based on Wavelet Packet Applied to Surface EMG Signals Analysis. Entropy. 2016; 18(2):41. https://doi.org/10.3390/e18020041
Chicago/Turabian StyleChen, Xiaoling, Ping Xie, Huan Liu, Yan Song, and Yihao Du. 2016. "Local Band Spectral Entropy Based on Wavelet Packet Applied to Surface EMG Signals Analysis" Entropy 18, no. 2: 41. https://doi.org/10.3390/e18020041
APA StyleChen, X., Xie, P., Liu, H., Song, Y., & Du, Y. (2016). Local Band Spectral Entropy Based on Wavelet Packet Applied to Surface EMG Signals Analysis. Entropy, 18(2), 41. https://doi.org/10.3390/e18020041