New Derivatives on the Fractal Subset of Real-Line
<p>The finite iteration for constructing the triadic Cantor set.</p> "> Figure 2
<p>We plot the integral staircase function for triadic Cantor.</p> "> Figure 3
<p>We sketch the fractal Gamma function which is compared with the standard case.</p> "> Figure 4
<p>We plot <math display="inline"> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math> and <math display="inline"> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>S</mi> <mrow> <mi>F</mi> </mrow> <mi>α</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math> and their non-local derivative <math display="inline"> <mrow> <msub> <mrow/> <mn>0</mn> </msub> <msubsup> <mi>D</mi> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </msubsup> <mi>y</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math> and <math display="inline"> <mrow> <msub> <mrow/> <mn>0</mn> </msub> <msubsup> <mi mathvariant="script">D</mi> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </msubsup> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math>, respectively.</p> "> Figure 5
<p>We show the graph of <math display="inline"> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math> and <math display="inline"> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>S</mi> <mrow> <mi>F</mi> </mrow> <mi>α</mi> </msubsup> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math> and their non-local integral <math display="inline"> <mrow> <msub> <mrow/> <mn>0</mn> </msub> <msubsup> <mi>I</mi> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </msubsup> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math> and <math display="inline"> <mrow> <msub> <mrow/> <mn>0</mn> </msub> <msubsup> <mi mathvariant="script">I</mi> <mrow> <mi>x</mi> </mrow> <mrow> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </msubsup> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </math>, respectively.</p> "> Figure 6
<p>We present the solution of Equation (51) on the real-line and Cantor set.</p> "> Figure 7
<p>We give the graph of the solution of Equation (54) on the real-line and Cantor set.</p> "> Figure 8
<p>We plot the solution of Equation (57) on the real-line and Cantor set.</p> ">
Abstract
:1. Introduction
2. A Review of Fractional Local Derivatives
Calculus on Fractal Subset of Real-Line
3. Non-Local Fractal Derivative and Integral
4. Generalized Functions in the Non-Local Calculus on the Fractal Subset of Real-Line
4.1. Gamma Function on Fractal Subset of Real Line
4.2. Mittag-Leffler Function on Fractal Subset of Real-Line
4.3. Non-Local Laplace Transformation on Fractal Subset of Real-Line
5. Non-Local Fractal Differential Equations
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers Volumn 1 Background and Theory; Springer: Berlin, Germany, 2013. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods. Ser. on Complexity, Nonlinearity and Chaos; World Scientific: New York, NY, USA, 2012. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic: New York, NY, USA, 1999. [Google Scholar]
- Skwara, U.; Martins, J.; Ghaffari, P.; Aguiar, M.R.; Boto, J.O.; Stollenwerk, N.; Simos, T.E.; Psihoyios, G.; Tsitouras, C.; Anastassi, Z. Applications of fractional calculus to epidemiological models. AIP Conf. Proc. Am. Inst. Phys. 2012, 1479, 1339–1342. [Google Scholar]
- West, B.J.; Bologna, M.; Grigolini, P. Physics Fractal Operators; Springer: New York, NY, USA, 2003. [Google Scholar]
- Golmankhaneh, A.K. Investigations in Dynamics: With Focus on Fractional Dynamics; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2012. [Google Scholar]
- Baleanu, D.; Golmankhaneh, A.K.; Nigmatullin, R.; Golmankhaneh, A.K. Fractional Newtonian mechanics. Cent. Eur. J. Phys. 2010, 8, 120–125. [Google Scholar] [CrossRef]
- Baleanu, D.; Golmankhaneh, A.K.; Golmankhaneh, A.K. Fractional nambu mechanics. Int. J. Theor. Phys. 2009, 48, 1044–1052. [Google Scholar] [CrossRef]
- Baleanu, D.; Golmankhaneh, A.K.; Golmankhaneh, A.K.; Nigmatullin, R.R. Newtonian law with memory. Nonlinear Dyn. 2010, 60, 81–86. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions and dimensions, Chaos: An Interdisciplinary. J. Nonlinear Sci. 1996, 6, 505–513. [Google Scholar]
- Parvate, A.; Gangal, A.D. Calculus on fractal subsets of real-line I: Formulation. Fractals 2009, 17, 53–81. [Google Scholar] [CrossRef]
- Parvate, A.; Gangal, A.D. Calculus on fractal subsets of real-line II: Conjugacy with ordinary calculus. Fractals 2011, 19, 271–290. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Company: New York, NY, USA, 1977. [Google Scholar]
- Falconer, K. Techniques in Fractal Geometry; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar]
- Kigami, J. Analysis on Fractals; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012; Volume 143. [Google Scholar]
- Golmankhaneh, A.K.; Yengejeh, A.M.; Baleanu, D. On the fractional Hamilton and Lagrange mechanics. Int. J. Theor. Phys. 2012, 51, 2909–2916. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Golmankhaneh, A.K.; Baleanu, D. Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line. Int. J. Theor. Phys. 2013, 52, 4210–4217. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Golmankhaneh, A.K.; Baleanu, D. About Maxwell’s equations on fractal subsets of R3. Cent. Eur. J. Phys. 2013, 11, 863–867. [Google Scholar]
- Golmankhaneh, A.K.; Golmankhaneh, A.K.; Baleanu, D. About Schröodinger Equation on Fractals Curves Imbedding in R3. Int. J. Theor. Phys. 2015, 54, 1275–1282. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.-J. Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalili Golmankhaneh, A.; Baleanu, D. New Derivatives on the Fractal Subset of Real-Line. Entropy 2016, 18, 1. https://doi.org/10.3390/e18020001
Khalili Golmankhaneh A, Baleanu D. New Derivatives on the Fractal Subset of Real-Line. Entropy. 2016; 18(2):1. https://doi.org/10.3390/e18020001
Chicago/Turabian StyleKhalili Golmankhaneh, Alireza, and Dumitru Baleanu. 2016. "New Derivatives on the Fractal Subset of Real-Line" Entropy 18, no. 2: 1. https://doi.org/10.3390/e18020001
APA StyleKhalili Golmankhaneh, A., & Baleanu, D. (2016). New Derivatives on the Fractal Subset of Real-Line. Entropy, 18(2), 1. https://doi.org/10.3390/e18020001