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Abstract: I present in this paper some tools in symplectic and Poisson geometry in view of their
applications in geometric mechanics and mathematical physics. After a short discussion of the
Lagrangian an Hamiltonian formalisms, including the use of symmetry groups, and a presentation
of the Tulczyjew’s isomorphisms (which explain some aspects of the relations between these
formalisms), I explain the concept of manifold of motions of a mechanical system and its use,
due to J.-M. Souriau, in statistical mechanics and thermodynamics. The generalization of the notion
of thermodynamic equilibrium in which the one-dimensional group of time translations is replaced
by a multi-dimensional, maybe non-commutative Lie group, is fully discussed and examples of
applications in physics are given.
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1. Introduction

1.1. Contents of the Paper, Sources and Further Reading

This paper presents tools in symplectic and Poisson geometry in view of their application in
geometric mechanics and mathematical physics. The Lagrangian formalism and symmetries of
Lagrangian systems are discussed in Sections 2 and 3, the Hamiltonian formalism and symmetries
of Hamiltonian systems in Sections 4 and 5. Section 6 introduces the concepts of Gibbs state
and of thermodynamic equilibrium of a mechanical system, and presents several examples.
For a monoatomic classical ideal gas, eventually in a gravity field, or a monoatomic relativistic
gas the Maxwell–Boltzmann and Maxwell–Jüttner probability distributions are derived. The Dulong
and Petit law which governs the specific heat of solids is obtained. Finally Section 7 presents the
generalization of the concept of Gibbs state, due to Jean-Marie Souriau, in which the group of time
translations is replaced by a (multi-dimensional and eventually non-Abelian) Lie group.

Several books [1–11] discuss, much more fully than in the present paper, the contents of
Sections 2–5. The interested reader is referred to these books for detailed proofs of results whose
proofs are only briefly sketched here. The recent paper [12] contains detailed proofs of most results
presented here in Sections 4 and 5.

The main sources used for Sections 6 and 7 are the book and papers by Jean-Marie Souriau [13–17]
and the beautiful small book by Mackey [18].

The Euler–Poincaré equation, which is presented with Lagrangian symmetries at the end of
Section 3, is not really related to symmetries of a Lagrangian system, since the Lie algebra which acts
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on the configuration space of the system is not a Lie algebra of symmetries of the Lagrangian. Moreover
in its intrinsic form that equation uses the concept of Hamiltonian momentum map presented later,
in Section 5. Since the Euler–Poincaré equation is not used in the following sections, the reader can
skip the corresponding subsection at his or her first reading.

1.2. Notations

The notations used are more or less those generally used now in differential geometry. The tangent
and cotangent bundles to a smooth manifold M are denoted by TM and T∗M, respectively, and their
canonical projections by τM : TM→ M and πM : T∗M→ M. The vector spaces of k-multivectors and
k-forms on M are denoted by Ak(M) and Ωk(M), respectively, with k ∈ Z and, of course, Ak(M) = {0}
and Ωk(M) = {0} if k < 0 and if k > dim M, k-multivectors and k-forms being skew-symmetric.
The exterior algebras of multivectors and forms of all degrees are denoted by A(M) = ⊕k Ak(M)

and Ω(M) = ⊕kΩk(M), respectively. The exterior differentiation operator of differential forms on a
smooth manifold M is denoted by d : Ω(M) → Ω(M). The interior product of a differential form
η ∈ Ω(M) by a vector field X ∈ A1(M) is denoted by i(X)η.

Let f : M → N be a smooth map defined on a smooth manifold M, with values in another
smooth manifold N. The pull-back of a form η ∈ Ω(N) by a smooth map f : M → N is denoted by
f ∗η ∈ Ω(M).

A smooth, time-dependent vector field on the smooth manifold M is a smooth map X : R×M→ TM
such that, for each t ∈ R and x ∈ M, X(t, x) ∈ Tx M, the vector space tangent to M at x. When, for any
x ∈ M, X(t, x) does not depend on t ∈ R, X is a smooth vector field in the usual sense, i.e., an element
in A1(M). Of course a time-dependent vector field can be defined on an open subset of R×M instead
than on the whole R×M. It defines a differential equation

dϕ(t)
dt

= X
(
t, ϕ(t)

)
, (1)

said to be associated to X. The (full) flow of X is the map ΨX , defined on an open subset of R×R×M,
taking its values in M, such that for each t0 ∈ R and x0 ∈ M the parametrized curve t 7→ ΨX(t, t0, x0)

is the maximal integral curve of Equation (1) satisfying Ψ(t0, t0, x0) = x0. When t0 and t ∈ R are
fixed, the map x0 7→ ΨX(t, t0, x0) is a diffeomorphism, defined on an open subset of M (which may
be empty) and taking its values in another open subset of M, denoted by ΨX

(t, t0)
. When X is in fact a

vector field in the usual sense (not dependent on time), ΨX
(t, t0)

only depends on t− t0. Instead of the

full flow of X we can use its reduced flow ΦX , defined on an open subset of R×M and taking its values
in M, related to the full flow ΨX by

ΦX(t, x0) = ΨX(t, 0, x0) , ΨX(t, t0, x0) = ΦX(t− t0, x0) .

For each t ∈ R, the map x0 7→ ΦX(t, x0) = ΨX(t, 0, x0) is a diffeomorphism, denoted by ΦX
t ,

defined on an open subset of M (which may be empty) onto another open subset of M.
When f : M → N is a smooth map defined on a smooth manifold M, with values in another

smooth manifold N, there exists a smooth map T f : TM→ TN called the prolongation of f to vectors,
which for each fixed x ∈ M linearly maps Tx M into Tf (x)N. When f is a diffeomorphism of M onto N,
T f is an isomorphism of TM onto TN. That property allows us to define the canonical lifts of a vector
field X in A1(M) to the tangent bundle TM and to the cotangent bundle T∗M. Indeed, for each t ∈ R,
ΦX

t is a diffeomorphism of an open subset of M onto another open subset of M. Therefore TΦX
t is a

diffeomorphism of an open subset of TM onto another open subset of TM. It turns out that when t
takes all possible values in R the set of all diffeomorphisms TΦX

t is the reduced flow of a vector field
X on TM, which is the canonical lift of X to the tangent bundle TM.

Similarly, the transpose (TΦX
−t)

T of TΦX
−t is a diffeomorphism of an open subset of the cotangent

bundle T∗M onto another open subset of T∗M, and when t takes all possible values in R the set of all
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diffeomorphisms (TΦX
−t)

T is the reduced flow of a vector field X̂ on T∗M, which is the canonical lift of
X to the cotangent bundle T∗M.

The canonical lifts of a vector field to the tangent and cotangent bundles are used in
Sections 3 and 5. They can be defined too for time-dependent vector fields.

2. The Lagrangian Formalism

2.1. The Configuration Space and the Space of Kinematic States

The principles of mechanics were stated by the great English mathematician Isaac Newton
(1642–1727) in his book Philosophia Naturalis Principia Mathematica published in 1687 [19]. On this basis,
a little more than a century later, Joseph Louis Lagrange (1736–1813) in his book Mécanique analytique [20]
derived the equations (today known as the Euler–Lagrange equations) which govern the motion of a
mechanical system made of any number of material points or rigid material bodies interacting between
them by very general forces, and eventually submitted to external forces.

In modern mathematical language, these equations are written on the configuration space and
on the space of kinematic states of the considered mechanical system. The configuration space is
a smooth n-dimensional manifold N whose elements are all the possible configurations of the
system (a configuration being the position in space of all parts of the system). The space of
kinematic states is the tangent bundle TN to the configuration space, which is 2n-dimensional.
Each element of the space of kinematic states is a vector tangent to the configuration space at one of its
elements, i.e., at a configuration of the mechanical system, which describes the velocity at which this
configuration changes with time. In local coordinates a configuration of the system is determined by the
n coordinates x1, . . . , xn of a point in N, and a kinematic state by the 2n coordinates x1, . . . , xn, v1, . . . vn

of a vector tangent to N at some element in N.

2.2. The Euler–Lagrange Equations

When the mechanical system is conservative, the Euler–Lagrange equations involve a single real
valued function L called the Lagrangian of the system, defined on the product of the real line R (spanned
by the variable t representing the time) with the manifold TN of kinematic states of the system. In local
coordinates, the Lagrangian L is expressed as a function of the 2n + 1 variables, t, x1, . . . , xn, v1, . . . , vn

and the Euler–Lagrange equations have the remarkably simple form

d
dt

(
∂L
∂vi

(
t, x(t), v(t)

))
− ∂L

∂xi

(
t, x(t), v(t)

)
= 0 , 1 ≤ i ≤ n ,

where x(t) stands for x1(t), . . . , xn(t) and v(t) for v1(t), . . . , vn(t) with, of course,

vi(t) =
dxi(t)

dt
, 1 ≤ i ≤ n .

2.3. Hamilton’s Principle of Stationary Action

The great Irish mathematician William Rowan Hamilton (1805–1865) observed [21,22] that the
Euler–Lagrange equations can be obtained by applying the standard techniques of Calculus of Variations,
due to Leonhard Euler (1707–1783) and Joseph Louis Lagrange, to the action integral (Lagrange observed
that fact before Hamilton, but in the last edition of his book he chose to derive the Euler–Lagrange
equations by application of the principle of virtual works, using a very clever evaluation of the virtual
work of inertial forces for a smooth infinitesimal variation of the motion).

IL(γ) =
∫ t1

t0

L
(
t, x(t), v(t)

)
dt , with v(t) =

dx(t)
dt

,
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where γ : [t0, t1] → N is a smooth curve in N parametrized by the time t. These equations express
the fact that the action integral IL(γ) is stationary with respect to any smooth infinitesimal variation
of γ with fixed end-points

(
t0, γ(t0)

)
and

(
t1, γ(t1)

)
. This fact is today called Hamilton’s principle of

stationary action. The reader interested in Calculus of Variations and its applications in mechanics and
physics is referred to the books [23–25].

2.4. The Euler-Cartan Theorem

The Lagrangian formalism is the use of Hamilton’s principle of stationary action for the derivation
of the equations of motion of a system. It is widely used in mathematical physics, often with
more general Lagrangians involving more than one independent variable and higher order partial
derivatives of dependent variables. For simplicity I will consider here only the Lagrangians of (maybe
time-dependent) conservative mechanical systems.

An intrinsic geometric expression of the Euler–Lagrange equations, wich does not use local
coordinates, was obtained by the great French mathematician Élie Cartan (1869–1951). Let us introduce
the concepts used by the statement of this theorem.

Definition 1. Let N be the configuration space of a mechanical system and let its tangent bundle TN be the
space of kinematic states of that system. We assume that the evolution with time of the state of the system is
governed by the Euler–Lagrange equations for a smooth, maybe time-dependent Lagrangian L : R× TN → R.

1. The cotangent bundle T∗N is called the phase space of the system.
2. The map LL : R× TN → T∗N

LL(t, v) = dvertL(t, v) , t ∈ R , v ∈ TN ,

where dvertL(t, v) is the vertical differential of L at (t, v), i.e., the differential at v of the the map
w 7→ L(t, w), with w ∈ τ−1

N
(
τN(v)

)
, is called the Legendre map associated to L.

3. The map EL : R× TN → R given by

EL(t, v) = 〈LL(t, v), v
〉
− L(t, v) , t ∈ R , v ∈ TN ,

is called the the energy function associated to L.
4. The 1-form on R× TN

v̂L = L∗LθN − EL(t, v)dt ,

where θN is the Liouville 1-form on T∗N, is called the Euler–Poincaré 1-form.

Theorem 1 (Euler-Cartan Theorem). A smooth curve γ : [t0, t1]→ N parametrized by the time t ∈ [t0, t1]

is a solution of the Euler–Lagrange equations if and only if, for each t ∈ [t0, t1] the derivative with respect to t of

the map t 7→
(

t,
dγ(t)

dt

)
belongs to the kernel of the 2-form dv̂L, in other words if and only if

i
(

d
dt

(
t,

dγ(t)
dt

))
dv̂L

(
t,

dγ(t)
dt

)
= 0 .

The interested reader will find the proof of that theorem in [26], (Theorem 2.2, Chapter IV, p. 262)
or, for hyper-regular Lagrangians (an additional assumption which in fact, is not necessary) in [27],
Chapter IV, Theorem 2.1, p. 167.

Remark 1. In his book [14], Jean-Marie Souriau uses a slightly different terminology: for him the
odd-dimensional space R× TN is the evolution space of the system, and the exact 2-form dv̂L on that space is
the Lagrange form. He defines that 2-form in a setting more general than that of the Lagrangian formalism.
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3. Lagrangian Symmetries

3.1. Assumptions and Notations

In this section N is the configuration space of a conservative Lagrangian mechanical system with
a smooth, maybe time dependent Lagrangian L : R× TN → R. Let v̂L be the Poincaré-Cartan 1-form
on the evolution space R× TN.

Several kinds of symmetries can be defined for such a system. Very often, they are special cases
of infinitesimal symmetries of the Poincaré-Cartan form, which play an important part in the famous
Noether theorem.

Definition 2. An infinitesimal symmetry of the Poincaré-Cartan form v̂L is a vector field Z on R× TN
such that

L(Z)v̂L = 0 ,

L(Z) denoting the Lie derivative of differential forms with respect to Z.

Example 1.

1. Let us assume that the Lagrangian L does not depend on the time t ∈ R, i.e., is a smooth function on TN.

The vector field on R× TN denoted by
∂

∂t
, whose projection on R is equal to 1 and whose projection on

TN is 0, is an infinitesimal symmetry of v̂L.
2. Let X be a smooth vector field on N and X be its canonical lift to the tangent bundle TN. We still assume

that L does not depend on the time t. Moreover we assume that X is an infinitesimal symmetry of the
Lagrangian L, i.e., that L(X)L = 0. Considered as a vector field on R× TN whose projection on the factor
R is 0, X is an infinitesimal symmetry of v̂L.

3.2. The Noether Theorem in Lagrangian Formalism

Theorem 2 (E. Noether’s Theorem in Lagrangian Formalism). Let Z be an infinitesimal symmetry of the
Poincaré-Cartan form v̂L. For each possible motion γ : [t0, t1] → N of the Lagrangian system, the function

i(Z)v̂L, defined on R× TN, keeps a constant value along the parametrized curve t 7→
(

t,
dγ(t)

dt

)
.

Proof. Let γ : [t0, t1]→ N be a motion of the Lagrangian system, i.e., a solution of the Euler–Lagrange
equations. The Euler-Cartan Theorem 1 proves that, for any t ∈ [t0, t1],

i
(

d
dt

(
t,

dγ(t)
dt

))
dv̂L

(
t,

dγ(t)
dt

)
= 0 .

Since Z is an infinitesimal symmetry of v̂L,

L(Z)v̂L = 0 .

Using the well known formula relating the Lie derivative, the interior product and the
exterior derivative

L(Z) = i(Z) ◦ d + d ◦ i(Z)
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we can write

d
dt

(
i(Z)ṽL

(
t,

dγ(t)
dt

))
=

〈
di(Z)v̂L,

d
dt

(
t,

dγ(t)
dt

)〉
= −

〈
i(Z)dv̂L,

d
dt

(
t,

dγ(t)
dt

)〉
= 0.

Example 2. When the Lagrangian L does not depend on time, application of Emmy Noether’s theorem to

the vector field
∂

∂t
shows that the energy EL remains constant during any possible motion of the system,

since i
(

∂

∂t

)
v̂L = −EL.

Remark 2.

1. Theorem 2 is due to the German mathematician Emmy Noether (1882–1935), who proved it under much
more general assumptions than those used here. For a very nice presentation of Emmy Noether’s theorems
in a much more general setting and their applications in mathematical physics, interested readers are
referred to the very nice book by Yvette Kosmann-Schwarzbach [28].

2. Several generalizations of the Noether theorem exist. For example, if instead of being an infinitesimal
symmetry of v̂L, i.e., instead of satisfying L(Z)v̂L = 0 the vector field Z satisfies

L(Z)v̂L = d f ,

where f : R× TM→ R is a smooth function, which implies of course L(Z)(dv̂L) = 0, the function

i(Z)v̂L − f

keeps a constant value along t 7→
(

t,
dγ(t)

dt

)
.

3.3. The Lagrangian Momentum Map

The Lie bracket of two infinitesimal symmetries of v̂L is too an infinitesimal symmetry of v̂L.
Let us therefore assume that there exists a finite-dimensional Lie algebra of vector fields on R× TN
whose elements are infinitesimal symmetries of v̂L.

Definition 3. Let ψ : G → A1(R× TN) be a Lie algebras homomorphism of a finite-dimensional real Lie
algebra G into the Lie algebra of smooth vector fields on R× TN such that, for each X ∈ G, ψ(X) is an
infinitesimal symmetry of v̂L. The Lie algebras homomorphism ψ is said to be a Lie algebra action on R× TN
by infinitesimal symmetries of v̂L. The map KL : R× TN → G∗, which takes its values in the dual G∗ of the
Lie algebra G, defined by〈

KL(t, v), X
〉
= i
(
ψ(X)

)
v̂L(t, v) , X ∈ G , (t, v) ∈ R× TN ,

is called the Lagrangian momentum of the Lie algebra action ψ.

Corollary 1 (of E. Noether’s Theorem). Let ψ : G → A1(R× TM) be an action of a finite-dimensional real
Lie algebra G on the evolution space R× TN of a conservative Lagrangian system, by infinitesimal symmetries
of the Poincaré-Cartan form v̂L. For each possible motion γ : [t0, t1] → N of that system, the Lagrangian

momentum map KL keeps a constant value along the parametrized curve t 7→
(

t,
dγ(t)

dt

)
.
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Proof. Since for each X ∈ G the function (t, v) 7→
〈
KL(t, v), X

〉
keeps a constant value along

the parametrized curve t 7→
(

t,
dγ(t)

dt

)
, the map KL itself keeps a constant value along that

parametrized curve.

Example 3. Let us assume that the Lagrangian L does not depend explicitly on the time t and is invariant by
the canonical lift to the tangent bundle of the action on N of the six-dimensional group of Euclidean diplacements
(rotations and translations) of the physical space. The corresponding infinitesimal action of the Lie algebra of
infinitesimal Euclidean displacements (considered as an action on R× TN, the action on the factor R being
trivial) is an action by infinitesimal symmetries of v̂L. The six components of the Lagrangian momentum map
are the three components of the total linear momentum and the three components of the total angular momentum.

Remark 3. These results are valid without any assumption of hyper-regularity of the Lagrangian.

3.4. The Euler–Poincaré Equation

In a short Note [29] published in 1901, the great french mathematician Henri Poincaré (1854–1912)
proposed a new formulation of the equations of mechanics.

Let N be the configuration manifold of a conservative Lagrangian system, with a smooth
Lagrangian L : TN → R which does not depend explicitly on time. Poincaré assumes that there
exists an homomorphism ψ of a finite-dimensional real Lie algebra G into the Lie algebra A1(N) of
smooth vector fields on N, such that for each x ∈ N, the values at x of the vector fields ψ(X), when X
varies in G, completely fill the tangent space Tx N. The action ψ is then said to be locally transitive.

Of course these assumptions imply dimG ≥ dim N.
Under these assumptions, Henri Poincaré proved that the equations of motion of the Lagrangian

system could be written on N × G or on N × G∗, where G∗ is the dual of the Lie algebra G, instead of
on the tangent bundle TN. When dimG = dim N (which can occur only when the tangent bundle
TN is trivial) the obtained equation, called the Euler–Poincaré equation, is perfectly equivalent to the
Euler–Lagrange equations and may, in certain cases, be easier to use. But when dimG > dim N,
the system made by the Euler–Poincaré equation is underdetermined.

Let γ : [t0, t1] → N be a smooth parametrized curve in N. Poincaré proves that there exists a
smooth curve V : [t0, t1]→ G in the Lie algebra G such that, for each t ∈ [t0, t1],

ψ
(
V(t)

)(
γ(t)

)
=

dγ(t)
dt

. (2)

When dimG > dim N the smooth curve V in G is not uniquely determined by the smooth curve
γ in N. However, instead of writing the second-order Euler–Lagrange differential equations on TN
satisfied by γ when this curve is a possible motion of the Lagrangian system, Poincaré derives a first
order differential equation for the curve V and proves that it is satisfied, together with Equation (2), if and
only if γ is a possible motion of the Lagrangian system.

Let ϕ : N × G → TN and L : N × G → R be the maps

ϕ(x, X) = ψ(X)(x) , L(x, X) = L ◦ ϕ(x, X) .

We denote by d1L : N × G → T∗N and by d2L : N × G → G∗ the partial differentials of
L : N × G → R with respect to its first variable x ∈ N and with respect to its second variable X ∈ G.

The map ϕ : N×G → TN is a surjective vector bundles morphism of the trivial vector bundle N×G
into the tangent bundle TN. Its transpose ϕT : T∗N → N × G∗ is therefore an injective vector bundles
morphism, which can be written

ϕT(ξ) =
(
πN(ξ), J(ξ)

)
,
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where πN : T∗N → N is the canonical projection of the cotangent bundle and J : T∗N → G∗ is a
smooth map whose restriction to each fibre T∗x N of the cotangent bundle is linear, and is the transpose
of the map X 7→ ϕ(x, X) = ψ(X)(x).

Remark 4. The homomorphism ψ of the Lie algebra G into the Lie algebra A1(N) of smooth vector fields on N
is an action of that Lie algebra, in the sense defined below Definition 11. That action can be canonically lifted into
a Hamiltonian action of G on T∗N, endowed with its canonical symplectic form dθN Definition 13. The map J
is in fact a Hamiltonian momentum map for that Hamiltonian action Proposition 5.

Let LL = dvertL : TN → T∗N be the Legendre map defined in Definition 1.

Theorem 3 (Euler–Poincaré Equation). With the above defined notations, let γ : [t0, t1]→ N be a smooth
parametrized curve in N and V : [t0, t1]→ G be a smooth parametrized curve such that, for each t ∈ [t0, t1],

ψ
(
V(t)

)(
γ(t)

)
=

dγ(t)
dt

. (3)

The curve γ is a possible motion of the Lagrangian system if and only if V satisfies the equation(
d
dt
− ad∗V(t)

)(
J ◦ LL ◦ ϕ

(
γ(t), V(t)

))
− J ◦ d1L

(
γ(t), V(t)

)
= 0 . (4)

The interested reader will find a proof of that theorem in local coordinates in the original Note by
Poincaré [29]. More intrinsic proofs can be found in [12,30]. Another proof is possible, in which that
theorem is deduced from the Euler-Cartan Theorem 1.

Remark 5. Equation (3) is called the compatibility condition and Equation (4) is the Euler–Poincaré equation.
It can be written under the equivalent form(

d
dt
− ad∗V(t)

)(
d2L

(
γ(t), V(t)

))
− J ◦ d1L

(
γ(t), V(t)

)
= 0 . (5)

Examples of applications of the Euler–Poincaré equation can be found in [5,6,12,30] and, for an
application in thermodynamics, [31].

4. The Hamiltonian Formalism

The Lagrangian formalism can be applied to any smooth Lagrangian. Its application yields
second order differential equations on R× N (in local coordinates, the Euler–Lagrange equations) which in
general are not solved with respect to the second order derivatives of the unknown functions with respect to
time. The classical existence and unicity theorems for the solutions of differential equations (such as
the Cauchy-Lipschitz theorem) therefore cannot be applied to these equations.

Under the additional assumption that the Lagrangian is hyper-regular, a very clever change of
variables discovered by William Rowan Hamilton (Lagrange obtained however Hamilton’s equations
before Hamilton, but only in a special case, for the slow “variations of constants” such as the orbital
parameters of planets in the solar system [32,33]). Hamilton [21,22] allows a new formulation of these
equations in the framework of symplectic geometry. The Hamiltonian formalism discussed below is the
use of these new equations. It was later generalized independently of the Lagrangian formalism.
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4.1. Hyper-Regular Lagrangians

Assumptions Made in this Section

We consider in this section a smooth, maybe time-dependent Lagrangian L : R× TN → R, which
is such that the Legendre map Definition 1 LL : R× TN → T∗N satisfies the following property:
for each fixed value of the time t ∈ R, the map v 7→ LL(t, v) is a smooth diffeomorphism of the
tangent bundle TN onto the cotangent bundle T∗N. An equivalent assumption is the following:
the map (idR,LL) : (t, v) 7→

(
t,LL(t, v)

)
is a smooth diffeomorphism of R × TN onto R × T∗N.

The Lagrangian L is then said to be hyper-regular. The equations of motion can be written on R× T∗N
instead of R× TN.

Definition 4. Under the assumption Section 4.1, the function HL : R× T∗N → R given by

HL(t, p) = EL ◦ (idR,LL)
−1(t, p) , t ∈ R , p ∈ T∗N ,

(EL : R× TN → R being the energy function defined in Definition 1) is called the Hamiltonian associated to
the hyper-regular Lagrangian L.

The 1-form defined on R× T∗N

v̂HL = θN − HLdt ,

where θN is the Liouville 1-form on T∗N, is called the Poincaré-Cartan 1-form in the Hamiltonian formalism.

Remark 6. The Poincaré-Cartan 1-form v̂L on R × TN, defined in Definition 1, is the pull-back, by the
diffeomorphism (idR,LL) : R× TN → R× T∗N, of the Poincaré-Cartan 1-form v̂HL in the Hamiltonian
formalism on R× T∗N defined above.

4.2. Presymplectic Manifolds

Definition 5. A presymplectic form on a smooth manifold M is a 2-form ω on M which is closed, i.e., such that
dω = 0. A manifold M equipped with a presymplectic form ω is called a presymplectic manifold and denoted
by (M, ω). The kernel ker ω of a presymplectic form ω defined on a smooth manifold M is the set of vectors
v ∈ TM such that i(v)ω = 0.

Remark 7. A symplectic form ω on a manifold M is a presymplectic form which, moreover, is non-degenerate,
i.e., such that for each x ∈ M and each non-zero vector v ∈ Tx M, there exists another vector w ∈ Tx M such
that ω(x)(v, w) 6= 0. Or in other words, a presymplectic form ω whose kernel is the set of null vectors.

The kernel of a presymplectic form ω on a smooth manifold M is a vector sub-bundle of TM if and only if
for each x ∈ M, the vector subspace Tx M of vectors v ∈ Tx M which satisfy i(v)ω = 0 is of a fixed dimension,
the same for all points x ∈ M. A presymplectic form which satisfies that condition is said to be of constant rank.

Proposition 1. Let ω be a presymplectic form of constant rank Remark 7 on a smooth manifold M. The kernel
ker ω of ω is a completely integrable vector sub-bundle of TM, which defines a foliation Fω of M into connected
immersed submanifolds which, at each point of M, have the fibre of ker ω at that point as tangent vector space.

We now assume in addition that this foliation is simple, i.e., such that the set of leaves of Fω, denoted by
M/ ker ω, has a smooth manifold structure for which the canonical projection p : M → M/ ker ω

(which associates to each point x ∈ M the leaf which contains x) is a smooth submersion. There exists
on M/ ker ω a unique symplectic form ωr such that

ω = p∗ωr .
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Proof. Since dω = 0, the fact that ker ω is completely integrable is an immediate consequence of the
Frobenius’ theorem ([27], Chapter III, Theorem 5.1, p. 132). The existence and unicity of a symplectic
form ωr on M/ ker ω such that ω = p∗ωr results from the fact that M/ ker ω is built by quotienting M
by the kernel of ω.

Presymplectic Manifolds in Mechanics

Let us go back to the assumptions and notations of Section 4.1. We have seen in Remark 6 that the
Poincaré-Cartan 1-form in Hamiltonian formalism v̂HL on R× T∗N and the Poincaré-Cartan 1-form
in Lagrangian formalism v̂L on R× TN are related by

v̂L = (idR,LL)
∗v̂HL .

Their exterior differentials dv̂L and dv̂HL both are presymplectic 2-forms on the odd-dimensional
manifolds R × TN and R × T∗N, respectively. At any point of these manifolds, the kernels of
these closed 2-forms are one-dimensional. They therefore Proposition 1 determine foliations into
smooth curves of these manifolds. The Euler-Cartan Theorem 1 shows that each of these curves is a
possible motion of the system, described either in the Lagrangian formalism, or in the Hamiltonian
formalism, respectively.

The set of all possible motions of the system, called by Jean-Marie Souriau the manifold of motions
of the system, is described by the quotient (R× TN)/ ker dv̂L in the Lagrangian formalism, and by
the quotient (R× T∗N)/ ker dv̂HL in the Hamiltonian formalism. Both are (maybe non-Hausdorff)
symplectic manifolds, the projections on these quotient manifolds of the presymplectic forms dv̂L and
dv̂HL both being symplectic forms. Of course the diffeomorphism (idR,LL) : R× TN → R× T∗N
projects onto a symplectomorphism between the Lagrangian and Hamiltonian descriptions of the
manifold of motions of the system.

4.3. The Hamilton Equation

Proposition 2. Let N be the configuration manifold of a Lagrangian system whose Lagrangian
L : R× TN → R, maybe time-dependent, is smooth and hyper-regular, and HL : R × T∗N → R be the
associated Hamiltonian Definition 4. Let ϕ : [t0, t1] → N be a smooth curve parametrized by the time
t ∈ [t0, t1], and let ψ : [t0, t1]→ T∗N be the parametrized curve in T∗N

ψ(t) = LL

(
t,

dγ(t)
dt

)
, t ∈ [t0, t1] ,

where LL : R× TN → T∗N is the Legendre map Definition 1.
The parametrized curve t 7→ γ(t) is a motion of the system if and only if the parametrized curve t 7→ ψ(t)

satisfies the equatin, called the Hamilton equation,

i
(

dψ(t)
dt

)
dθN = −dHL t ,

where dHL t = dHL −
∂HL
∂t

dt is the differential of the function HL t : T∗N → R in which the time t is
considered as a parameter with respect to which there is no differentiation.

When the parametrized curve ψ satisfies the Hamilton equation stated above, it satisfies too the equation,
called the energy equation

d
dt

(
HL
(
t, ψ(t)

))
=

∂HL
∂t
(
t, ψ(t)

)
.

Proof. These results directly follow from the Euler-Cartan Theorem 1.
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Remark 8. The 2-form dθN is a symplectic form on the cotangent bundle T∗N, called its canonical symplectic
form. We have shown that when the Lagrangian L is hyper-regular, the equations of motion can be written in
three equivalent manners:

1. as the Euler–Lagrange equations on R× TM,
2. as the equations given by the kernels of the presymplectic forms dv̂L or dv̂HL which determine the

foliations into curves of the evolution spaces R× TM in the Lagrangian formalism, or R× T∗M in the
Hamiltonian formalism,

3. as the Hamilton equation associated to the Hamiltonian HL on the symplectic manifold (T∗N, dθN),
often called the phase space of the system.

4.3.1. The Tulczyjew Isomorphisms

Around 1974, Tulczyjew [34,35] discovered (βN was probably known long before 1974, but I
believe that αN , much more hidden, was noticed by Tulczyjew for the first time) two remarkable vector
bundles isomorphisms αN : TT∗N → T∗TN and βN : TT∗N → T∗T∗N.

The first one αN is an isomorphism of the bundle (TT∗N, TπN , TN) onto the bundle
(T∗TN, πTN , TN), while the second βN is an isomorphism of the bundle (TT∗N, τT∗N , T∗N) onto
the bundle (T∗T∗N, πT∗N , T∗N). The diagram below is commutative.

T∗T∗N

πT∗N
��

TT∗N
βNoo

τT∗Nyy TπN $$

αN // T∗TN

πTN
��

T∗N

πN
%%

TN

τN
yy

N

Since they are the total spaces of cotangent bundles, the manifolds T∗TN and T∗T∗N are endowed
with the Liouville 1-forms θTN and θT∗N , and with the canonical symplectic forms dθTN and dθT∗N ,
respectively. Using the isomorphisms αN and βN , we can therefore define on TT∗N two 1-forms α∗NθTN
and β∗NθT∗N , and two symplectic 2-forms α∗N(dθTN) and β∗N(dθT∗N). The very remarkable property of
the isomorphisms αN and βN is that the two symplectic forms so obtained on TT∗N are equal:

α∗N(dθTN) = β∗N(dθT∗N) .

The 1-forms α∗NθTN and β∗NθT∗N are not equal, their difference is the differential of a
smooth function.

4.3.2. Lagrangian Submanifolds

In view of applications to implicit Hamiltonian systems, let us recall here that a Lagrangian
submanifold of a symplectic manifold (M, ω) is a submanifold N whose dimension is half the
dimension of M, on which the form induced by the symplectic form ω is 0.

Let L : TN → R and H : T∗N → R be two smooth real valued functions, defined on TN
and on T∗N, respectively. The graphs dL(TN) and dH(T∗N) of their differentials are Lagrangian
submanifolds of the symplectic manifolds (T∗TN, dθTN) and (T∗T∗N, dθT∗N). Their pull-backs
α−1

N
(
dL(TN)

)
and β−1

N
(
dH(T∗N)

)
by the symplectomorphisms αN and βN are therefore two

Lagrangian submanifolds of the manifold TT∗N endowed with the symplectic form α∗N(dθTN),
which is equal to the symplectic form β∗N(dθT∗N).

The following theorem enlightens some aspects of the relationships between the Hamiltonian and
the Lagrangian formalisms.
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Theorem 4 (W. M. Tulczyjew). With the notations specified above Section 4.3.2, let XH : T∗N → TT∗N be
the Hamiltonian vector field on the symplectic manifold (T∗N, dθN) associated to the Hamiltonian H : T∗N → R,
defined by i(XH)dθN = −dH. Then

XH(T∗N) = β−1
N
(
dH(T∗N)

)
.

Moreover, the equality
α−1

N
(
dL(TN)

)
= β−1

N
(
dH(T∗N)

)
holds if and only if the Lagrangian L is hyper-regular and such that

dH = d
(
EL ◦ L−1

L
)

,

where LL : TN → T∗N is the Legendre map and EL : TN → R the energy associated to the Lagrangian L.

The interested reader will find the proof of that theorem in the works of Tulczyjew ([34,35]).
When L is not hyper-regular, α−1

N
(
dL(TN)

)
still is a Lagrangian submanifold of the symplectic

manifold
(
TT∗N, α∗N(dθTN)

)
, but it is no more the graph of a smooth vector field XH defined on T∗N.

Tulczyjew proposes to consider this Lagrangian submanifold as an implicit Hamilton equation on T∗N.
These results can be extended to Lagrangians and Hamiltonians which may depend on time.

4.4. The Hamiltonian Formalism on Symplectic and Poisson Manifolds

4.4.1. The Hamilton Formalism on Symplectic Manifolds

In pure mathematics as well as in applications of mathematics to mechanics and physics,
symplectic manifolds other than cotangent bundles are encountered. A theorem due to the french
mathematician Gaston Darboux (1842–1917) asserts that any symplectic manifold (M, ω) is of even
dimension 2n and is locally isomorphic to the cotangent bundle to a n-dimensional manifold: in a
neighbourhood of each of its point there exist local coordinates (x1, . . . , xn, p1, . . . , pn), called Darboux
coordinates with which the symplectic form ω is expressed exactly as the canonical symplectic form of
a cotangent bundle:

ω =
n

∑
i=1

dpi ∧ dxi .

Let (M, ω) be a symplectic manifold and H : R× M → R a smooth function, said to be a
time-dependent Hamiltonian. It determines a time-dependent Hamiltonian vector field XH on M, such that

i(XH)ω = −dHt ,

Ht : M→ R being the function H in which the variable t is considered as a parameter with respect to
which no differentiation is made.

The Hamilton equation determined by H is the differential equation

dψ(t)
dt

= XH
(
t, ψ(t)

)
.

The Hamiltonian formalism can therefore be applied to any smooth, maybe time dependent
Hamiltonian on M, even when there is no associated Lagrangian.

The Hamiltonian formalism is not limited to symplectic manifolds: it can be applied, for example,
to Poisson manifolds [36], contact manifolds and Jacobi manifolds [37]. For simplicity I will consider only
Poisson manifolds. Readers interested in Jacobi manifolds and their generalizations are referred to the
papers by Lichnerowicz quoted above and to the very important paper by Kirillov [38].
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Definition 6. A Poisson manifold is a smooth manifold P whose algebra of smooth functions C∞(P,R) is
endowed with a bilinear composition law, called the Poisson bracket, which associates to any pair ( f , g) of smooth
functions on P another smooth function denoted by { f , g}, that composition satisfying the three properties

1. it is skew-symmetric,
{g, f} = −{ f , g},

2. it satisfies the Jacobi identity{
f , {g, h}

}
+
{

g, {h, f}
}
+
{

h, { f , g}
}
= 0,

3. it satisfies the Leibniz identity
{ f , gh} = { f , g}h + g{ f , h}.

Example 4.

1. On the vector space of smooth functions defined on a symplectic manifold (M, ω), there exists a composition
law, called the Poisson bracket, which satisfies the properties stated in Definition 6. Let us recall briefly its
definition. The symplectic form ω allows us to associate, to any smooth function f ∈ C∞(M,R), a smooth
vector field X f ∈ A1(M,R), called the Hamiltonian vector field associated to f , defined by

i(X f )ω = −d f .

The Poisson bracket { f , g} of two smooth functions f and g ∈ C∞(M,R) is defined by the three
equivalent equalities

{ f , g} = i(X f )dg = −i(Xg)d f = ω(X f , Xg) .

Any symplectic manifold is therefore a Poisson manifold.

The Poisson bracket of smooth functions defined on a symplectic manifold (when that symplectic manifold
is a cotangent bundle) was discovered by Siméon Denis Poisson (1781–1840) [39].

2. Let G be a finite-dimensional real Lie algebra, and let G∗ be its dual vector space. For each smooth function
f ∈ C∞(G∗,R) and each ζ ∈ G∗, the differential d f (ζ) is a linear form on G∗, in other words an element of
the dual vector space of G∗. Identifying with G the dual vector space of G∗, we can therefore consider d f (ζ)
as an element in G. With this identification, we can define the Poisson bracket of two smooth functions f
and g ∈ C∞(G∗,R) by

{ f , g}(ζ) =
[
d f (ζ), dg(ζ)

]
, ζ ∈ G∗ ,

the bracket in the right hand side being the bracket in the Lie algebra G. The Poisson bracket of functions
in C∞(G∗,R) so defined satifies the properties stated in Definition 6. The dual vector space of any
finite-dimensional real Lie algebra is therefore endowed with a Poisson structure, called its canonical
Lie-Poisson structure or its Kirillov-Kostant-Souriau Poisson structure. Discovered by Sophus Lie,
this structure was indeed rediscovered independently by Alexander Kirillov, Bertram Kostant and
Jean-Marie Souriau.

3. A symplectic cocycle of a finite-dimensional, real Lie algebra G is a skew-symmetric bilinear map Θ :
G ×G → G∗ which satisfies, for all X, Y and Z ∈ G,

Θ
(
[X, Y], Z

)
+ Θ

(
[Y, Z], X

)
+ Θ

(
[Z, X], Y

)
= 0 .

The canonical Lie-Poisson bracket of two smooth functions f and g ∈ C∞(G∗,R) can be modified by means
of the symplectic cocycle Θ, by setting

{ f , g}Θ(ζ) =
[
d f (ζ), dg(ζ)

]
−Θ

(
d f (ζ), dg(ζ)

)
, ζ ∈ G∗ .
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This bracket still satifies the properties stated in Definition 6, therefore defines on G∗ a Poisson structure
called its canonical Lie-Poisson structure modified by Θ.

4.4.2. Properties of Poisson Manifolds

The interested reader will find the proofs of the properties recalled here in [8–11].

1. On a Poisson manifold P, the Poisson bracket { f , g} of two smooth functions f and g can be
expressed by means of a smooth field of bivectors Λ:

{ f , g} = Λ(d f , dg) , f and g ∈ C∞(P,R) ,

called the Poisson bivector field of P. The considered Poisson manifold is often denoted by (P, Λ).
The Poisson bivector field Λ identically satisfies

[Λ, Λ] = 0 ,

the bracket [ , ] in the left hand side being the Schouten-Nijenhuis bracket. That bivector field
determines a vector bundle morphism Λ] : T∗P→ TP, defined by

Λ(η, ζ) =
〈
ζ, Λ](η)

〉
,

where η and ζ ∈ T∗P are two covectors attached to the same point in P.

Readers interested in the Schouten-Nijenhuis bracket will find thorough presentations of its
properties in [40,41].

2. Let (P, Λ) be a Poisson manifold. A (maybe time-dependent) vector field on P can be associated
to each (maybe time-dependent) smooth function H : R× P → R. It is called the Hamiltonian
vector field associated to the Hamiltonian H, and denoted by XH. Its expression is

XH(t, x) = Λ](x)
(
dHt(x)

)
,

where dHt(x) = dH(t, x)− ∂H(t, x)
∂t

dt is the differential of the function deduced from H by
considering t as a parameter with respect to which no differentiation is made.

The Hamilton equation determined by the (maybe time-dependent) Hamiltonian H is

dϕ(t)
dt

= XH(
(
t, ϕ(t)

)
= Λ](dHt)

(
ϕ(t)

)
.

3. Any Poisson manifold is foliated, by a generalized foliation whose leaves may not be all of the
same dimension, into immersed connected symplectic manifolds called the symplectic leaves of
the Poisson manifold. The value, at any point of a Poisson manifold, of the Poisson bracket
of two smooth functions only depends on the restrictions of these functions to the symplectic
leaf through the considered point, and can be calculated as the Poisson bracket of functions
defined on that leaf, with the Poisson structure associated to the symplectic structure of that leaf.
This property was discovered by Alan Weinstein, in his very thorough study of the local structure
of Poisson manifolds [42].

5. Hamiltonian Symmetries

5.1. Presymplectic, Symplectic and Poisson Maps and Vector Fields

Let M be a manifold endowed with some structure, which can be either

• a presymplectic structure, determined by a presymplectic form, i.e., a 2-form ω which is closed
(dω = 0),
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• a symplectic structure, determined by a symplectic form ω, i.e., a 2-form ω which is both closed
(dω = 0) and nondegenerate (ker ω = {0}),

• a Poisson structure, determined by a smooth Poisson bivector field Λ satisfying [Λ, Λ] = 0.

Definition 7. A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of a presymplectic
(resp., symplectic, resp. Poisson) manifold (M, ω) (resp. (M, Λ)) is a smooth diffeomorphism f : M→ M such
that f ∗ω = ω (resp. f ∗Λ = Λ).

Definition 8. A smooth vector field X on a presymplectic (resp. symplectic, resp. Poisson) manifold (M, ω)

(resp. (M, Λ)) is said to be a presysmplectic (resp. symplectic, resp. Poisson) vector field if L(X)ω = 0 (resp. if
L(X)Λ = 0), where L(X) denotes the Lie derivative of forms or mutivector fields with respect to X.

Definition 9. Let (M, ω) be a presymplectic or symplectic manifold. A smooth vector field X on M is said to
be Hamiltonian if there exists a smooth function H : M→ R, called a Hamiltonian for X, such that

i(X)ω = −dH .

Not any smooth function on a presymplectic manifold can be a Hamiltonian.

Definition 10. Let (M, Λ) be a Poisson manifold. A smooth vector field X on M is said to be Hamiltonian
if there exists a smooth function H ∈ C∞(M,R), called a Hamiltonian for X, such that X = Λ](dH).
An equivalent definition is that

i(X)dg = {H, g} for any g ∈ C∞(M,R) ,

where {H, g} = Λ(dH, dg) denotes the Poisson bracket of the functions H and g.

On a symplectic or a Poisson manifold, any smooth function can be a Hamiltonian.

Proposition 3. A Hamiltonian vector field on a presymplectic (resp. symplectic, resp. Poisson) manifold
automatically is a presymplectic (resp. symplectic, resp. Poisson) vector field.

The proof of this result, which is easy, can be found in any book on symplectic and Poisson
geoemetry, for example [8–10].

5.2. Lie Algebras and Lie Groups Actions

Definition 11. An action on the left (resp. an action on the right) of a Lie group G on a smooth manifold M is
a smooth map Φ : G×M→ M (resp. a smooth map Ψ : M×G→ M) such that

• for each fixed g ∈ G, the map Φg : M → M defined by Φg(x) = Φ(g, x) (resp. the map Ψg : M → M
defined by Ψg(x) = Ψ(x, g)) is a smooth diffeomorphism of M,

• Φe = idM (resp. Ψe = idM), e being the neutral element of G,
• for each pair (g1, g2) ∈ G×G, Φg1 ◦Φg2 = Φg1g2 (resp. Ψg1 ◦Ψg2 = Ψg2g1).

An action of a Lie algebra G on a smooth manifold M is a Lie algebras morphism of G into the Lie
algebra A1(M) of smooth vector fields on M, i.e., a linear map ψ : G → A1(M) which associates to each X ∈ G
a smooth vector field ψ(X) on M such that for each pair (X, Y) ∈ G ×G, ψ

(
[X, Y]

)
=
[
ψ(X), ψ(Y)

]
.

Proposition 4. An action Ψ, either on the left or on the right, of a Lie group G on a smooth manifold M,
automatically determines an action ψ of its Lie algebra G on that manifold, which associates to each X ∈ G the
vector field ψ(X) on M, often denoted by XM and called the fundamental vector field on M associated to X. It is
defined by

ψ(X)(x) = XM(x) =
d
ds
(
Ψexp(sX)(x)

) ∣∣
s=0 , x ∈ M ,
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with the following convention: ψ is a Lie algebras homomorphism when we take for Lie algebra G of the Lie
group G the Lie algebra or right invariant vector fields on G if Ψ is an action on the left, and the Lie algebra of
left invariant vector fields on G if Ψ is an action on the right.

Proof. If Ψ is an action of G on M on the left (respectively, on the right), the vector field on G which is
right invariant (respectively, left invariant) and whose value at e is X, and the associated fundamental
vector field XM on M, are compatible by the map g 7→ Ψg(x). Therefore the map ψ : G → A1(M) is a
Lie algebras homomorphism, if we take for definition of the bracket on G the bracket of right invariant
(respectively, left invariant) vector fields on G.

Definition 12. When M is a presymplectic (or a symplectic, or a Poisson) manifold, an action Ψ of a Lie group
G (respectively, an action ψ of a Lie algebra G) on the manifold M is called a presymplectic (or a symplectic,
or a Poisson) action if for each g ∈ G, Ψg is a presymplectic, or a symplectic, or a Poisson diffeomorphism of M
(respectively, if for each X ∈ G, ψ(X) is a presymplectic, or a symplectic, or a Poisson vector field on M.

Definition 13. An action ψ of a Lie algeba G on a presymplectic or symplectic manifold (M, ω), or on a Poisson
manifold (M, Λ), is said to be Hamiltonian if for each X ∈ G, the vector field ψ(X) on M is Hamiltonian.

An action Ψ (either on the left or on the right) of a Lie group G on a presymplectic or symplectic manifold
(M, ω), or on a Poisson manifold (M, Λ), is said to be Hamiltonian if that action is presymplectic, or symplectic,
or Poisson (according to the structure of M), and if in addition the associated action of the Lie algebra G of G
is Hamiltonian.

Remark 9. A Hamiltonian action of a Lie group, or of a Lie algebra, on a presymplectic, symplectic or Poisson
manifold, is automatically a presymplectic, symplectic or Poisson action. This result immediately follows
from Proposition 3.

5.3. Momentum Maps of Hamiltonian Actions

Proposition 5. Let ψ be a Hamiltonian action of a finite-dimensional Lie algebra G on a presymplectic,
symplectic or Poisson manifold (M, ω) or (M, Λ). There exists a smooth map J : M→ G∗, taking its values in
the dual space G∗ of the Lie algebra G, such that for each X ∈ G the Hamiltonian vector field ψ(X) on M admits
as Hamiltonian the function JX : M→ R, defined by

JX(x) =
〈

J(x), X
〉

, x ∈ M .

The map J is called a momentum map for the Lie algebra action ψ. When ψ is the action of the Lie algebra
G of a Lie group G associated to a Hamiltonian action Ψ of a Lie group G, J is called a momentum map for the
Hamiltonian Lie group action Ψ.

The proof of that result, which is easy, can be found for example in [8–10].

Remark 10. The momentum map J is not unique:

• when (M, ω) is a connected symplectic manifold, J is determined up to addition of an arbitrary constant
element in G∗;

• when (M, Λ) is a connected Poisson manifold, the momentum map J is determined up to addition of an
arbitrary G∗-valued smooth map which, coupled with any X ∈ G, yields a Casimir of the Poisson algebra
of (M, Λ), i.e., a smooth function on M whose Poisson bracket with any other smooth function on that
manifold is the function identically equal to 0.

5.4. Noether’s Theorem in Hamiltonian Formalism

Theorem 5 (Noether’s Theorem in Hamiltonian Formalism). Let X f and Xg be two Hamiltonian vector
fields on a presymplectic or symplectic manifold (M, ω), or on a Poisson manifold (M, Λ), which admit as
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Hamiltonians, respectively, the smooth functions f and g on the manifold M. The function f remains constant
on each integral curve of Xg if and only if g remains constant on each integral curve of X f .

Proof. The function f is constant on each integral curve of Xg if and only if i(Xg)d f = 0, since each
integral curve of Xg is connected. We can use the Poisson bracket, even when M is a presymplectic
manifold, since the Poisson bracket of two Hamiltonians on a presymplectic manifold still can be
defined. So we can write

i(Xg)d f = {g, f} = −{ f , g} = −i(X f )dg .

Corollary 2 (of Noether’s Theorem in Hamiltonian Formalism). Let ψ : G → A1(M) be a Hamiltonian
action of a finite-dimensional Lie algebra G on a presymplectic or symplectic manifold (M, ω), or on a Poisson
manifold (M, Λ), and let J : M → G∗ be a momentum map of this action. Let XH be a Hamiltonian vector
field on M admitting as Hamiltonian a smooth function H. If for each X ∈ G we have i

(
ψ(X)

)
(dH) = 0,

the momentum map J remains constant on each integral curve of XH.

Proof. This result is obtained by applying Theorem 5 to the pairs of Hamiltonian vector fields made
by XH and each vector field associated to an element of a basis of G.

5.5. Symplectic Cocycles

Theorem 6 (J. M. Souriau [14]). Let Φ be a Hamiltonian action (either on the left or on the right) of a Lie
group G on a connected symplectic manifold (M, ω) and let J : M→ G∗ be a momentum map of this action.
There exists an affine action A (either on the left or on the right) of the Lie group G on the dual G∗ of its Lie
algebra G such that the momentum map J is equivariant with respect to the actions Φ of G on M and A of G on
G∗, i.e., such that

J ◦Φg(x) = Ag ◦ J(x) for all g ∈ G , x ∈ M .

The action A can be written, with g ∈ G and ξ ∈ G∗,A(g, ξ) = Ad∗g−1(ξ) + θ(g) if Φ is an action on the left,

A(ξ, g) = Ad∗g(ξ)− θ(g−1) if Φ is an action on the right.

Proof. Let us assume that Φ is an action on the left. The fundamental vector field XM associated to
each X ∈ G is Hamiltonian, with the function JX : M→ R, given by

JX(x) =
〈

J(x), X
〉

, x ∈ M ,

as Hamiltonian. For each g ∈ G the direct image (Φg−1)∗(XM) of XM by the symplectic diffeomorphism
Φg−1 is Hamiltonian, with JX ◦Φg as Hamiltonian. An easy calculation shows that this vector field is
the fundamental vector field associated to Adg−1(X) ∈ G. The function

x 7→
〈

J(x), Adg−1(X)
〉
=
〈
Ad∗g−1 ◦J(x), X

〉
is therefore a Hamiltonian for that vector field. These two functions defined on the connected manifold
M, which both are admissible Hamiltonians for the same Hamiltonian vector field, differ only by a
constant (which may depend on g ∈ G). We can set, for any g ∈ G,

θ(g) = J ◦Φg(x)−Ad∗g−1 ◦J(x)

and check that the map A : G × G∗ → G∗ defined in the statement is indeed an action for which J
is equivariant.

A similar proof, with some changes of signs, holds when Φ is an action on the right.
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Proposition 6. Under the assumptions and with the notations of Theorem 6, the map θ : G → G∗ is a cocycle of
the Lie group G with values in G∗, for the coadjoint representation. It means that it satisfies, for all g and h ∈ G,

θ(gh) = θ(g) + Ad∗g−1

(
θ(h)

)
.

More precisely θ is a symplectic cocycle. It means that its differential Teθ : TeG ≡ G → G∗ at the neutral
element e ∈ G can be considered as a skew-symmetric bilinear form on G:

Θ(X, Y) =
〈

Teθ(X), Y
〉
= −

〈
Teθ(Y), X

〉
.

The skew-symmetric bilinear form Θ is a symplectic cocycle of the Lie algebra G. It means that it is
skew-symmetric and satisfies, for all X, Y and Z ∈ G,

Θ
(
[X, Y], Z

)
+ Θ

(
[Y, Z], X

)
+ Θ

(
[Z, X], Y

)
= 0 .

Proof. These properties easily follow from the fact that when Φ is an action on the left, for g and h ∈ G,
Φg ◦Φh = Φgh (and a similar equality when Φ is an action on the right). The interested reader will
find more details in [9,12,14].

Proposition 7. Still under the assumptions and with the notations of Theorem 6, the composition law which
associates to each pair ( f , g) of smooth real-valued functions on G∗ the function { f , g}Θ given by

{ f , g}Θ(x) =
〈

x, [d f (x), dg(x)]
〉
−Θ

(
d f (x), dg(x)

)
, x ∈ G∗ ,

(G being identified with its bidual G∗∗), determines a Poisson structure on G∗, and the momentum map
J : M→ G∗ is a Poisson map, M being endowed with the Poisson structure associated to its symplectic structure.

Proof. The fact that the bracket ( f , g) 7→ { f , g}Θ on C∞(G∗,R) is a Poisson bracket was already
indicated in Example 4. It can be verified by easy calculations. The fact that J is a Poisson map can be
proven by first looking at linear functions on G∗, i.e., elements in G. The reader will find a detailed
proof in [12].

Remark 11. When the momentum map J is replaced by another momentum map J1 = J + µ, where µ ∈ G∗ is
a constant, the symplectic Lie group cocycle θ and the symplectic Lie algebra cocycle Θ are replaced by θ1 and
Θ1, respectively, given by

θ1(g) = θ(g) + µ−Ad∗g−1(µ) , g ∈ G ,

Θ1(X, Y) = Θ(X, Y) +
〈
µ, [X, Y]

〉
, X and Y ∈ G .

These formulae show that θ1 − θ and Θ1 −Θ are symplectic coboundaries of the Lie group G and the Lie
algebra G. In other words, the cohomology classes of the cocycles θ and Θ only depend on the Hamiltonian action
Φ of G on the symplectic manifold (M, ω).

5.6. The Use of Symmetries in Hamiltonian Mechanics

5.6.1. Symmetries of the Phase Space

Hamiltonian Symmetries are often used for the search of solutions of the equations of motion of
mechanical systems. The symmetries considered are those of the phase space of the mechanical system.
This space is very often a symplectic manifold, either the cotangent bundle to the configuration space
with its canonical symplectic structure, or a more general symplectic manifold. Sometimes, after some
simplifications, the phase space is a Poisson manifold.
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The Marsden-Weinstein reduction procedure [43,44] or one of its generalizations [10] is the method
most often used to facilitate the determination of solutions of the equations of motion. In a first step,
a possible value of the momentum map is chosen and the subset of the phase space on which the
momentum map takes this value is determined. In a second step, that subset (when it is a smooth
manifold) is quotiented by its isotropic foliation. The quotient manifold is a symplectic manifold of a
dimension smaller than that of the original phase space, and one has an easier to solve Hamiltonian
system on that reduced phase space.

When Hamiltonian symmetries are used for the reduction of the dimension of the phase space
of a mechanical system, the symplectic cocycle of the Lie group of symmetries action, or of the Lie
algebra of symmetries action, is almost always the zero cocycle.

For example, if the group of symmetries is the canonical lift to the cotangent bundle of a group of
symmetries of the configuration space, not only the canonical symplectic form, but the Liouville 1-form of
the cotangent bundle itself remains invariant under the action of the symmetry group, and this fact
implies that the symplectic cohomology class of the action is zero.

5.6.2. Symmetries of the Space of Motions

A completely different way of using symmetries was initiated by Jean-Marie Souriau,
who proposed to consider the symmetries of the manifold of motions of the mechanical system.
He observed that the Lagrangian and Hamiltonian formalisms, in their usual formulations, involve the
choice of a particular reference frame, in which the motion is described. This choice destroys a part of the
natural symmetries of the system.

For example, in classical (non-relativistic) mechanics, the natural symmetry group of an isolated
mechanical system must contain the symmetry group of the Galilean space-time, called the Galilean
group. This group is of dimension 10. It contains not only the group of Euclidean displacements of space
which is of dimension 6 and the group of time translations which is of dimension 1, but the group of linear
changes of Galilean reference frames which is of dimension 3.

If we use the Lagrangian formalism or the Hamiltonian formalism, the Lagrangian or the Hamiltonian
of the system depends on the reference frame: it is not invariant with respect to linear changes of Galilean
reference frames.

It may seem strange to consider the set of all possible motions of a system, which is unknown as
long as we have not determined all these possible motions. One may ask if it is really useful when we
want to determine not all possible motions, but only one motion with prescribed initial data, since that
motion is just one point of the (unknown) manifold of motion!

Souriau’s answers to this objection are the following.

1. We know that the manifold of motions has a symplectic structure, and very often many things are
known about its symmetry properties.

2. In classical (non-relativistic) mechanics, there exists a natural mathematical object which does not
depend on the choice of a particular reference frame (even if the decriptions given to that object by
different observers depend on the reference frame used by these observers): it is the evolution
space of the system.

The knowledge of the equations which govern the system’s evolution allows the full mathematical
description of the evolution space, even when these equations are not yet solved.

Moreover, the symmetry properties of the evolution space are the same as those of the manifold
of motions.

For example, the evolution space of a classical mechanical system with configuration manifold N is

1. in the Lagrangian formalism, the space R× TN endowed with the presymplectic form dv̂L,
whose kernel is of dimension 1 when the Lagrangian L is hyper-regular,

2. in the Hamiltonian formalism, the space R× T∗N with the presymplectic form dv̂H , whose kernel
too is of dimension 1.
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The Poincaré-Cartan 1-form v̂L in the Lagrangian formalism, or v̂H in the Hamiltonian formalism,
depends on the choice of a particular reference frame, made for using the Lagrangian or the
Hamiltonian formalism. But their exterior differentials, the presymplectic forms dv̂L or dv̂H , do not
depend on that choice, modulo a simple change of variables in the evolution space.

Souriau defined this presymplectic form in a framework more general than those of Lagrangian
or Hamiltonian formalisms, and called it the Lagrange form. In this more general setting, it may not
be an exact 2-form. Souriau proposed as a new Principle, the assumption that it always projects on
the space of motions of the systems as a symplectic form, even in relativistic mechanics in which the
definition of an evolution space is not clear. He called this new principle the Maxwell Principle.

Bargmann proved that the symplectic cohomology of the Galilean group is of dimension 1, and
Souriau proved that the cohomology class of its action on the manifold of motions of an isolated
classical (non-relativistic) mechanical system can be identified with the total mass of the system [14],
Chapter III, p. 153.

Readers interested in the Galilean group and momentum maps of its actions are referred to the
recent book by de Saxcé and Vallée [45].

6. Statistical Mechanics and Thermodynamics

6.1. Basic Concepts in Statistical Mechanics

During the XVIII–th and XIX–th centuries, the idea that material bodies (fluids as well as solids)
are assemblies of a very large number of small, moving particles, began to be considered by some
scientists, notably Daniel Bernoulli (1700–1782), Rudolf Clausius (1822–1888), James Clerk Maxwell
(1831–1879) and Ludwig Eduardo Boltzmann (1844–1906), as a reasonable possibility. Attemps were
made to explain the nature of some measurable macroscopic quantities (for example the temperature
of a material body, the pressure exerted by a gas on the walls of the vessel in which it is contained),
and the laws which govern the variations of these macroscopic quantities, by application of the laws of
classical mechanics to the motions of these very small particles. Described in the framework of the
Hamiltonian formalism, the material body is considered as a Hamiltonian system whose phase space
is a very high dimensional symplectic manifold (M, ω), since an element of that space gives a perfect
information about the positions and the velocities of all the particles of the system. The experimental
determination of the exact state of the system being impossible, one only can use the probability of
presence, at each instant, of the state of the system in various parts of the phase space. Scientists
introduced the concept of a statistical state, defined below.

Definition 14. Let (M, ω) be a symplectic manifold. A statistical state is a probability measure µ on the
manifold M.

6.1.1. The Liouville Measure on a Symplectic Manifold

On each symplectic manifold (M, ω), with dim M = 2n, there exists a positive measure λω,
called the Liouville measure. Let us briefly recall its definition. Let (U, ϕ) be a Darboux chart of
(M, ω) Section 4.4.1. The open subset U of M is, by means of the diffeomorphism ϕ, identified with
an open subset ϕ(U) of R2n on which the coordinates (Darboux coordinates) will be denoted by
(p1, . . . , pn, x1, . . . , xn). With this identification, the Liouville measure (restricted to U) is simply the
Lebesgue measure on the open subset ϕ(U) of R2n. In other words, for each Borel subset A of M
contained in U, we have

λω(A) =
∫

ϕ(A)
dp1 . . . dpn dx1 . . . dxn .

One can easily check that this definition does not depend on the choice of the Darboux coordinates
(p1, . . . , pn, x1, . . . , xn) on ϕ(A). By using an atlas of Darboux charts on (M, ω), one can easily define
λω(A) for any Borel subset A of M.
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Definition 15. A statistical state µ on the symplectic manifold (M, ω) is said to be continuous (respectively,
is said to be smooth) if it has a continuous (respectively, a smooth) density with respect to the Liouville measure
λω, i.e., if there exists a continuous function (respectively, a smooth function) ρ : M→ R such that, for each
Borel subset A of M

µ(A) =
∫

A
ρdλω .

Remark 12. The density ρ of a continuous statistical state on (M, ω) takes its values in R+ and of
course satisfies ∫

M
ρdλω = 1 .

For simplicity we only consider in what follows continuous, very often even smooth
statistical states.

6.1.2. Variation in Time of a Statistical State

Let H be a smooth time independent Hamiltonian on a symplectic manifold (M, ω), XH the
associated Hamiltonian vector field and ΦXH its reduced flow. We consider the mechanical system
whose time evolution is described by the flow of XH .

If the state of the system at time t0, assumed to be perfectly known, is a point z0 ∈ M, its state at
time t1 is the point z1 = ΦXH

t1−t0
(z0).

Let us now assume that the state of the system at time t0 is not perfectly known, but that a
continuous probability measure on the phase space M, whose density with respect to the Liouville
measure λω is ρ0, describes the probability distribution of presence of the state of the system at time
t0. In other words, ρ0 is the density of the statistical state of the system at time t0. For any other
time t1, the map ΦXH

t1−t0
is a symplectomorphism, therefore leaves invariant the Liouville measure λω.

The probability density ρ1 of the statistical state of the system at time t1 therefore satisfies, for any
x0 ∈ M for which x1 = ΦXH

t1−t0
(x0) is defined,

ρ1(x1) = ρ1
(
ΦXH

t1−t0
(x0)

)
= ρ0(x0) .

Since
(
ΦXH

t1−t0

)−1
= ΦXH

t0−t1
, we can write

ρ1 = ρ0 ◦ΦXH
t0−t1

.

Definition 16. Let ρ be the density of a continuous statistical state µ on the symplectic manifold (M, ω).
The number

s(ρ) =
∫

M
ρ log

(
1
ρ

)
dλω

is called the entropy of the statistical state µ or, with a slight abuse of language, the entropy of the density ρ.

Remark 13.

1. By convention we state that 0 log0 = 0. With that convention the function x 7→ x log x is continuous on
R+. If the integral on the right hand side of the equality which defines s(ρ) does not converge, we state
that s(ρ) = −∞. With these conventions, s(ρ) exists for any continuous probability density ρ.

2. The above Definition 16 of the entropy of a statistical state, founded on ideas developed by Boltzmann in
his Kinetic Theory of Gases [46], specially in the derivation of his famous (and controversed) Theorem
Êta, is too related with the ideas of Claude Shannon [47] on information theory. The use of information
theory in thermodynamics was more recently proposed by Jaynes [48,49] and Mackey [18]. For a very nice
discussion of the use of probability concepts in physics and application of information theory in quantum
mechanics, the reader is referred to the paper by Balian [50].
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The entropy s(ρ) of a probability density ρ has very remarkable variational properties discussed
in the following definitions and proposition.

Definition 17. Let ρ be the density of a smooth statistical state on a symplectic manifold (M, ω).

1. For each function f defined on M, taking its values in R or in some finite-dimensional vector space,
such that the integral on the right hand side of the equality

Eρ( f ) =
∫

M
f ρdλω

converges, the value Eρ( f ) of that integral is called the mean value of f with respect to ρ.
2. Let f be a smooth function on M, taking its values in R or in some finite-dimensional vector space,

satisfying the properties stated above. A smooth infinitesimal variation of ρ with fixed mean value of f is a
smooth map, defined on the product ]− ε, ε[×M, with values in R+, where ε > 0,

(τ, z) 7→ ρ(τ, z) , τ ∈]− ε, ε[, z ∈ M ,

such that

• for τ = 0 and any z ∈ M, ρ(0, z) = ρ(z),
• for each τ ∈]− ε, ε[ , z 7→ ρτ(z) = ρ(τ, z) is a smooth probability density on M such that

Eρτ ( f ) =
∫

M
ρτ f dλω = Eρ( f ) .

3. The entropy function s is said to be stationary at the probability density ρ with respect to smooth
infinitesimal variations of ρ with fixed mean value of f , if for any smooth infinitesimal variation
(τ, z) 7→ ρ(τ, z) of ρ with fixed mean value of f

ds(ρτ)

dτ

∣∣∣
τ=0

= 0 .

Proposition 8. Let H : M → R be a smooth Hamiltonian on a symplectic manifold (M, ω) and ρ be the
density of a smooth statistical state on M such that the integral defining the mean value Eρ(H) of H with respect
to ρ converges. The entropy function s is stationary at ρ with respect to smooth infinitesimal variations of ρ with
fixed mean value of H, if and only if there exists a real b ∈ R such that, for all z ∈ M,

ρ(z) =
1

P(b)
exp

(
−bH(z)

)
, with P(b) =

∫
M

exp(−bH)dλω .

Proof. Let τ 7→ ρτ be a smooth infinitesimal variation of ρ with fixed mean value of H. Since
∫

M
ρτdλω

and
∫

M
ρτ Hdλω do not depend on τ, it satisfies, for all τ ∈]− ε, ε[ ,∫

M

∂ρ(τ, z)
∂τ

dλω(z) = 0 ,
∫

M

∂ρ(τ, z)
∂τ

H(z)dλω(z) = 0 .

Moreover an easy calculation leads to

ds(ρτ)

dτ

∣∣∣
τ=0

= −
∫

M

∂ρ(τ, z)
∂τ

∣∣∣
τ=0

(1 + log
(
ρ(z)

)
dλω(z) .

A well known result in calculus of variations shows that the entropy function s is stationary at ρ

with respect to smooth infinitesimal variations of ρ with fixed mean value of H, if and only if there
exist two real constants a and b, called Lagrange multipliers, such that, for all z ∈ M,

1 + log(ρ) + a + bH = 0 ,
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which leads to
ρ = exp(−1− a− bH) .

By writing that
∫

M
ρdλω = 1, we see that a is determined by b:

exp(1 + a) = P(b) =
∫

M
exp(−bH)dλω .

Definition 18. Let H : M→ R be a smooth Hamiltonian on a symplectic manifold (M, ω). For each b ∈ R
such that the integral on the right side of the equality

P(b) =
∫

M
exp(−bH)dλω

converges, the smooth probability measure on M with density (with respect to the Liouville measure)

ρ(b) =
1

P(b)
exp

(
−bH

)
is called the Gibbs statistical state associated to b. The function P : b 7→ P(b) is called the partition function.

The following proposition shows that the entropy function, not only is stationary at any Gibbs
statistical state, but in a certain sense attains at that state a strict maximum.

Proposition 9. Let H : M → R be a smooth Hamiltonian on a symplectic manifold (M, ω) and b ∈ R be
such that the integral defining the value P(b) of the partition function P at b converges. Let

ρb =
1

P(b)
exp(−bH)

be the probability density of the Gibbs statistical state associated to b. We assume that the Hamiltonian H
is bounded by below, i.e., that there exists a constant m such that m ≤ H(z) for any z ∈ M. Then the
integral defining

Eρb(H) =
∫

M
ρbHdλω

converges. For any other smooth probability density ρ1 such that

Eρ1(H) = Eρb(H) ,

we have
s(ρ1) ≤ s(ρb) ,

and the equality s(ρ1) = s(ρb) holds if and only if ρ1 = ρb.

Proof. Since m ≤ H, the function ρb exp(−bH) satisfies 0 ≤ ρb exp(−bH) ≤ exp(−mb)ρb, therefore
is integrable on M. Let ρ1 be any smooth probability density on M satisfying Eρ1(H) = Eρb(H).
The function defined on R+

x 7→ h(x) =

x log
(

1
x

)
if x > 0

0 if x = 0

being convex, its graph is below the tangent at any of its points
(
x0, h(x0)

)
. We therefore have, for all

x > 0 and x0 > 0,

h(x) ≤ h(x0)− (1 + log x0)(x− x0) = x0 − x(1 + log x0) .
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With x = ρ1(z) and x0 = ρb(z), z being any element in M, that inequality becomes

h
(
ρ1(z)

)
= ρ1(z) log

(
1

ρ1(z)

)
≤ ρb(z)−

(
1 + log ρb(z)

)
ρ1(z) .

By integration over M, using the fact that ρb is the probability density of the Gibbs state associated
to b, we obtain

s(ρ1) ≤ 1− 1−
∫

M
ρ1 log ρbdλω = s(ρb) .

We have proven the inequality s(ρ1) ≤ s(ρb). If ρ1 = ρb, we have of course the equality s(ρ1) = s(ρb).
Conversely if s(ρ1) = s(ρb), the functions defined on M

z 7→ ϕ1(z) = ρ1(z) log
(

1
ρ1(z)

)
and z 7→ ϕ(z) = ρb(z)−

(
1 + log ρb(z)

)
ρ1(z)

are continuous on M except, maybe, for ϕ, at points z at which ρb(z) = 0 and ρ1(z) 6= 0, but the set of
such points is of measure 0 since ϕ is integrable. They satisfy the inequality ϕ1 ≤ ϕ. Both are integrable
on M and have the same integral. The function ϕ− ϕ1 is everywhere ≥ 0, is integrable on M and its
integral is 0. That function is therefore everywhere equal to 0 on M. We can write, for any z ∈ M,

ρ1(z) log
(

1
ρ1(z)

)
= ρb(z)−

(
1 + log ρb(z)

)
ρ1(z) . (6)

For each z ∈ M such that ρ1(z) 6= 0, we can divide that equality by ρ1(z). We obtain

ρb(z)
ρ1(z)

− log
(

ρb(z)
ρ1(z)

)
= 1 .

Since the function x 7→ x− log x reaches its minimum, equal to 1, for a unique value of x > 0,
that value being 1, we see that for each z ∈ M at which ρ1(z) > 0, we have ρ1(z) = ρb(z). At points
z ∈ M at which ρ1(z) = 0, Equation (6) shows that ρb(z) = 0. Therefore ρ1 = ρb.

Remark 14. The maximality property of the entropy function ρ 7→ s(ρ) at a Gibbs state density ρb proven
in Proposition 9 of course implies the stationarity of that function at ρb with respect to smooth infinitesimal
variations of ρ with fixed mean value of H, proven in Proposition 8. That Proposition therefore could be omitted.
We chose to keep it because its proof is much easier than that of Proposition 9, and explains why it is interesting
to look at probability densities proportional to exp(−bH) for some b ∈ R.

The following proposition shows that a Gibbs statistical state remains invariant under the flow of
the Hamiltonian vector field XH . One can therefore say that a Gibbs state is a statistical equilibrium
state. Of course there exist statistical equilibrium states other than Gibbs states.

Proposition 10. Let H be a smooth Hamiltonian bounded by below on a symplectic manifold (M, ω), b ∈ R
be such that the integral defining the value P(b) of the partition function P at b converges. The Gibbs state
associated to b remains invariant under the flow of of the Hamiltonian vector field XH .

Proof. The density ρb of the Gibbs state associated to b, with respect to the Liouville measure λω, is

ρb =
1

P(b)
exp(−bH) .

Since H is constant along each integral curve of XH , ρb too is constant along each integral curve
of XH . Moreover, the Liouville measure λω remains invariant under the flow of XH . Therefore the
Gibbs probability measure associated to b too remains invariant under that flow.
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6.2. Thermodynamic Equilibria and Thermodynamic Functions

6.2.1. Assumptions Made in this Section.

Any Hamiltonian H defined on a symplectic manifold (M, ω) considered in this section
will be assumed to be smooth, bounded by below and such that for any real b > 0, each one
of the three functions, defined on M, z 7→ exp

(
−bH(z)

)
, z 7→

∣∣H(z)
∣∣ exp

(
−bH(z)

)
and z 7→(

H(z)
)2 exp

(
−bH(z)

)
is everywhere smaller than some function defined on M integrable with respect

to the Liouville measure λω. The integrals which define

P(b) =
∫

M
exp(−bH)dλω and Eρb(H) =

∫
M

H exp(−bH)dλω

therefore converge.

Proposition 11. Let H be a Hamiltonian defined on a symplectic manifold (M, ω) satisfying the assumptions
indicated in Section 6.2.1. For any real b > 0 let

P(b) =
∫

M
exp(−bH)dλω and ρb =

1
P(b)

exp(−bH)

be the value at b of the partition function P and the probability density of the Gibbs statistical state associated
to b, and

E(b) = Eρb(H) =
1

P(b)

∫
M

H exp(−bH)dλω

be the mean value of H with respect to the probability density ρb. The first and second derivatives with respect to
b of the partition function P exist, are continuous functions of b given by

dP(b)
db

= −P(b)E(b) ,
d2P(b)

db2 =
∫

M
H2 exp(−bH)dλω = P(b)Eρb(H2) .

The derivative with respect to b of the function E exists and is a continuous function of b given by

dE(b)
db

= − 1
P(b)

∫
M

(
H − Eρb(H)

)2dλω = −Eρb

((
H − Eρb(H)

)2
)

.

Let S(b) be the entropy s(ρb) of the Gibbs statistical state associated to b. The function S can be expressed
in terms of P and E as

S(b) = log
(

P(b)
)
+ bE(b) .

Its derivative with respect to b exists and is a continuous function of b given by

dS(b)
db

= b
dE(b)

db
.

Proof. Using the assumptions Section 6.2.1, we see that the functions b 7→ P(b) and b 7→ Eρb(H) = E(b),
defined by integrals on M, have a derivative with respect to b which is continuous and which can be

calculated by derivation under the sign
∫

M
. The indicated results easily follow, if we observe that

for any function f on M such that Eρb( f ) and Eρb( f 2) exist, we have the formula, well known in
Probability theory,

Eρb( f 2)−
(
Eρb( f )

)2
= Eρb

((
f − Eρb( f )

)2
)

.

6.2.2. Physical Meaning of the Introduced Functions

Let us consider a physical system, for example a gas contained in a vessel bounded by rigid,
thermally insulated walls, at rest in a Galilean reference frame. We assume that its evolution can
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be mathematically described by means of a Hamiltonian system on a symplectic manifold (M, ω)

whose Hamiltonian H satisfies the assumptions Section 6.2.1. For physicists, a Gibbs statistical state,

i.e., a probability measure of density ρb =
1

P(b)
exp(−bH) on M, is a thermodynamic equilibrium of

the physical system. The set of possible thermodynamic equilibria of the system is therefore indexed
by a real parameter b > 0. The following argument will show what physical meaning can have
that parameter.

Let us consider two similar physical systems, mathematically described by two Hamiltonian
systems, of Hamiltonians H1 on the symplectic manifold (M1, ω1) and H2 on the symplectic manifold
(M2, ω2). We first assume that they are independent and both in thermodynamic equilibrium,
with different values b1 and b2 of the parameter b. We denote by E1(b1) and E2(b2) the mean values
of H1 on the manifold M1 with respect to the Gibbs state of density ρ1,b1 and of H2 on the manifold
M2 with respect to the Gibbs state of density ρ2,b2 . We assume now that the two systems are coupled
in a way allowing an exchange of energy. For example, the two vessels containing the two gases
can be separated by a wall allowing a heat transfer between them. Coupled together, they make a
new physical system, mathematically described by a Hamiltonian system on the symplectic manifold
(M1 × M2, p∗1ω1 + p∗2ω2), where p1 : M1 × M2 → M1 and p2 : M1 × M2 → M2 are the canonical
projections. The Hamiltonian of this new system can be made as close to H1 ◦ p1 + H2 ◦ p2 as one wishes,
by making very small the coupling between the two systems. The mean value of the Hamiltonian of
the new system is therefore very close to E1(b1) + E2(b2). When the total system will reach a state of
thermodynamic equilibrium, the probability densities of the Gibbs states of its two parts, ρ1,b′ on M1

and ρ2,b′ on M2 will be indexed by the same real number b′ > 0, which must be such that

E1(b′) + E2(b′) = E1(b1) + E2(b2) .

By Proposition 11, we have, for all b > 0,

dE1(b)
db

≤ 0 ,
dE2(b)

db
≤ 0 .

Therefore b′ must lie between b1 and b2. If, for example, b1 < b2, we see that E1(b′) ≤ E1(b1) and
E2(b′) ≥ E2(b2). In order to reach a state of thermodynamic equilibrium, energy must be transferred
from the part of the system where b has the smallest value, towards the part of the system where
b has the highest value, until, at thermodynamic equilibrium, b has the same value everywhere.
Everyday experience shows that thermal energy flows from parts of a system where the temperature
is higher, towards parts where it is lower. For this reason physicists consider the real variable b as
a way to appreciate the temperature of a physical system in a state of thermodynamic equilibrium.
More precisely, they state that

b =
1

kT
where T is the absolute temperature and k a constant depending on the choice of units of energy and
temperature, called Boltzmann’s constant in honour of the great Austrian scientist Ludwig Eduard
Boltzmann (1844–1906).

For a physical system mathematically described by a Hamiltonian system on a symplectic
manifold (M, ω), with H as Hamiltonian, in a state of thermodynamic equilibrium, E(b) and S(b) are
the internal energy and the entropy of the system.

6.2.3. Towards Thermodynamic Equilibrium

Everyday experience shows that a physical system, when submitted to external conditions which
remain unchanged for a sufficiently long time, very often reaches a state of thermodynamic equilibrium.
At first look, it seems that Lagrangian or Hamiltonian systems with time-independent Lagrangians or
Hamiltonians cannot exhibit a similar behaviour. Let us indeed consider a mechanical system whose
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configuration space is a smooth manifold N, described in the Lagrangian formalism by a smooth
time-independent hyper-regular Lagarangian L : TN → R or, in the Hamiltonian formalism, by the

associated Hamiltonian HL : T∗N → R. Let t 7→
−−→
x(t) be a motion of that system, −→x0 =

−−→
x(t0) and

−→x1 =
−−→
x(t0) be the configurations of the system for that motion at times t0 and t1. There exists another

motion t 7→
−−→
x′(t) of the system for which

−−−→
x′(t0) =

−→x1 and
−−−→
x′(t1) =

−→x0 : since the equations of motion

are invariant by time reversal, the motion t 7→
−−→
x′(t) is obtained simply by taking as initial condition at

time t0
−−−→
x′(t0) =

−−→
x(t1) and

d
−−→
x′(t)
dt

∣∣∣
t=t0

= −d
−−→
x(t)
dt

∣∣∣
t=t1

. Another more serious argument against a kind

of thermodynamic behaviour of Lagarangian or Hamiltonian systems rests on the famous recurrence
theorem due to Poincaré [51]. This theorem asserts indeed that when the useful part of the phase space
of the system is of a finite total measure, almost all points in an arbitrarily small open subset of the
phase space are recurrent, i.e., the motion starting of such a point at time t0 repeatedly crosses that
open subset again and again, infinitely many times when t→ +∞.

Let us now consider, instead of perfectly defined states, i.e., points in phase space, statistical states,
and ask the question: When at time t = t0 a Hamiltonian system on a symplectic manifold (M, ω) is in
a statistical state given by some probability measure of density ρ0 with respect to the Liouville measure
λω , does its statistical state converge, when t→ +∞, towards the probability measure of a Gibbs state?
This question should be made more precise by specifying what physical meaning has a statistical
state and in what mathematical sense a statistical state can converge towards the probability measure
of a Gibbs state. A positive partial answer was given by Ludwig Boltzmann when, developing his
kinetic theory of gases, he proved his famous (but controversed) Êta theorem stating that the entropy
of the statistical state of a gas of small particles is a monotonously increasing function of time. This
question, linked with time irreversibility in physics, is still the subject of important researches, both
by physicists and by mathematicians. The reader is referred to the paper [50] by Balian for a more
thorough discussion of that question.

6.3. Examples of Thermodynamic Equilibria

6.3.1. Classical Monoatomic Ideal Gas

In classical mechanics, a dilute gas contained in a vessel at rest in a Galilean reference frame is
mathematically described by a Hamiltonian system made by a large number of very small massive
particles, which interact by very brief collisions between themselves or with the walls of the vessel,
whose motions between two collisions are free. Let us first assume that these particles are material
points and that no external field is acting on them, other than that describing the interactions by
collisions with the walls of the vessel.

The Hamiltonian of one particle in a part of the phase space in which its motion is free is simply

1
2m
‖−→p ‖2 =

1
2m

(p2
1 + p2

2 + p2
3) , with −→p = m−→v ,

where m is the mass of the particle, −→v its velocity vector and −→p its linear momentum vector (in the
considered Galilean reference frame), p1, p2 and p3 the components of −→p in a fixed orhtonormal basis
of the physical space.

Let N be the total number of particles, which may not have all the same mass. We use a integer
i ∈ {1, 2, . . . , N} to label the particles and denote by mi,

−→xi , −→vi , −→pi the mass and the vectors position,
velocity and linear momentum of the i-th particle.

The Hamiltonian of the gas is therefore

H =
N

∑
i=1

1
2mi
‖−→pi ‖2 + terms involving the collisions between particles and with the walls .



Entropy 2016, 18, 370 28 of 46

Interactions of the particles with the walls of the vessel are essential for allowing the motions
of particles to remain confined. Interactions between particles are essential to allow the exchanges
between them of energy and momentum, which play an important part in the evolution with time
of the statistical state of the system. However it appears that while these terms are very important
to determine the system’s evolution with time, they can be neglected, when the gas is dilute enough,
if we only want to determine the final statistical state of the system, once a thermodynamic equilibrium
is established. The Hamiltonian used will therefore be

H =
N

∑
i=1

1
2mi
‖−→pi ‖2 .

The partition function is

P(b) =
∫

M
exp(−bH)dλω =

∫
D

exp

(
−b

N

∑
i=1

1
2mi
‖−→p i‖2

)
N

∏
i=1

(d−→xi d−→pi ) ,

where D is the domain of the 6N-dimensional space spanned by the position vectors −→xi and linear
momentum vectors −→pi of the particles in which all the −→xi lie within the vessel containing the gas.
An easy calculation leads to

P(b) = VN
(

2π

b

)3N/2 N

∏
i=1

(mi
3/2) =

N

∏
i=1

[
V
(

2πmi
b

)3/2
]

,

where V is the volume of the vessel which contains the gas. The probability density of the Gibbs state
associated to b, with respect to the Liouville measure, therefore is

ρb =
N

∏
i=1

[
1
V

(
b

2πmi

)3/2
exp

(
−b‖−→pi ‖2

2mi

)]
.

We observe that ρb is the product of the probability densities ρi,b for the i-th particle

ρi,b =
1
V

(
b

2πmi

)3/2
exp

(
−b‖−→pi ‖2

2mi

)
.

The 2N stochastic vectors −→xi and −→pi , i = 1, . . . , N are therefore independent. The position −→xi of
the i-th particle is uniformly distributed in the volume of the vessel, while the probability measure of
its linear momentum −→pi is the classical Maxwell–Boltzmann probability distribution of linear momentum
for an ideal gas of particles of mass mi, first obtained by Maxwell in 1860. Moreover we see that the
three components pi 1, pi 2 and pi 3 of the linear momentum −→pi in an orhonormal basis of the physical
space are independent stochastic variables.

By using the formulae given in Proposition 11 the internal energy E(b) and the entropy S(b) of
the gas can be easily deduced from the partition function P(b). Their expressions are

E(b) =
3N
2b

, S(b) =
3
2

N

∑
i=1

log mi +

(
3
2
(
1 + log(2π)

)
+ log V

)
N − 3N

2
log b .

We see that each of the N particles present in the gas has the same contribution
3
2b

to the internal

energy E(b), which does not depend on the mass of the particle. Even more: each degree of freedom
of each particle, i.e., each of the the three components of the the linear momentum of the particle

on the three axes of an orthonormal basis, has the same contribution
1
2b

to the internal energy E(b).
This result is known in physics under the name Theorem of equipartition of the energy at a thermodynamic
equilibrium. It can be easily generalized for polyatomic gases, in which a particle may carry, in addition
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to the kinetic energy due to the velocity of its centre of mass, a kinetic energy due to the particle’s
rotation around its centre of mass. The reader can consult the books by Souriau [14] and Mackey [18]
where the kinetic theory of polyatomic gases is discussed.

The pressure in the gas, denoted by Π(b) because the notation P(b) is already used for the
partition function, is due to the change of linear momentum of the particles which occurs at a collision
of the particle with the walls of the vessel containing the gas (or with a probe used to measure that
pressure). A classical argument in the kinetic theory of gases (see for example [52,53]) leads to

Π(b) =
2
3

E(b)
V

=
N
Vb

.

This formula is the well known equation of state of an ideal monoatomic gas relating the number of
particles by unit of volume, the pressure and the temperature.

With b =
1

kT
, the above expressions are exactly those used in classical thermodynamics for an

ideal monoatomic gas.

6.3.2. Classical Ideal Monoatomic Gas in a Gravity Field

Let us now assume that the gas, contained in a cylindrical vessel of section Σ and length h, with a
vertical axis, is submitted to the vertical gravity field of intensity g directed downwards. We choose
Cartesian coordinates x, y, z, the z axis being vertical directed upwards, the bottom of the vessel being
in the horizontal surface z = 0. The Hamiltonian of a free particle of mass m, position and linear
momentum vectors −→x (components x, y, z) and −→p (components px, py and pz) is

1
2m

(p2
x + p2

y + p2
z) + mgz .

As in the previous section we neglect the parts of the Hamiltonian of the gas corresponding to
collisions between the particles, or between a particle and the walls of the vessel. The Hamiltonian of
the gas is therefore

H =
N

∑
i=1

(
1

2mi
(p2

i x + p2
i y + p2

i z) + migzi

)
.

Calculations similar to those of the previous section lead to

P(b) =
N

∏
i=1

[
Σ
(

2πmi
b

)3/2 1− exp(−migbh)
migb

]
,

ρb =
1

P(b)
exp

[
−b

N

∑
i=1

(
‖−→pi ‖2

2mi
+ migzi

)]
.

The expression of ρb shows that the 2N stochastic vectors−→xi and−→pi still are independent, and that
for each i ∈ {1, . . . , N}, the probability law of each stochastic vector −→pi is the same as in the absence
of gravity, for the same value of b. Each stochastic vector −→xi is no more uniformly distributed in the
vessel containing the gas: its probability density is higher at lower altitudes z, and this nonuniformity
is more important for the heavier particles than for the lighter ones.

As in the previous section, the formulae given in Proposition 11 allow the calculation of E(b) and
S(b). We observe that E(b) now includes the potential energy of the gas in the gravity field, therefore
should no more be called the internal energy of the gas.

6.3.3. Relativistic Monoatomic Ideal Gas

In a Galilean reference frame, we consider a relativistic point particle of rest mass m, moving
at a velocity −→v . We denote by v the modulus of −→v and by c the modulus of the velocity of light.
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The motion of the particle can be mathematically described by means of the Euler–Lagrange equations,
with the Lagrangian

L = −mc2

√
1− v2

c2 .

The components of the linear momentum −→p of the particle, in an orthonormal frame at rest in the
considered Galilean reference frame, are

pi =
∂L
∂vi =

mvi√
1− v2

c2

, therefore −→p =
m−→v√
1− v2

c2

.

Denoting by p the modulus of −→p , the Hamiltonian of the particle is

H = −→p · −→v − L =
mc2√
1− v2

c2

= c
√

p2 + m2c2 .

Let us consider a relativistic gas, made of N point particles indexed by i ∈ {1, . . . , N}, mi being
the rest mass of the i-th particle. With the same assumptions as those made in Section 6.3.1, we can
take for Hamiltonian of the gas

H = c
N

∑
i=1

√
pi

2 + m2c2 .

With the same notations as those of Section 6.3.1, the partition function P of the gas takes the
value, for each b > 0,

P(b) =
∫

D
exp

(
−bc

N

∑
i=1

√
(pi)2 + m2c2

)
N

∏
i=1

(d−→xi d−→pi ) .

This integral can be expressed in terms of the Bessel function K2, whose expression is, for each
x > 0,

K2(x) = x
∫ +∞

0
exp(−x ch χ) sh2 χ ch χdχ .

We have

P(b) =
(

4πVc
b

)N N

∏
i=1

(
mi

2K2(mibc2)
)

,

ρb =
1

P(b)
exp

(
−bc

N

∑
i=1

√
pi

2 + mi
2c2

)
.

This probability density of the Gibbs state shows that the 2N stochastic vectors −→xi and −→pi
are independent, that each −→xi is uniformly distributed in the vessel containing the gas and that the
probability density of each−→pi is exactly the probability distribution of the linear momentum of particles
in a relativistic gas called the Maxwell–Jüttner distribution, obtained by Ferencz Jüttner (1878–1958) in
1911, discussed in the book by the Irish mathematician and physicist Synge [54].

Of course, the formulae given in Proposition 11 allow the calculation of the internal energy E(b),
the entropy S(b) and the pressure Π(b) of the relativistic gas.

6.3.4. Relativistic IDeal Gas of Massless Particles

We have seen in the previous Chapter that in an inertial reference frame, the Hamiltonian
of a relativistic point particle of rest mass m is c

√
p2 + m2c2, where p is the modulus of the

linear momentum vector −→p of the particle in the considered reference frame. This expression
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still has a meaning when the rest mass m of the particle is 0. In an orthonormal reference frame,
the equations of motion of a particle whose motion is mathematically described by a Hamiltonian
system with Hamiltonian

H = cp = c
√

p1
2 + p22 + p32

are 
dxi

dt
=

∂H
∂pi

= c
pi
p

dpi
dt

= −∂H
∂xi = 0 ,

(1 ≤ i ≤ 3) ,

which shows that the particle moves on a straight line at the velocity of light c. It seems therefore
reasonable to describe a gas of N photons in a vessel of volume V at rest in an inertial reference frame
by a Hamiltonian system, with the Hamiltonian

H = c
N

∑
i=1
‖−→pi ‖ = c

N

∑
i=1

√
pi 1

2 + pi 2
2 + pi 3

2 .

With the same notations as those used in the previous section, the partition function P of the gas
takes the value, for each b > 0,

P(b) =
∫

D
exp

(
−bc

N

∑
i=1
‖−→pi ‖

)
N

∏
i=1

(d−→xi d−→pi ) =

(
8πV
c3b3

)N
.

The probability density of the corresponding Gibbs state, with respect to the Liouville measure
λω = ∏N

i=1(d
−→xi d−→pi ), is

ρb =
N

∏
i=1

(
c3b3

8πV

)
exp(−bc‖−→pi ‖) .

This formula appears in the books by Synge [54] and Souriau [14]. Physicists consider it as not
adequate for the description of a gas of photons contained in a vessel at thermal equilibrium because
the number of photons in the vessel, at any given temperature, cannot be imposed: it results from
the processes of absorption and emission of photons by the walls of the vessel, heated at the imposed
temperature, which spontaneously occur. In other words, this number is a stochastic function whose
probability law is imposed by Nature. Souriau proposes, in his book [14], a way to account for the
possible variation of the number of photons. Instead of using the phase space of the system of N
massless relativistic particles contained in a vessel, he uses the manifold of motions MN of that system
(which is symplectomorphic to its phase space). He considers that the manifold of motions M of a
system of photons in the vessel is the disjoint union

M =
⋃

N∈N
MN ,

of all the manifolds of motions MN of a system of N massless relativistic particles in the vessel,
for all possible values of N ∈ N. Fo N = 0 the manifold M0 is reduced to a singleton with,
as Liouville measure, the measure which takes the value 1 on the only non empty part of that manifold
(the whole manifold M0). Moreover, since any photon cannot be distinguished from any other photon,
two motions of the system with the same number N of massless particles which only differ by the
labelling of these particles must be considered as identical. Souriau considers too that since the

number N of photons freely adjusts itself, the value of the parameter b =
1

kT
must, at thermodynamic

equilibrium, be the same in all parts MN of the system, N ∈ N. He uses too the fact that a photon can
have two different states of (circular) polarization. With these assumptions the value at any b of the
partition function of the system is
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P(b) =
+∞

∑
N=0

1
N!

(
16πV
c3b3

)N
= exp

(
16πV
c3b3

)
.

The number N of photons in the vessel at thermodynamic equilibrium is a stochastic function
which takes the value n with the probability

Probability
(
[N = n]

)
=

1
n!

(
16πV
c3b3

)n
exp

(
−16πV

c3b3

)
.

The expression of the partition function P allows the calculation of the internal energy, the entropy
and all other thermodynamic functions of the system. However, the formula so obtained for the
distribution of photons of various energies at a given temperature does not agree with the law, in
very good agreement with experiments, obtained by Max Planck (1858–1947) in 1900. An assembly
of photons in thermodynamic equilibrium evidently cannot be described as a classical Hamiltonian
system. This fact played an important part for the development of quantum mechanics.

6.3.5. Specific Heat of Solids

The motion of a one-dimensional harmonic oscillator can be described by a Hamiltonian system
with, as Hamiltonian,

H(p, q) =
p2

2m
+

µq2

2
.

The idea that the heat energy of a solid comes from the small vibrations, at a microscopic scale, of
its constitutive atoms, lead physicists to attempt to mathematically describe a solid as an assembly of a
large number N of three-dimensional harmonic oscillators. By dealing separately with each proper
oscillation mode, the solid can even be described as an assembly of 3N one-dimensional harmonic
oscillators. Exanges of energy between these oscillators is allowed by the existence of small couplings
between them. However, for the determination of the thermodynamic equilibria of the solid we will,
as in the previous section for ideal gases, consider as negligible the energy of interactions between the
oscillators. We therefore take for Hamiltonian of the solid

H =
3N

∑
i=1

(
pi

2

2mi
+

µiqi
2

2

)
.

The value of the paritition function P, for any b > 0, is

P(b) =
∫
R6N

exp

[
−b

3N

∑
i=1

(
pi

2

2mi
+

µiqi
2

2

)] 3N

∏
i=1

(dpidqi) =
3N

∏
i=1

(
1
νi

)
b−3N ,

where

νi =
1

2π

√
µi
mi

is the frequency of the i-th harmonic oscillator.
The internal energy of the solid is

E(b) = −d log P(b)
db

=
3N
b

.

We observe that it only depends on the the temperature and on the number of atoms in the solid,

not on the frequencies νi of the harmonic oscillators. With b =
1

kT
this result is in agreement with the

empirical law for the specific heat of solids, in good agreement with experiments at high temperature,
discovered in 1819 by the French scientists Pierre Louis Dulong (1785–1838) and Alexis Thérèse Petit
(1791–1820).
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7. Generalization for Hamiltonian Actions

7.1. Generalized Gibbs States

In his book [15] and in several papers [13,16,17], Souriau extends the concept of a Gibbs state for
a Hamiltonian action of a Lie group G on a symplectic manifold (M, ω). Usual Gibbs states defined
in Section 6 for a smooth Hamiltonian H on a symplectic manifold (M, ω) appear as special cases,
in which the Lie group is a one-parameter group. If the symplectic manifold (M, ω) is the phase
space of the Hamiltonian system, that one-parameter group, whose parameter is the time t, is the
group of evolution, as a function of time, of the state of the system, starting from its state at some
arbitrarily chosen initial time t0. If (M, ω) is the symplectic manifold of all the motions of the system,
that one-parameter group, whose parameter is a real τ ∈ R, is the transformation group which maps
one motion of the system with some initial state at time t0 onto the motion of the system with the same
initial state at another time (t0 + τ). We discuss below this generalization.

Notations and Conventions

In this section, Φ : G×M→ M is a Hamiltonian action (for example on the left) of a Lie group G
on a symplectic manifold (M, ω). We denote by G the Lie algebra of G, by G∗ its dual space and by
J : M→ G∗ a momentum map of the action Φ.

Definition 19. Let b ∈ G be such that the integrals on the right hand sides of the equalities

P(b) =
∫

M
exp

(
− 〈J, b〉

)
dλω and

EJ(b) = Eρb(J) =
1

P(b)

∫
M

J exp
(
− 〈J, b〉

)
dλω

converge. The smooth probability measure on M with density (with respect to the Liouville measure λω on M)

ρb =
1

P(b)
exp

(
−〈J, b〉

)
is called the generalized Gibbs statistical state associated to b. The functions b 7→ P(b) and b 7→ EJ(b) so
defined on the subset of G made by elements b for which the integrals defining P(b) and EJ(b) converge are called
the partition function associated to the momentum map J and the mean value of J at generalized Gibbs states.

The following Proposition generalizes 9.

Proposition 12. Let b ∈ G be such that the integrals defining P(b) and EJ(b) in Definition 19 converge, and
ρb be the density of the generalized Gibbs state associated to b. The entropy s(ρb), which will be denoted by S(b),
exists and is given by

S(b) = log
(

P(b)
)
+
〈

EJ(b), b
〉
= log

(
P(b)

)
−
〈

D
(
log P(b)

)
, b
〉

. (7)

Moreover, for any other smooth probability density ρ1 such that

Eρ1(J) = Eρb(J) = EJ(b) ,

we have
s(ρ1) ≤ s(ρb) ,

and the equality s(ρ1) = s(ρb) holds if and only if ρ1 = ρb.
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Proof. Equation (7) follows from log
(

1
ρb

)
= log

(
P(b)

)
+ 〈J, b〉, and D

(
log P(b)

)
= −EJ(b). The

remaining of the proof is the same as that of Proposition 9.

Remark 15.

1. The second part of Equation (7), S(b) = log
(

P(b)
)
−
〈

D
(
log P(b)

)
, b
〉

, expresses the fact that the

functions log
(

P(b)
)

and −S(b) are Legendre transforms of each other: they are linked by the same relation
as the relation which links a smooth Lagrangian L and the associated energy EL.

2. The Liouville measure λω remains invariant under the Hamiltonian action Φ, since the symplectic form ω

itself remains invariant under that action. However, we have not a full analogue of Proposition 10 because
the momentum map J does not remain invariant under the action Φ. We only have the partial anologue
stated below.

3. Legendre transforms were used by Massieu in thermodynamics in his very early works [55,56], more
systematically presented in [57], in which he introduced his characteristic functions (today called
thermodynamic potentials) allowing the determination of all the thermodynamic functions of a physical
system by partial derivations of a suitably chosen characteristic function. For a modern presentation of that
subject the reader is referred to [58,59], Chapter 5, pp. 131–152.

Proposition 13. Let b ∈ G be such that the integrals defining P(b) and EJ(b) in Definition 19 converge.
The generalized Gibbs state associated to b remains invariant under the restriction of the Hamiltonian action Φ
to the one-parameter subgroup of G generated by b,

{
exp(τb)

∣∣ τ ∈ R
}

.

Proof. The orbits of the action on M of the subgroup
{

exp(τb)
∣∣ τ ∈ R

}
of G are the integral curves

of the Hamiltonian vector field whose Hamiltonian is 〈J, b〉, which of course is constant on each of
these curves. Therefore the proof of Proposition 10 is valid for that subgroup.

7.2. Generalized Thermodynamic Functions

Assumptions Made in this Section

Notations and conventions being the same as in Section 7.1, let Ω be the largest open subset of the
Lie algebra G of G containing all b ∈ G satisfying the following properties:

• the functions defined on M, with values, respectively, in R and in the dual G∗ of G,

z 7→ exp
(
−
〈

J(z), b
〉)

and z 7→ J(z) exp
(
−
〈

J(z), b
〉)

are integrable on M with respect to the Liouville measure λω;
• moreover their integrals are differentiable with respect to b, their differentials are continuous and

can be calculated by differentiation under the sign
∫

M.

It is assumed in this section that the considered Hamiltonian action Φ of the Lie group G on the
symplectic manifold (M, ω) and its momentum map J are such that the open subset Ω of G is not
empty. This condition is not always satisfied when (M, ω) is a cotangent bundle, but of course it is
satisfied when it is a compact manifold.

Proposition 14. Let Φ : G×M → M be a Hamiltonian action of a Lie group G on a symplectic manifold
(M, ω) satisfying the assumptions indicated in Section 7.2. The partition function P associated to the momentum
map J and the mean value EJ of J for generalized Gibbs states Definition 19 are defined and continuously
differentiable on the open subset Ω of G. For each b ∈ Ω, the differentials at b of the functions P and log P
(which are linear maps defined on G, with values in R, in other words elements of G∗) are given by

DP(b) = −P(b)EJ(b) , D(log P)(b) = −EJ(b) .
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For each b ∈ Ω, the differential at b of the map EJ (which is a linear map defined on G, with values in its
dual G∗) is given by

〈
DEJ(b)(Y), Z

〉
=
〈

EJ(b), Y
〉〈

EJ(b), Z
〉
− Eρb

(
〈J, Y〉〈J, Z〉

)
, with Y and Z ∈ G ,

where we have written, as in Definition 17,

Eρb

(
〈J, Y〉〈J, Z〉

)
=

1
P(b)

∫
M
〈J, Y〉〈J, Z〉 exp

(
−〈J, b〉

)
dλω .

At each b ∈ Ω, the differential of the entropy function S Proposition 12, which is a linear map defined on
G, with values in R, in other words an element of G∗, is given by

〈
DS(b), Y

〉
=
〈

DEJ(b)(Y), b
〉

, Y ∈ G .

Proof. By assumptions Section 7.2, the differentials of P and EJ can be calculated by differentiation
under the sign

∫
M. Easy (but tedious) calculations lead to the indicated results.

Corollary 3. With the same assumptions and notations as those in Proposition 14, for any b ∈ Ω and Y ∈ G,

〈
DEJ(b)(Y), Y

〉
= − 1

P(b)

∫
M

〈
J − EJ(b), Y

〉2dλω ≤ 0 .

Proof. This result follows from the well known result in Probability theory already used in the proof of
Proposition 11.

The momentum map J of the Hamiltonian action Φ is not uniquely determined: for any constant
µ ∈ G∗, J1 = J + µ too is a momentum map for Φ. The following proposition indicates how the
generalized thermodynamic functions P, EJ and S change when J is replaced by J1.

Proposition 15. With the same assumptions and notations as those in Proposition 14, let µ ∈ G∗ be a constant.
When the momentum map J is replaced by J1 = J + µ, the open subset Ω of G remains unchanged, while the
generalized thermodynamic functions P, EJ and S, are replaced, respectively, by P1, EJ1 and S1, given by

P1(b) = exp
(
−〈µ, b〉

)
P(b), EJ1(b) = EJ(b) + µ , S1(b) = S(b) .

The Gibbs satistical state and its density ρb with respect to the Liouville measure λω remain unchanged.

Proof. We have
exp

(
−〈J + µ, b〉

)
= exp

(
−〈µ, b〉

)
exp

(
−〈J, b〉

)
.

The indicated results follow by easy calculations.

The following proposition indicates how the generalized thermodynamic functions P, EJ and S
vary along orbits of the adjoint action of the Lie group G on its Lie algebra G.

Proposition 16. The assumptions and notations are the same as those in Proposition 14. The open subset Ω
of G is an union of orbits of the adjoint action of G on G. In other words, for each b ∈ Ω and each g ∈ G,
Adg b ∈ Ω. Moreover, let θ : G → G∗ be the symplectic cocycle of G for the coadjoin action of G on G∗ such
that, for any g ∈ G,

J ◦Φg = Ad∗g−1 ◦ J + θ(g) .
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Then for each b ∈ Ω and each g ∈ G

P(Adg b) = exp
(〈

θ(g−1), b
〉)

P(b) = exp
(
−
〈
Ad∗g θ(g), b

〉)
P(b) ,

EJ(Adg b) = Ad∗g−1 EJ(b) + θ(g) ,

S(Adg b) = S(b) .

Proof. We have

P(Adg b) =
∫

M
exp

(
−〈J, Adg b〉

)
dλω =

∫
M

exp
(
−〈Ad∗g J, b〉

)
dλω

=
∫

M
exp

(
−
〈

J ◦Φg−1 − θ(g−1, b
〉)

dλω

= exp
(〈

θ(g−1), b
〉)

P(b) = exp
(
−
〈
Ad∗g θ(g), b

〉)
P(b) ,

since θ(g−1) = −Ad∗g θ(g). By using Propositions 14 and 12, the other results easily follow.

Remark 16. The equality
EJ(Adg b) = Ad∗g−1 EJ(b) + θ(g)

means that the map EJ : Ω→ G∗ is equivariant with respect to the adjoint action of G on the open subset Ω of
its Lie algebra G and its affine action on the left on G∗

(g, ξ) 7→ Ad∗g−1 ξ + θ(g) , g ∈ G , ξ ∈ G∗ .

Proposition 17. The assumptions and notations are the same as those in Proposition 14. For each b ∈ Ω and
each X ∈ G, we have 〈

EJ(b), [X, b]
〉
=
〈
Θ(X), b

〉
,

DEJ(b)
(
[X, b]

)
= − ad∗X EJ(b) + Θ(X) ,

where Θ = Teθ : G → G∗ is the 1-cocycle of the Lie algebra G associated to the 1-cocycle θ of the Lie group G.

Proof. Let us set g = exp(τX) in the first equality in Proposition 16, derive that equality with respect
to τ, and evaluate the result at τ = 0. We obtain

DP(b)
(
[X, b]

)
= −P(b)

〈
Θ(X), b

〉
.

Since, by the first equality of Proposition 14, DP(b) = −P(b)EJ(b), the first stated equality follows.
Let us now set g = exp(τX) in the second equality in Proposition 16, derive that equality with

respect to τ, and evaluate the result at τ = 0. We obtain the second equality stated.

Corollary 4. With the assumptions and notations of Proposition 17, let us define, for each b ∈ Ω, a linear map
Θb : G → G∗ by setting

Θb(X) = Θ(X)− ad∗X EJ(b) .

The map Θb is a symplectic 1-cocycle of the Lie algebra G for the coadjoint representation, which satisfies

Θb(b) = 0 .

Moreover if we replace the momentum map J by J1 = J + µ, with µ ∈ G∗ constant, the 1-cocycle Θb
remains unchanged.
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Proof. For X, Y and Z in G, we have since Θ is a 1-cocycle, ∑
circ(X,Y,Z)

meaning a sum over circular

permutations of X, Y and Z, using the Jacobi identity in G, we have

∑
circ(X,Y,Z)

〈
Θb(X), [Y, Z]

〉
= ∑

circ(X,Y,Z)

〈
− ad∗X EJ(b), [Y, Z]

〉
= ∑

circ(X,Y,Z)

〈
−EJ(b),

[
X, [Y, Z]

]〉
= 0 .

The linear map Θb is therefore a 1 cocycle, even a symplectic 1-cocycle since for all X and Y ∈ G,〈
Θb(X), Y

〉
= −

〈
Θb(Y), X

〉
.

Using the first equality stated in Proposition 17, we have for any X ∈ G〈
Θb(b), X

〉
=
〈
Θ(b)− ad∗b EJ(b), X

〉
= −

〈
Θ(X), b

〉
+
〈

EJ(b), [X, b]
〉
= 0 .

If we replace J by J1 = J + µ, the map X 7→ Θ(X) is replaced by X 7→ Θ1(X) = Θ(X) + ad∗X µ

and EJ(b) by EJ1(b) = EJ(b) + µ, therefore Θb remains unchanged.

The following lemma will allow us to define, for each b ∈ Ω, a remarkable symmetric bilinear
form on the vector subspace [b,G] =

{
[b, X] ; X ∈ G

}
of the Lie algebra G.

Lemma 1. Let Ξ be a 1-cocycle of a finite-dimensional Lie algebra G for the coadjoint representation. For each
b ∈ ker Ξ, let Fb = [G, b] be the set of elements X ∈ G which can be written X = [X1, b] for some X1 ∈ G.
Then Fb is a vector subspace of G, and the value of the right hand side of the equality

Γb(X, Y) =
〈
Ξ(X1), Y

〉
, with X1 ∈ G , X = [X1, b] ∈ Fb , Y ∈ Fb ,

depends only on X and Y, not on the choice of X1 ∈ G such that X = [X1, b]. That equality defines a bilinear
form Γb on Fb which is symmetric, i.e., satisfies

Γb(X, Y) = Γb(Y, X) for all X and Y ∈ Fb .

Proof. Let X1 and X′1 ∈ G be such that [X1, b] = [X′1, b] = X. Let Y1 ∈ G be such that [Y1, b] = Y.
We have 〈

Ξ(X1 − X′1), Y
〉
=
〈
Ξ(X1 − X′1), [Y1, b]

〉
= −

〈
Ξ(Y1), [b, X1 − X′1]

〉
−
〈
Ξ(b), [X1 − X′1, Y1]

〉
= 0

since Ξ(b) = 0 and [b, X1 − X′1] = 0. We have shown that
〈
Ξ(X1), Y

〉
=
〈
Ξ(X′1), Y

〉
. Therefore Γb is a

bilinear form on Fb. Similarly〈
Ξ(X1), Y

〉
=
〈
Ξ(X1), [Y1, b]

〉
= −

〈
Ξ(Y1), [b, X1]

〉
−
〈
Ξ(b), [X1, Y1]

〉
=
〈
Ξ(Y1), X

〉
,

which proves that Γb is symmetric.

Theorem 7. The assumptions and notations are the same as those in Proposition 14. For each b ∈ Ω, there exists
on the vector subspace Fb = [G, b] of elements X ∈ G which can be written X = [X1, b] for some X1 ∈ G,
a symmetric negative bilinear form Γb given by

Γb(X, Y) =
〈
Θb(X1), Y

〉
, with X1 ∈ G , X = [X1, b] ∈ Fb , Y ∈ Fb ,
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where Θb : G → G∗ is the symplectic 1-cocycle defined in Corollary 4.

Proof. We have seen in Corollary 4 that b ∈ ker Θb. The fact that the equality given in the statement
above defines indeed a symmetric bilinear form on Fb directly follows from Lemma 1. We only have
to prove that this symmetric bilinear form is negative. Let X ∈ Fb and X1 ∈ G such that X = [X1, b].
Using Proposition 17 and Corollary 3, we have

Γb(X, X) =
〈
Θb(X1), [X1, b]

〉
=
〈
Θ(X1)− ad∗X1

EJ(b), [X1, b]
〉
=
〈

DEJ(b)[X1, b], [X1, b]
〉

≤ 0 .

The symmetric bilinear form Γb on Fb is therefore negative.

Remark 17. The symmetric negative bilinear forms encountered in Theorem 7 and Corollary 3 seem to be linked
with the Fisher metric in information geometry discussed in [31,60,61].

7.3. Examples of Generalized Gibbs States

7.3.1. Action of the Group of Rotations on a Sphere

The symplectic manifold (M, ω) considered here is the two-dimensional sphere of radius R
centered at the origin O of a three-dimensional oriented Euclidean vector space

−→
E , equipped with its

area element as symplectic form. The group G of rotations around the origin (isomorphic to SO(3))
acts on the sphere M by a Hamiltonian action. The Lie algebra G of G can be identified with

−→
E ,

the fundamental vector field on M associated to an element
−→
b in G ≡ −→E being the vector field

on M whose value at a point m ∈ M is given by the vector product
−→
b × −→Om. The dual G∗ of G

will be too identified with
−→
E , the coupling by duality being given by the Euclidean scalar product.

The momentum map J : M→ G∗ ≡ −→E is given by

J(m) = −R
−→
Om , m ∈ M .

Therefore, for any
−→
b ∈ G ≡ −→E , 〈

J(m),
−→
b
〉
= −R

−→
Om ·

−→
b .

Let
−→
b be any element in G ≡ −→E . To calculate the partition function P(

−→
b ) we choose an

orthonormal basis (−→ex ,−→ey ,−→ez ) of
−→
E such that

−→
b = ‖

−→
b ‖−→ez , with ‖

−→
b ‖ ∈ R+, and we use angular

coordinates (ϕ, θ) on the sphere M. The coordinates of a point m ∈ M are

x = R cos θ cos ϕ , y = R cos θ sin ϕ , z = R sin θ .

We have

P(
−→
b ) =

∫ 2π

0

(∫ π/2

−π/2
R2 exp(R‖

−→
b ‖ sin θ dθ

)
dϕ =

4πR

‖
−→
b ‖

sh
(

R‖
−→
b ‖
)

.

The probability density (with respect to the natural area measure on the sphere M) of the
generalized Gibbs state associated to

−→
b is

ρb(m) =
1

P(
−→
b )

exp(
−→
Om ·

−→
b ) , m ∈ M .
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We observe that ρb reaches its maximal value at the point m ∈ M such that
−→
Om =

R
−→
b

‖
−→
b ‖

and its

minimal value at the diametrally opposed point.

7.3.2. The Galilean Group, Its Lie Algebra and Its Actions

In view of the presentation, made below, of some physically meaningful generalized Gibbs states
for Hamiltonian actions of subgroups of the Galilean group, we recall in this section some notions
about the space-time of classical (non-relativistic) mechanics, the Galilean group, its Lie algebra and its
Hamiltonian actions. The interested reader will find a much more detailed treatment on these subjects
in the book by Souriau [14] or in the recent book by de Saxcé and Vallée [45]. The paper [62] presents a
nice application of Galilean invariance in thermodynamics.

The space-time of classical mechanics is a four-dimensional real affine space which, once an
inertial reference frame, units of length and time, orthonormal bases of space and time are chosen, can
be identified with R4 ≡ R3 ×R (coordinates x, y, z, t). The first three coordinates x, y and z can be
considered as the three components of a vector −→r ∈ R3, therefore an element of space-time can be
denoted by (−→r , t). However, as the action of the Galilean group will show, the splitting of space-time
into space and time is not uniquely determined, it depends on the choice of an inertial reference frame.
In classical mechanics, there exists an absolute time, but no absolute space. There exists instead a space
(which is an Euclidean affine three-dimensional space) for each value of the time. The spaces for two
distinct values of the time should be considered as disjoint.

The space-time being identified with R3 ×R as explained above, the Galilean group G can be
identified with the set of matrices of the formA

−→
b
−→
d

0 1 e
0 0 1

 , with A ∈ SO(3) ,
−→
b and

−→
d ∈ R3 , e ∈ R , (8)

the vector space R3 being oriented and endowed with its usual Euclidean structure, the matrix
A ∈ SO(3) acting on it.

The action of the Galilean group G on space-time, identified as indicated above with R3 × R,
is the affine action 

−→r
t
1

 7→
A

−→
b
−→
d

0 1 e
0 0 1



−→r
t
1

 =

A−→r + t
−→
b +
−→
d

t + e
1

 .

The Lie algebra G of the Galilean group G can be identified with the space of matrices of the formj(−→ω )
−→
β
−→
δ

0 0 ε

0 0 0

 , with −→ω ,
−→
β and

−→
δ ∈ R3 , ε ∈ R . (9)

We have denoted by j(−→ω ) the 3× 3 skew-symmetric matrix

j(−→ω ) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

The matrix j(−→ω ) is an element in the Lie algebra so(3), and its action on a vector −→r ∈ R3 is given
by the vector product

j(−→ω )−→r = −→ω ×−→r .
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Let us consider a mechanical system made by a point particle of mass m whose position and
velocity at time t, in the reference frame allowing the identification of space-time with R3 ×R, are the
vectors −→r and −→v ∈ R3. The action of an element of the Galilean group on −→r ,−→v and t can be
written as 

−→r −→v
t 1
1 0

 7→
A

−→
b
−→
d

0 1 e
0 0 1



−→r −→v
t 1
1 0

 =

A−→r + t
−→
b +
−→
d A−→v +

−→
b

t + e 1
1 0

 .

Souriau has shown in his book [14] that this action is Hamiltonian, with the map J, defined on the
evolution space of the particle, with value in the dual G∗ of the Lie algebra G of the Galilean group,
as momentum map

J(−→r , t,−→v , m) = m
(
−→r ×−→v , −→r − t−→v , −→v ,

1
2
‖−→v ‖2

)
.

Let b =

j(−→ω )
−→
β
−→
δ

0 0 ε

0 0 0

 be an element in G. Its coupling with J(−→r , t,−→v , m) ∈ G∗ is given by

the formula〈
J(−→r , t,−→v , m), b

〉
= m

(−→ω · (−→r ×−→v )− (−→r − t−→v ) · −→β +−→v · −→δ − 1
2
‖−→v ‖2ε

)
.

7.3.3. One-Parameter Subgroups of the Galilean Group

In his book [14], Souriau has shown that when the considered Lie group action is the action of the
full Galilean group on the space of motions of an isolated mechanical system, the open subset Ω of
the Lie algebra G of the Galilean group on which the conditions specified in Section 7.2 are satisfied
is empty. In other words, generalized Gibbs states of the full Galilean group do not exist. However,
generalized Gibbs states for one-parameter subgroups of the Galilean group do exist which have an
interesting physical meaning.

Let us consider an element b of G such that in its matrix expression (expression (9) above) we
have ε 6= 0. The one-parameter subgroup G1 of the Galilean group generated by b is the set of matrices
exp(τb), with τ ∈ R. We have

exp(τb) =

A(τ)
−→
b (τ)

−→
d (τ)

0 1 τε

0 0 1

 ,

with

A(τ) = exp
(
τ j(−→ω )

)
,

−→
b (τ) =

(
∞

∑
n=1

τn

n!
(

j(−→ω )
)n−1

)
−→
β ,

−→
d (τ) =

(
∞

∑
n=1

τn

n!
(

j(−→ω )
)n−1

)
−→
δ + ε

(
∞

∑
n=2

τn

n!
(

j(−→ω )
)n−2

)
−→
β ,

with the usual convention that
(

j(−→ω )
)0 is the unit matrix.

The physical meaning of this one-parameter subgroup of the Galilean group can be understood as
follows. Let us call fixed the affine Euclidean reference frame of space (O,−→ex ,−→ey ,−→ez ) used to represent,

at time t = 0, a point in space by a vector −→r or by its three components x, y and z. Let us set τ =
t
ε
.
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For each time t ∈ R, the action of A(τ) = A
(

t
ε

)
maps the fixed reference frame (O,−→ex ,−→ey ,−→ez )

onto another affine Euclidean reference frame
(
O(t),−→ex (t),

−→ey (t),
−→ez (t)

)
, which we call the moving

reference frame. The velocity and the acceleration of the relative motion of the moving reference
frame with respect to the fixed reference frame is given, at time t = 0, by the fundamental vector field
associated to the element b of the Lie algebra G of the Galilean group: we see that each point in space
has a motion composed of a rotation around the axis through O parallel to −→ω , at an angular velocity
‖−→ω ‖

ε
, and simultaneously a uniformly accelerated motion of translation at an initial velocity

−→
δ

ε
and

acceleration
−→
β

ε
. At time t, the velocity and acceleration of the moving reference frame with respect to

its instantaneous position at that time can be described in a similar manner, but instead of O, −→ω ,
−→
β

and
−→
δ we must use the corresponding transformed elements by the action of A(τ) = A

(
t
ε

)
.

7.3.4. A Gas Contained in a Moving Vessel

We consider a mechanical system made by a gas of N point particles, indexed by i ∈ {1, 2, . . . , N},
contained in a vessel with rigid, undeformable walls, whose motion in space is given by the action

of the one-parameter subgroup G1 of the Galilean group made by the A
(

t
ε

)
, with t ∈ R, above

described. We denote by mi,
−→ri (t) and −→vi (t) the mass, position vector and velocity vector, respectively,

of the i-th particle at time t. Since the motion of the vessel containing the gas is precisely given by
the action of G1, the boundary conditions imposed to the system are invariant by that action, which
leaves invariant the evolution space of the mechanical system, is Hamiltonian and projects onto a
Hamiltonian action of G1 on the symplectic manifold of motions of the system. We can therefore
consider the generalized Gibbs states of the system, as discussed in Section 7.1. We must evaluate the
momentum map J of that action and its coupling with the element b ∈ G. As in Section 6.3.1 we will
neglect, for that evaluation, the contributions of the collisions of the particles between themselves and
with the walls of the vessel. The momentum map can therefore be evaluated as if all particles were
free, and its coupling 〈J, b〉 with b is the sum ∑N

i=1〈Ji, b〉 of the momentum map Ji of the i-th particle,
considered as free, with b. We have

〈
Ji(
−→ri , t,−→vi , mi), b

〉
= mi

(−→ω · (−→ri ×−→vi )− (−→ri − t−→vi ) ·
−→
β +−→vi ·

−→
δ − 1

2
‖−→vi ‖2ε

)
.

Following Souriau [14], Chapter IV, pp. 299–303, we observe that 〈Ji, b〉 is invariant by the action
of G1. We can therefore define −→ri 0, t0 and −→vi 0 by setting

−→ri 0
−→vi 0

t0 1
1 0

 = exp
(
− t

ε
b
)
−→ri

−→vi
t 1
1 0


and write 〈

Ji(
−→ri , t,−→vi , mi), b

〉
=
〈

Ji(
−→ri 0, t0,−→vi 0, mi), b

〉
.

The vectors −→ri 0 and −→vi 0 have a clear physical meaning: they are the vectors −→ri and −→vi as seen
by an observer moving with the moving affine Euclidean reference frame

(
O(t),−→ex (t),

−→ey (t),
−→ez (t)

)
.

Moreover, as can be easily verified, t0 = 0 of course. We therefore have

〈
Ji(
−→ri , t,−→vi , mi), b

〉
= mi

(−→ω · (−→ri 0 ×−→vi 0)−−→ri 0 ·
−→
β +−→vi 0 ·

−→
δ − 1

2
‖−→vi 0‖2ε

)
= mi

(−→vi 0 · (−→ω ×−→ri 0 +
−→
δ )−−→ri 0 ·

−→
β − 1

2
‖−→vi 0‖2ε

)
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where we have used the well known property of the mixed product

−→ω · (−→ri 0 ×−→vi 0) =
−→vi 0 · (−→ω ×−→ri 0) .

Let us set
−→
U ∗ =

1
ε
(−→ω ×−→ri 0 +

−→
δ ) .

Using −→vi 0 −
−→
U ∗ and

−→
U ∗ instead of −→vi 0, we can write

〈
Ji(
−→ri , t,−→vi , mi), b

〉
= miε

(
−1

2
‖−→vi 0 −

−→
U ∗‖2 −−→ri 0 ·

−→
β

ε
+

1
2
‖−→U ∗‖2

)
.

We observe that the vector
−→
U ∗ only depends on ε, −→ω ,

−→
δ , which are constants once the element

b ∈ G is chosen, and of −→ri 0, not on −→vi 0. It has a clear physical meaning: it is the value of the velocity of
the moving affine reference frame with respect to the fixed affine reference frame, at point −→ri 0 seen by
an observer linked to the moving reference frame. Therefore the vector −→wi 0 = −→vi 0 −

−→
U ∗ is the relative

velocity of the i-th particle with respect to the moving affine reference frame, seen by an observer linked
to the moving reference frame.

The three components of −→ri 0 and the three components of −→pi 0 = mi
−→wi 0 make a system of Darboux

coordinates on the six-dimensional symplectic manilold (Mi, ωi) of motions of the i-th particle. With a
slight abuse of notations, we can consider the momentum map Ji as defined on the space of motions of
the i-th particle, instead of being defined on the evolution space of this particle, and write

〈
Ji(
−→ri 0,−→pi,0), b

〉
= −ε

(
1

2mi
‖−→pi 0‖2 + mi fi(

−→ri 0)

)
, −→pi 0 = mi

−→wi 0 = mi(
−→vi 0 −

−→
U ∗) , (10)

and

fi(
−→ri 0) =

−→ri 0 ·
−→
β

ε
− 1

2ε2 ‖
−→ω ×−→ri 0‖2 −

−→
δ

ε
·
(−→ω

ε
×−→ri 0

)
− 1

2ε2 ‖
−→
δ ‖2 .

Equation (10) is well suited for the determination of generalized Gibbs states of the system. Let
us set

Pi(b) =
∫

Mi

exp
(
−〈Ji, b〉

)
dλωi , EJi (b) =

1
Pi(b)

∫
Mi

Ji exp
(
−〈Ji, b〉

)
dλωi .

The integrals in the right hand sides of these equalities converge if and only if ε < 0. It means that
the matrix b belongs to the subset Ω of the one-dimensional Lie algebra of the considered one-parameter
subgroup G1 of the Galilean group on which generalized Gibbs states can be defined if and only if ε < 0.
Assuming that condition satisfied, we can use Definitions 19. The generalized Gibbs state determined
by b has the smooth density, with respect to the Liouville measure ∏N

i=1 λωi on the symplectic manifold
of motions ΠN

i=1(Mi, ωi),

ρ(b) =
N

∏
i=1

ρi(b) , with ρi(b) =
1

Pi(b)
exp

(
−〈Ji, b〉

)
.

The partition function, whose expression is

P(b) =
N

∏
i=1

Pi(b) ,

can be used, with the help of the formulae given in Section 7.2, to determine all the generalized
thermodynamic functions of the gas in a generalized thermodynamic equilibrium state.
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Remark 18.

1. The physical meaning of the parameter ε which appears in the expression of the matrix b is clearly apparent
in expression (10) of 〈Ji, b〉:

ε = − 1
kT

,

T being the absolute temperature and k the Boltzmann’s constant.
2. The same expression (10) shows that the relative motion of the gas with respect to the moving vessel in

which it is contained, seen by an observer linked to that moving vessel, is described by a Hamiltonian

system in which the kinetic and potential energies of the i-th particle are, respectively,
1

2mi
‖−→pi 0‖2 and

mi fi(
−→ri 0). This result can be obtained in another way: by deriving the Hamiltonian which governs the

relative motion of a mechanical system with respect to a moving frame, as used by Jacobi [63] to determine
the famous Jacobi integral of the restricted circular three-body problem (in which two big planets move on
concentric circular orbits around their common center of mass, and a third planet of negligible mass moves
in the gravitational field created by the two big planets).

3. The generalized Gibbs state of the system imposes to the various parts of the system, i.e., to the various

particles, to be at the same temperature T = − 1
kε

and to be statistically at rest in the same moving
reference frame.

7.3.5. Three Examples

1. Let us set −→ω = 0 and
−→
β = 0. The motion of the moving vessel containing the gas (with respect

to the so called fixed reference frame) is a translation at a constant velocity
−→
δ

ε
. The function fi(

−→ri 0)

is then a constant. In the moving reference frame, which is an inertial frame, we recover the
thermodynamic equilibrium state of a monoatomic gas discussed in Section 6.3.1.

2. Let us set now −→ω = 0 and
−→
δ = 0. The motion of the moving vessel containing the gas

(with respect to the so called fixed reference frame) is now an uniformly accelerated translation,

with acceleration
−→
β

ε
. The function fi(

−→ri 0) now is

fi(
−→ri 0) =

−→ri 0 ·
−→
β

ε
.

In the moving reference frame, which is no more inertial, we recover the thermodynamic

equilibrium state of a monoatomic gas in a gravity field −→g = −
−→
β

ε
discussed in Section 6.3.2.

3. Let us now set −→ω = ω−→ez ,
−→
β = 0 and

−→
δ = 0. The motion of the moving vessel containing the

gas (with respect to the so called fixed reference frame) is now a rotation around the coordinate z
axis at a constant angular velocity

ω

ε
. The function fi(

−→ri 0) is now

fi(
−→ri 0) = −

ω2

2ε2 ‖
−→ez ×−→ri 0‖2 .

The length ∆ = ‖−→ez ×−→ri,0‖ is the distance between the i-th particle and the axis of rotation of

the moving frame (the coordinate z axis). Moreover, we have seen that ε =
−1
kT

. Therefore in

the generalized Gibbs state, the probability density ρi(b) of presence of the i-th particle in its
symplectic manifold of motion Mi, ωi, with respect to the Liouville measure λωi , is

ρi(b) =
1

Pi(b)
exp

(
−〈Ji, b〉

)
= Constant · exp

(
− 1

2mikT
‖−→pi 0‖2 +

mi
2kT

(ω

ε

)2
∆2
)

.



Entropy 2016, 18, 370 44 of 46

This formula describes the behaviour of a gas made of point particles of various masses in a

centrifuge rotating at a constant angular velocity
ω

ε
: the heavier particles concentrate farther from

the rotation axis than the lighter ones.

7.3.6. Other Applications of Generalized Gibbs States

Applications of generalized Gibbs states in thermodynamics of continua, with the use of affine
tensors, are presented in the papers by de Saxcé [64,65].

Several applications of generalized Gibbs states of subgroups of the Poincaré group were
considered by Souriau. For example, he presents in his book [14], Chapter IV, p. 308, a generalized
Gibbs which describes the behaviour of a gas in a relativistic centrifuge, and in his papers [15,16], very
nice applications of such generalized Gibbs states in Cosmology.
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