Local Stability Analysis for a Thermo-Economic Irreversible Heat Engine Model under Different Performance Regimes
<p>Schematic representation of an endoreversible heat engine.</p> "> Figure 2
<p>Profit functions for <math display="inline"> <mrow> <mi>β</mi> <mo>=</mo> <mn>0</mn> </mrow> </math> and <math display="inline"> <mrow> <mi>β</mi> <mo>=</mo> <mn>5</mn> </mrow> </math> <span class="html-italic">versus η</span> with <math display="inline"> <mrow> <mi>R</mi> <mo>=</mo> <mn>1</mn> </mrow> </math> and <math display="inline"> <mrow> <mi mathvariant="sans-serif">τ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </math>.</p> "> Figure 3
<p>The steady-state efficiencies working under maximum power output (<math display="inline"> <msub> <mover> <mi>η</mi> <mo>¯</mo> </mover> <mrow> <mi>M</mi> <mi>P</mi> </mrow> </msub> </math>), maximum-efficient power (<math display="inline"> <msub> <mover> <mi>η</mi> <mo>¯</mo> </mover> <mrow> <mi>E</mi> <mi>P</mi> </mrow> </msub> </math>) and maximum ecological function (<math display="inline"> <msub> <mover> <mi>η</mi> <mo>¯</mo> </mover> <mi>E</mi> </msub> </math>) conditions.</p> "> Figure 4
<p>Plot of relaxation times under maximum power conditions <span class="html-italic">versus</span> <span class="html-italic">τ</span> for (<b>a</b>) several values of the endorreversibility parameter and a value of the fractional fuel cost and (<b>b</b>) for several values of the fractional fuel cost <span class="html-italic">f</span> in the endoreversible case (R = 1).</p> "> Figure 5
<p>Plot of relaxation times under maximum efficient power <span class="html-italic">versus</span> <span class="html-italic">τ</span> for (<b>a</b>) several values of the endorreversibility parameter and a value of the fractional fuel cost and (<b>b</b>) for several values of the fractional fuel cost <span class="html-italic">f</span> in the endoreversible case (R = 1).</p> "> Figure 6
<p>Plot of relaxation times under maximum ecological function conditions <span class="html-italic">versus</span> <span class="html-italic">τ</span> for (<b>a</b>) several values of the endorreversibility parameter and a value of the fractional fuel cost and (<b>b</b>) for several values of the fractional fuel cost <span class="html-italic">f</span> in the endoreversible case (R = 1).</p> "> Figure 7
<p>Relaxation times in the endoreversible case (<math display="inline"> <mrow> <mi>R</mi> <mo>=</mo> <mn>1</mn> </mrow> </math>) <span class="html-italic">versus</span> fractional fuel cost for several values of <span class="html-italic">τ</span> for (<b>a</b>) Maximum efficient power conditions and (<b>b</b>) Maximum ecological function.</p> "> Figure 8
<p>Ratio of the relaxation times <span class="html-italic">versus</span> <span class="html-italic">τ</span> for a value of the fractional fuel cost and several values of the parameter <span class="html-italic">R</span> (cases (<b>a</b>), (<b>c</b>) and (<b>e</b>)), and for the endoreversible case <math display="inline"> <mrow> <mi>R</mi> <mo>=</mo> <mn>1</mn> </mrow> </math>, for different values of the fractional fuel cost, (cases (<b>b</b>), (<b>d</b>) and (<b>f</b>)).</p> ">
Abstract
:1. Introduction
2. Thermoeconomic Optimization of a Curzon-Ahlborn Engine Model at Different Regimes of Performance
3. Local Stability Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
A. Linearization and Stability Analysis
References
- Santillán, M.; Maya, G.; Angulo-Brown, F. Local stability analysis of and endoreversible Curzon-Ahlborn-Novikov engine working in a maximum-power like regime. J. Phys. D Appl. Phys. 2001, 34, 2068–2072. [Google Scholar] [CrossRef]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Guzman-Vargas, L.; Reyes-Ramirez, I.; Sánchez, N. The effect of heat transfer laws and thermal conductances on the local stability of an endoreversible heat engine. J. Phys. D Appl. Phys. 2005, 38, 1282–1291. [Google Scholar] [CrossRef]
- Paéz-Hernández, R.; Angulo-Brown, F.; Santillán, M. Dynamic Robustness and Thermodynamic Optimization in a Non-Endoreversible Curzon-Ahlborn Engine. J. Non-Equilib. Thermodyn. 2006, 31, 173–188. [Google Scholar] [CrossRef]
- De Vos, A. Endoreversible thermoeconomics. Energy Convers. Manag. 1995, 36, 1–5. [Google Scholar] [CrossRef]
- Novikov, I.I. The efficiency of atomic power stations (a review). J. Nucl. Energy (1954) 1958, 7, 125–128. [Google Scholar] [CrossRef]
- Chambadal, P. Les Centrales Nucléaires; Armand Colin: Paris, France, 1967. (In French) [Google Scholar]
- Sahin, B.; Kodal, A. Performance analysis of an endoreversible heat engine based on a new thermoeconomic optimization criterion. Energy Convers. Manag. 2001, 42, 1085–1093. [Google Scholar] [CrossRef]
- Wu, C.; Chen, L.; Chen, J. Recent Advances in Finite-Time Thermodynamics; Nova Science Publishers: New York, NY, USA, 1999. [Google Scholar]
- Barranco-Jiménez, M.A.; Angulo-Brown, F. Thermoeconomic optimisation of Novikov power plant model under maximum ecological conditions. J. Energy Inst. 2007, 80, 96–104. [Google Scholar] [CrossRef]
- Barranco-Jiménez, M.A.; Angulo-Brown, F. Thermoeconomic optimisation of endoreversible heat engine under maximum modified ecological criterion. J. Energy Inst. 2007, 80, 232–238. [Google Scholar] [CrossRef]
- Barranco-Jiménez, M.A.; Páez-Hernández, R.T.; Reyes-Ramírez, I.; Guzmán-Vargas, L. Local Stability Analysis of a Thermo-Economic Model of a Chambadal-Novikov-Curzon-Ahlborn Heat Engine. Entropy 2011, 13, 1584–1594. [Google Scholar] [CrossRef]
- Barranco-Jiménez, M.A.; Cervantes-Espinoza, L.; Hurtado-Aguilar, D.; Reyes-Ramirez, I.; Guzmán-Vargas, L. Local stability Analysis of thermoeconomic model of a Curzon-Ahlborn heat engine with a Dulong-Petit heat transfer law. In Proceedings of the 24th International Conference on ECOS 2011, Novi Sad, Serbia, 4–7 July 2011; pp. 410–418.
- Yilmaz, T. A new performance criterion for heat engines: Efficient power. J. Energy Inst. 2006, 79, 38–41. [Google Scholar] [CrossRef]
- Arias-Hernández, L.A.; Barranco-Jiménez, M.A.; Angulo-Brown, F. Comparative analysis of two ecological type modes of performance for a simple energy converter. J. Energy Inst. 2009, 82, 223–227. [Google Scholar] [CrossRef]
- Angulo-Brown, F. An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 1991, 69, 7465–7469. [Google Scholar] [CrossRef]
- Arias-Hernández, L.A.; Angulo-Brown, F. A general property of endoreversible thermal engines. J. Appl. Phys. 1997, 81, 2973–2979. [Google Scholar] [CrossRef]
- Chen, J. The maximum power output and maximum efficiency of an irreversible Carnot heat engine. J. Phys. D Appl. Phys. 1994, 27. [Google Scholar] [CrossRef]
- Arias-Hernández, L.A.; AresdeParga, G.; Angulo-Brown, F. On Some Nonendoreversible Engine Models with Nonlinear Heat Transfer Laws. Open Syst. Inf. Dyn. 2003, 10, 351–375. [Google Scholar] [CrossRef]
- Barranco-Jiménez, M.A. Finite-time thermodynamics optimization of a non endoreversible heat engine. Rev. Mex. Phys. 2009, 55, 211–220. [Google Scholar]
- Stucki, J.W. The Optimal Efficiency and the Economic Degrees of Coupling of Oxidative Phosphorylation. Eur. J. Biochem. 1980, 109, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Arias-Hérnandez, L.A.; Angulo-Brown, F. Thermodynamic optimization of endoreversible engines. Rev. Mex. Fis. 1994, 40, 866–877. [Google Scholar]
- Calvo-Hernández, A.; Medina, A.; Roco, J.M.M.; White, J.A.; Velasco, S. Unified optimization criterion for energy converters. Phys. Rev. E 2001, 63, 037102. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tu, Z.C. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Phys. Rev. E 2012, 85, 011127. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ayala, J.; Arias-Hernandez, L.A.; Angulo-Brown, F. Connection between maximum-work and maximum-power thermal cycles. Phys. Rev. E 2013, 88, 052142. [Google Scholar] [CrossRef] [PubMed]
- Strogatz, S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering; Westview Press: Boulder, CO, USA, 2000. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barranco-Jiménez, M.A.; Sánchez-Salas, N.; Reyes-Ramírez, I. Local Stability Analysis for a Thermo-Economic Irreversible Heat Engine Model under Different Performance Regimes. Entropy 2015, 17, 8019-8030. https://doi.org/10.3390/e17127860
Barranco-Jiménez MA, Sánchez-Salas N, Reyes-Ramírez I. Local Stability Analysis for a Thermo-Economic Irreversible Heat Engine Model under Different Performance Regimes. Entropy. 2015; 17(12):8019-8030. https://doi.org/10.3390/e17127860
Chicago/Turabian StyleBarranco-Jiménez, Marco A., Norma Sánchez-Salas, and Israel Reyes-Ramírez. 2015. "Local Stability Analysis for a Thermo-Economic Irreversible Heat Engine Model under Different Performance Regimes" Entropy 17, no. 12: 8019-8030. https://doi.org/10.3390/e17127860
APA StyleBarranco-Jiménez, M. A., Sánchez-Salas, N., & Reyes-Ramírez, I. (2015). Local Stability Analysis for a Thermo-Economic Irreversible Heat Engine Model under Different Performance Regimes. Entropy, 17(12), 8019-8030. https://doi.org/10.3390/e17127860