Information Dynamics in the Interaction between a Prey and a Predator Fish
<p>Arena and example trajectories. (<b>a</b>) Arena used in the experiments. The prey fish was in the smaller central circular area with a radius of 7 cm, while the predator fish was in the concentric angular ring area with a radius from 7 to 25 cm. The two fish were separated by a transparent barrier ring, with many small holes in it. The depth of water is 10 cm. (<b>b</b>) Example trajectories of the two fish. The trajectories were segments of Trial 4.</p> "> Figure 2
<p>Space-division mode <math display="inline"> <mrow> <mn>8</mn> <mo>×</mo> <mn>2</mn> </mrow> </math>. The two solid green circles defined the space boundaries for the prey and predator fish, respectively. The dotted brown lines divided the whole space over the polar angle into eight sectors, and the dotted brown circles continued to partition the radius into two equal parts for the prey and the predator, respectively. Each cell, either being a sector or an annular sector, shared a common polar angle of <math display="inline"> <mrow> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mn>8</mn> </mrow> </math>. However, the radius of the cells in the prey’s space was <math display="inline"> <mrow> <msub> <mi>r</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>y</mi> </mrow> </msub> <mo>/</mo> <mn>2</mn> </mrow> </math> and in the predator’s space was <math display="inline"> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mrow> <mi>a</mi> <mi>r</mi> <mi>e</mi> <mi>n</mi> <mi>a</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>r</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>y</mi> </mrow> </msub> <mo>)</mo> <mo>/</mo> <mn>2</mn> </mrow> </math>. Consequently, both the prey and the predator could assume 16 possible states in this space division mode.</p> "> Figure 3
<p>(color online) Transfer entropy. (<b>a</b>) <math display="inline"> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </math> s, space division mode was <math display="inline"> <mrow> <mn>40</mn> <mo>×</mo> <mn>10</mn> </mrow> </math>. (<b>b</b>) <math display="inline"> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </math> s, space division mode was <math display="inline"> <mrow> <mn>20</mn> <mo>×</mo> <mn>7</mn> </mrow> </math>. This clearly shows that the prey’s transfer entropy (TE) (black bar) was significantly larger than the predator’s (red bar) over trials. Additionally, this pattern emerged when TE was computed on different sets of the coarse-grained parameters. This result indicates that more information was transmitted from predator to prey than <span class="html-italic">vice versa</span>.</p> "> Figure 4
<p>Transfer entropy (TE) differences (<math display="inline"> <mrow> <msub> <mtext>TE</mtext> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msub> <mtext>TE</mtext> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mi>a</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> </mrow> </math>) for a single trial (Trial 2 in <a href="#entropy-17-07230-f003" class="html-fig">Figure 3</a>) for a range of values of sampling time <span class="html-italic">τ</span> and space division modes (which are 8 × 2, 8 × 3, 8 × 6, 10 × 2, <span class="html-italic">etc.</span>).</p> "> Figure 5
<p>The prey’s TE <span class="html-italic">versus</span> the distance between it and the predator. (<b>a</b>) <math display="inline"> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </math> s, space-division mode was <math display="inline"> <mrow> <mn>40</mn> <mo>×</mo> <mn>10</mn> </mrow> </math>. (<b>b</b>) <math display="inline"> <mrow> <mi>τ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </math> s, space division mode was <math display="inline"> <mrow> <mn>20</mn> <mo>×</mo> <mn>7</mn> </mrow> </math>. The error bar was the standard deviation among trials. The high plateau in the mid-range distance reflects the vigilant space zone of the prey, in which it responded sensitively to the predator’s position.</p> ">
Abstract
:1. Introduction
2. Preliminaries on Information Theory
3. Materials and Methods
3.1. Animal
3.2. Experimental Setup
3.3. Experimental Procedure
4. Coarse-Grained in Space and Time
5. Results
6. Discussion and Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dall, S.R.X.; Giraldeau, L.A.; Olsson, O.; McNamara, J.M.; Stephens, D.W. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 2005, 20, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Sumpter, D.J.T.; Pratt, S.C. Quorum responses and consensus decision making. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 364, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, A.; Cimarelli, A.; Giardina, I.; Parisi, G.; Santagati, R.; Stefanini, F.; Viale, M. Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 2010, 107, 11865–11870. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.W. Flocks, herds, and schools: A distributed behavioral model. ACM SIGGRAPH Comput. Graph. 1987, 21, 25–34. [Google Scholar] [CrossRef]
- Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel type of phase transition of self-driven particles. Phys. Rev. Lett. 1995, 75, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R. Collective Memory and Spatial Sorting in Animal Groups. J. Theor. Biol. 2002, 218. [Google Scholar] [CrossRef]
- Wang, X.R.; Miller, J.M.; Lizier, J.T.; Prokopenko, M.; Rossi, L.F. Quantifying and Tracing Information Cascades in Swarms. PLoS one 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Radakov, D.V.; Mills, H. Schooling in the ecology of fish. Q. Rev. Biol. 1974, 49. [Google Scholar] [CrossRef]
- Elgar, M.A. Predator vigilance and group size in mammals and birds: A critical review of the empirical evidence. Biol. Rev. 1989, 64, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Techn. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication, Part III: Mathematical Rreliminaries. Bell Syst. Techn. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006; pp. 13–54. [Google Scholar]
- Smith, J.M. The concept of information in biology. Philo. Sci. 2000, 67, 177–194. [Google Scholar] [CrossRef]
- Lizier, J.T.; Heinzle, J.; Horstmann, A.; Haynes, J.-D.; Prokopenko, M. Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. J. Comput. Neurosci. 2011, 30, 85–107. [Google Scholar] [CrossRef] [PubMed]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Adami, C. Information theory in molecular biology. Phys. Life Rev. 2004, 1, 3–22. [Google Scholar]
- Jaynes, E. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Butail, S.; Ladu, F.; Spinello, D.; Porfiri, M. Information Flow in Animal-Robot Interactions. Entropy 2014, 16, 1315–1330. [Google Scholar] [CrossRef]
- Ladu, F.; Mwaffo, V.; Li, J.; Macrì, S.; Porfiri, M. Acute caffeine administration affects zebrafish response to a robotic stimulus. Behav. Brain Res. 2015, 289, 48–54. [Google Scholar] [PubMed]
- Simirnov, D.A. Spurious causalities with transfer entropy. Phys. Rev. E 2013, 87, 042917. [Google Scholar] [CrossRef]
- Liao, J.C. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J. Exp. Biol. 2006, 209, 4077–4090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, Z.-D.; Fu, S.-J. The effects of dissolved oxygen levels on the metabolic interaction between digestion and locomotion in Cyprinid fishes with different locomotive and digestive performances. J. Comp. Physiol. B 2012, 182, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-J. Flow and stress acclimation both enhance predator avoidance in a common cyprinid fish. Aquat. Biol. 2015, 24. [Google Scholar] [CrossRef]
- Bleckmann, H. Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J. Comp. Physiol. A 1980, 140, 163–172. [Google Scholar] [CrossRef]
- He, X.; Lu, S.; Liao, M.; Zhu, X.; Zhang, M.; Li, S.; You, X.; Chen, J. Effects of age and size on critical swimming speed of juvenile Chinese sturgeon Acipenser sinensis at seasonal temperatures. J. Fish Biol. 2013, 82, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Stoner, A.W.; Sturm, E.A. Temperature and hunger mediate sablefish (Anoplopoma fimbria) feeding motivation: Implications for stock assessment. Can. J. Fish. Aquat. Sci. 2004, 61, 238–246. [Google Scholar] [CrossRef]
- Lizier, J.T.; Prokopenko, M.; Zomaya, A.Y. Local information transfer as a spatiotemporal filter for complex systems. Phys. Rev. E 2008, 77, 026110. [Google Scholar] [CrossRef]
- Domenici, P.; Blagburn, J.M.; Bacon, J.P. Animal escapology I: Theoretical issues and emerging trends in escape trajectories. J. Exp. Biol. 2011, 214, 2463–2473. [Google Scholar] [CrossRef] [PubMed]
- Staniek, M.; Lehnertz, K. Symbolic transfer entropy. Phys. Rev. Lett. 2008, 100, 158101. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; Ruxton, G.D. Living in Groups; Oxford University Press: Oxford, UK, 2002; pp. 42–46. [Google Scholar]
- Lima, S.L.; Bednekoff, P.A. Back to the basics of antipredatory vigilance: Can nonvigilant animals detect attack? Anim. Behav. 1999, 58, 537–543. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Nie, L.-J.; Fu, S.-J. Information Dynamics in the Interaction between a Prey and a Predator Fish. Entropy 2015, 17, 7230-7241. https://doi.org/10.3390/e17107230
Hu F, Nie L-J, Fu S-J. Information Dynamics in the Interaction between a Prey and a Predator Fish. Entropy. 2015; 17(10):7230-7241. https://doi.org/10.3390/e17107230
Chicago/Turabian StyleHu, Feng, Li-Juan Nie, and Shi-Jian Fu. 2015. "Information Dynamics in the Interaction between a Prey and a Predator Fish" Entropy 17, no. 10: 7230-7241. https://doi.org/10.3390/e17107230
APA StyleHu, F., Nie, L.-J., & Fu, S.-J. (2015). Information Dynamics in the Interaction between a Prey and a Predator Fish. Entropy, 17(10), 7230-7241. https://doi.org/10.3390/e17107230