Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations
Abstract
:1. Introduction
2. Open Classical One Particle Systems
2.1. One-Dimensional Case: Some General Aspects
2.2. Classical Non-Equilibrium and Formal Solution Using Operator Continued Fractions
2.3. Operator Continued Fractions and Long-Time Approximation
2.4. Convergence Properties for and
2.5. Classical Harmonic Oscillator: Operator Continued Fractions
3. Closed Classical Many-Particle Systems: Long-Time Approximation and Arrow of Time
4. Open Quantum-Mechanical One-Dimensional System without Dissipation: General Aspects
4.1. Orthogonal Polynomials Generated by in Equation (38), Moments and Hierarchy
4.2. The Wigner Representation for for High Temperature, Near the Classical Limit
5. Quantum-Mechanical One-Dimensional Model with Quadratic Plus Quartic V: No Dissipation
5.1. Alternative Series for , Orthogonal Polynomials Generated by It and Hierarchy
6. Quantum-Mechanical One-Dimensional Model with Quadratic Plus Quartic V: Dissipation
6.1. First Model: Equilibrium Wigner Function Dependent on Dissipation
6.2. Second Model: Equilibrium Wigner Function Independent on Dissipation (Lindblad’s Theory)
7. Conclusions, Discussions and Open Problems
Acknowledgements
References
- Wallace, D. Reading list for the philosophy of statistical mechanics. Available online: http://users.ox.ac.uk/ mert0130/papers/smreading.doc (accessed on 13 February 2012).
- Kreuzer, H.J. Nonequilibrium Thermodynamics and Its Statistical Foundations; Clarendon Press: Oxford, UK, 1981. [Google Scholar]
- Balescu, R. Equilibrium and Nonequilibrium Statistical Mechanics; John Wiley and Sons: New York, NY, USA, 1975. [Google Scholar]
- Liboff, R.L. Kinetic Theory, 2nd ed.; John Wiley (Interscience): New York, NY, USA, 1998. [Google Scholar]
- Zubarev, D.; Morozov, V.G.; Röpke, G. Statistical Mechanics of Nonequilibrium Processes; Akademie Verlag: Berlin, Germany, 1996; Volume I. [Google Scholar]
- Wigner, E.P. On the quantum correction for thermodynamic equilibvrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Penrose, O. Foundations of statistical mechanics. Rep. Prog. Phys. 1979, 42, 1937–2006. [Google Scholar] [CrossRef]
- Brinkman, H.C. Brownian motion in a field of force and the diffusion theory of chemical reactions. Physica 1956, 22, 29–34. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation, 2nd ed.; Springer: Berlin, Heidelberg, Germany, 1989. [Google Scholar]
- Coffey, W.T.; Kalmykov, Yu. P.; Waldron, J.T. The Langevin Equation, 2nd ed.; World Scientific: Singapore, 2004. [Google Scholar]
- Coffey, W.T.; Kalmykov, Yu. P.; Titov, S.V.; Mulligan, B.P. Wigner function approach to the quantum Bronian motion of a particle in a potential. Phys. Chem. Chem. Phys. 2007, 9, 3361–3382. [Google Scholar] [CrossRef] [PubMed]
- Hochstrasser, U.W. Orthogonal polynomials. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover: New York, NY, USA, 1965. [Google Scholar]
- Alvarez-Estrada, R.F. New hierarchy for the Liouville equation, irreversibility and Fokker-Planck-like structures. Ann. Phys. (Leipzig) 2002, 11, 357–385. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Liouville and Fokker-Planck dynamics for classical plasmas and radiation. Ann. Phys. (Leipzig) 2006, 15, 379–415. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Nonequilibrium quasi-classical effective meson gas: Thermalization. Eur. Phys. J. A 2007, 31, 761–765. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Nonequilibrium quantum anharmonic oscillator and scalar field: High temperature approximations. Ann. Phys. (Berlin) 2009, 18, 391–409. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Brownian motion, quantum corrections and a generalization of the Hermite polynomials. J. Comput. Appl. Math. 2010, 233, 1453–1461. [Google Scholar] [CrossRef]
- Alvarez-Estrada, R.F. Classical systems: Moments, continued fractions, long-time approximations and irreversibility. AIP Conf. Proc. 2011, 1332, 261–262. [Google Scholar]
- Alvarez-Estrada, R.F. Quantum Brownian motion and generalizations of the Hermite polynomials. J. Comput. Appl. Math. 2011, 236, 7–18. [Google Scholar] [CrossRef]
- Gautschi, W. Error functions and Fresnel integrals. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover, New York, NY, USA, 1965. [Google Scholar]
- Penrose, O.; Coveney, P.V. Is there a “canonical” non-equilibrium ensemble? Proc. R. Soc. Lond. 1994, A447, 631–646. [Google Scholar] [CrossRef]
- Louisell, W.H. Quantum Statistical Properties of Radiation; John Wiley and Sons: New York, NY, USA, 1973. [Google Scholar]
- Haken, H. Laser Theory; Encyclopedia of Physics, Volume XXV/2c, Light and Matter Ic; Springer: Berlin, Heidelberg, Germany, 1970. [Google Scholar]
- Gardiner, C.W.; Zoller, P. Quantum Noise, 3rd ed.; Springer: Berlin, Heidelberg, Germany, 2004. [Google Scholar]
- Weiss, U. Quantum Dissipative Systems, 3rd ed.; World Scientific: Singapore, 2008. [Google Scholar]
- Joos, E.; Zeh, H.D.; Kiefer, C.; Giulini, D.; Kupsch, J.; Stamatescu, I.-O. Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd ed.; Springer: Berlin, Heidelberg, Germany, 2003. [Google Scholar]
- van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Haroche, S.; Raimond, J.-M. Exploring the Quantum; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Rivas, A.; Huelga, S.F. Open Quantum Systems. An Introduction; Springer: Berlin, Heidelberg, Germany, 2011. [Google Scholar]
- Coffey, W.T.; Kalmykov, Yu.P.; Titov, S.V.; Mulligan, B.P. Semiclassical Klein-Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential. J. Phys. A Math. Theor. 2007, 40, F91–F98. [Google Scholar] [CrossRef]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive semigroups of N-level systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Garcia-Palacios, J.L.; Zueco, D. The Caldeira-Leggett quantum master equation in Wigner phase space: Continued-fraction solutions and applications to Brownian motion in periodic potentials. J. Phys. A Math. Gen. 2004, 37, 10735–10770. [Google Scholar] [CrossRef]
Appendices
A. ’s and Hierarchy at Equilibrium and Off-Equilibrium for Equations (35) and (36)
B. , Orthogonal Polynomials Generated by It and Hierarchy, When Equation (47) Holds
C. , Orthogonal Polynomials Generated by It and Hierarchy, When Equations (54) and (55) Hold
D. Eigen-Operators of for
© 2012 by the authors licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Alvarez-Estrada, R.F. Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations. Entropy 2012, 14, 291-322. https://doi.org/10.3390/e14020291
Alvarez-Estrada RF. Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations. Entropy. 2012; 14(2):291-322. https://doi.org/10.3390/e14020291
Chicago/Turabian StyleAlvarez-Estrada, Ramon F. 2012. "Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations" Entropy 14, no. 2: 291-322. https://doi.org/10.3390/e14020291
APA StyleAlvarez-Estrada, R. F. (2012). Classical and Quantum Models in Non-Equilibrium Statistical Mechanics: Moment Methods and Long-Time Approximations. Entropy, 14(2), 291-322. https://doi.org/10.3390/e14020291