About
I am an Assistant Professor in the School of Information Sciences at the University of…
Experience
Education
Publications
-
RMM: Reinforced Memory Management for Class-Incremental Learning
Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS)
Class-Incremental Learning (CIL) trains classifiers under a strict memory budget: in each incremental phase, learning is done for new data, most of which is abandoned to free space for the next phase. The preserved data are exemplars used for replaying. However, existing methods use a static and ad hoc strategy for memory allocation, which is often sub-optimal. In this work, we propose a dynamic memory management strategy that is optimized for the incremental phases and different object…
Class-Incremental Learning (CIL) trains classifiers under a strict memory budget: in each incremental phase, learning is done for new data, most of which is abandoned to free space for the next phase. The preserved data are exemplars used for replaying. However, existing methods use a static and ad hoc strategy for memory allocation, which is often sub-optimal. In this work, we propose a dynamic memory management strategy that is optimized for the incremental phases and different object classes. We call our method reinforced memory management (RMM), leveraging reinforcement learning. RMM training is not naturally compatible with CIL as the past and future data are strictly non-accessible during the incremental phases. We solve this by training the policy function of RMM on pseudo CIL tasks, e.g., the tasks built on the data of the zeroth phase, and then applying it to target tasks. RMM propagates two levels of actions: Level-1 determines how to split the memory between old and new classes, and Level-2 allocates memory for each specific class. In essence, it is an optimizable and general method for memory management that can be used in any replaying-based CIL method. For evaluation, we plug RMM into two top-performing baselines (LUCIR+AANets and POD+AANets) and conduct experiments on three benchmarks (CIFAR-100, ImageNet-Subset, and ImageNet-Full). Our results show clear improvements, e.g., boosting POD+AANets by 3.6%, 4.4%, and 1.9% in the 25-Phase settings of the above benchmarks, respectively.
Other authorsSee publication -
Adaptive Aggregation Networks for Class-Incremental Learning
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Class-Incremental Learning (CIL) aims to learn a classification model with the number of classes increasing phase-by-phase. An inherent problem in CIL is the stability-plasticity dilemma between the learning of old and new classes, i.e., high-plasticity models easily forget old classes, but high-stability models are weak to learn new classes. We alleviate this issue by proposing a novel network architecture called Adaptive Aggregation Networks (AANets) in which we explicitly build two residual…
Class-Incremental Learning (CIL) aims to learn a classification model with the number of classes increasing phase-by-phase. An inherent problem in CIL is the stability-plasticity dilemma between the learning of old and new classes, i.e., high-plasticity models easily forget old classes, but high-stability models are weak to learn new classes. We alleviate this issue by proposing a novel network architecture called Adaptive Aggregation Networks (AANets) in which we explicitly build two residual blocks at each residual level (taking ResNet as the baseline architecture): a stable block and a plastic block. We aggregate the output feature maps from these two blocks and then feed the results to the next-level blocks. We meta-learn the aggregation weights in order to dynamically optimize and balance between the two types of blocks, i.e., inherently between stability and plasticity. We conduct extensive experiments on three CIL benchmarks: CIFAR-100, ImageNet-Subset, and ImageNet, and show that many existing CIL methods can be straightforwardly incorporated on the architecture of AANets to boost their performances
Other authorsSee publication -
Meta-Transfer Learning through Hard Tasks
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, typical meta-learning models use shallow neural networks, thus limiting its effectiveness. In order to achieve top performance, some recent…
Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, typical meta-learning models use shallow neural networks, thus limiting its effectiveness. In order to achieve top performance, some recent works tried to use the DNNs pre-trained on large-scale datasets but mostly in straight-forward manners, e.g., (1) taking their weights as a warm start of meta-training, and (2) freezing their convolutional layers as the feature extractor of base-learners. In this paper, we propose a novel approach called meta-transfer learning (MTL), which learns to transfer the weights of a deep NN for few-shot learning tasks. Specifically, meta refers to training multiple tasks, and transfer is achieved by learning scaling and shifting functions of DNN weights (and biases) for each task. To further boost the learning efficiency of MTL, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum of few-shot classification tasks. We conduct experiments for five-class few-shot classification tasks on three challenging benchmarks, miniImageNet, tieredImageNet, and Fewshot-CIFAR100 (FC100), in both supervised and semi-supervised settings. Extensive comparisons to related works validate that our MTL approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.
Other authorsSee publication -
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
European Conference on Computer Vision (ECCV)
Few-shot learning aims to train efficient predictive models with a few examples. The lack of training data leads to poor models that perform high-variance or low-confidence predictions. In this paper, we propose to meta-learn the ensemble of epoch-wise empirical Bayes models (E3BM) to achieve robust predictions. "Epoch-wise" means that each training epoch has a Bayes model whose parameters are specifically learned and deployed. "Empirical" means that the hyperparameters, e.g., used for learning…
Few-shot learning aims to train efficient predictive models with a few examples. The lack of training data leads to poor models that perform high-variance or low-confidence predictions. In this paper, we propose to meta-learn the ensemble of epoch-wise empirical Bayes models (E3BM) to achieve robust predictions. "Epoch-wise" means that each training epoch has a Bayes model whose parameters are specifically learned and deployed. "Empirical" means that the hyperparameters, e.g., used for learning and ensembling the epoch-wise models, are generated by hyperprior learners conditional on task-specific data. We introduce four kinds of hyperprior learners by considering inductive vs. transductive, and epoch-dependent vs. epoch-independent, in the paradigm of meta-learning. We conduct extensive experiments for five-class few-shot learning tasks on three challenging benchmarks: miniImageNet, tieredImageNet, and FC100, and achieve top performance using the epoch-dependent transductive hyperprior learner, which captures the richest information. Our ablation study shows that both "epoch-wise ensemble" and "empirical" encourage high efficiency and robustness in the model performance.
Other authorsSee publication -
Mnemonics Training: Multi-Class Incremental Learning without Forgetting
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Multi-Class Incremental Learning (MCIL) aims to learn new concepts by incrementally updating a model trained on previous concepts. However, there is an inherent trade-off to effectively learning new concepts without catastrophic forgetting of previous ones. To alleviate this issue, it has been proposed to keep around a few examples of the previous concepts but the effectiveness of this approach heavily depends on the representativeness of these examples. This paper proposes a novel and…
Multi-Class Incremental Learning (MCIL) aims to learn new concepts by incrementally updating a model trained on previous concepts. However, there is an inherent trade-off to effectively learning new concepts without catastrophic forgetting of previous ones. To alleviate this issue, it has been proposed to keep around a few examples of the previous concepts but the effectiveness of this approach heavily depends on the representativeness of these examples. This paper proposes a novel and automatic framework we call mnemonics, where we parameterize exemplars and make them optimizable in an end-to-end manner. We train the framework through bilevel optimizations, i.e., model-level and exemplar-level. We conduct extensive experiments on three MCIL benchmarks, CIFAR-100, ImageNet-Subset and ImageNet, and show that using mnemonics exemplars can surpass the state-of-the-art by a large margin. Interestingly and quite intriguingly, the mnemonics exemplars tend to be on the boundaries between classes.
Other authorsSee publication -
Learning to Self-Train for Semi-Supervised Few-Shot Classification
Thirty-third Conference on Neural Information Processing Systems (NeurIPS)
Few-shot classification (FSC) is challenging due to the scarcity of labeled training data (e.g. only one labeled data point per class). Meta-learning has shown to achieve promising results by learning to initialize a classification model for FSC. In this paper we propose a novel semi-supervised meta-learning method called learning to self-train (LST) that leverages unlabeled data and specifically meta-learns how to cherry-pick and label such unsupervised data to further improve performance. To…
Few-shot classification (FSC) is challenging due to the scarcity of labeled training data (e.g. only one labeled data point per class). Meta-learning has shown to achieve promising results by learning to initialize a classification model for FSC. In this paper we propose a novel semi-supervised meta-learning method called learning to self-train (LST) that leverages unlabeled data and specifically meta-learns how to cherry-pick and label such unsupervised data to further improve performance. To this end, we train the LST model through a large number of semi-supervised few-shot tasks. On each task, we train a few-shot model to predict pseudo labels for unlabeled data, and then iterate the self-training steps on labeled and pseudo-labeled data with each step followed by fine-tuning. We additionally learn a soft weighting network (SWN) to optimize the self-training weights of pseudo labels so that better ones can contribute more to gradient descent optimization. We evaluate our LST method on two ImageNet benchmarks for semi-supervised few-shot classification and achieve large improvements over the state-of-the-art.
Other authorsSee publication -
Meta-Transfer Learning for Few-Shot Learning
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning…
Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning method called meta-transfer learning (MTL) which learns to adapt a deep NN for few shot learning tasks. Specifically, meta refers to training multiple tasks, and transfer is achieved by learning scaling and shifting functions of DNN weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum for MTL. We conduct experiments using (5-class, 1-shot) and (5-class, 5-shot) recognition tasks on two challenging few-shot learning benchmarks: miniImageNet and Fewshot-CIFAR100. Extensive comparisons to related works validate that our meta-transfer learning approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.
Other authorsSee publication
Other similar profiles
Explore collaborative articles
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
Explore MoreOthers named Yaoyao Liu in United States
-
Aiden Luu
Tech Recruiter @ IntelliPro Group | Talent Acquisition | Account Management | Delivery Team Management | North America
-
Yaoyao Liu
Graduate Lab Assitant at Georgia State University
-
Mengyao (Yaoyao) Liu
Education at Seattle Art Museum
-
YAOYAO LIU
--
9 others named Yaoyao Liu in United States are on LinkedIn
See others named Yaoyao Liu