[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 12-18.doi: 10.11896/jsjkx.211200147

• 6G 赋能智慧物联网技术与应用* 上一篇    下一篇

超密集物联网络中多任务多步计算卸载算法研究

周天清, 岳亚莉   

  1. 华东交通大学信息工程学院 南昌 330013
  • 收稿日期:2021-12-13 修回日期:2022-02-16 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 周天清(zhoutian930@163.com)
  • 基金资助:
    国家自然科学基金(61861017,62171119);国家重点研发计划(2020YFB1807201)

Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks

ZHOU Tian-qing, YUE Ya-li   

  1. School of Information Engineering,East China Jiaotong University,Nanchang 330013,China
  • Received:2021-12-13 Revised:2022-02-16 Online:2022-06-15 Published:2022-06-08
  • About author:ZHOU Tian-qing,born in 1983,Ph.D,associate professor,master supervisor,is a member of China Computer Federation.His main research interests include the resource management in ultra-dense networks and mobile edge computing networks.
  • Supported by:
    National Natural Science Foundation of China(61861017,62171119) and National Key R & D Program of China(2020YFB1807201).

摘要: 随着物联网(Internet of Things,IoT)的迅速发展,各种物联网移动设备(IoT Mobile Device,IMD)需要处理越来越多的计算密集型和延迟敏感型任务,这给移动边缘计算网络带来了新的挑战。为了应对这些挑战,装备移动边缘计算(Mobile Edge Computing,MEC)的超密集物联网应运而生。在该网络中,IMD可将计算密集型任务卸载至边缘计算服务器上进行处理,从而节省自己的计算资源并降低能耗。然而,这样会造成额外的传输时间,进而导致更高的延迟。为了均衡能耗与时延,针对多用户多任务的超密集物联网络,提出了一个最小化能耗和时延的均衡问题,以联合优化用户(IMD)关联、计算卸载和资源分配。为了进一步平衡网络负载,充分利用计算资源,在问题建模时采用多步计算卸载。最后,利用智能算法——自适应粒子群算法(Particle Swarm Optimization,PSO) 对所提问题进行求解。相比传统粒子群算法,自适应粒子群算法能降低20%~65%的总开销。

关键词: 计算卸载, 物联网, 移动边缘计算, 用户关联, 智能算法, 资源分配, 自适应粒子群算法

Abstract: With the rapid development of Internet of Things(IoT),various IoT mobile devices(IMDs) need to process more and more computing-intensive and delay-sensitive tasks,which puts forward new challenges for the mobile edge networks.To address these challenges,the MEC-equipped ultra-dense IoT has emerged.In such networks,IMDs can save their computation resources and reduce their energy consumption by offloading computing-intensive tasks to edge computing servers for processing.However,it will result in additional transmission time and higher delay.In view of this,an optimization problem is formulated for finding the trade-off between energy consumption and delay,which jointly considers the user(IMD) association,computation offloading and resource allocation for ultra-dense MEC-enabled IoT.To further balance the network load and fully utilize the computation resources,the optimization problem is finally modeled as multi-step computation offloading one.At last,an intelligent algorithm,adaptive particle swarm optimization(PSO),is utilized to solve the proposed problem.Compared with traditional PSO,the total cost of adaptive PSO reduces by 20%~65%.

Key words: Adaptive PSO, Computing offload, Intelligent algorithm, IoT, MEC, Resource allocation, User association

中图分类号: 

  • TN929
[1] SNYDER T,BYRD G.The internet of everything[J].Compu-ter,2017,50(6):8-9.
[2] ADEDOYIN M A,FALOWO O E.Combination of ultra-dense networks and other 5G enabling technologies:a survey[J].IEEE Access,2020,8:22893-22932.
[3] TRAN T X,HAJISAMI A,PANDEY P,et al.Collaborativemobile edge computing in 5G networks:new paradigms,scena-rios,and challenges[J].IEEE Communications Magazine,2017,55(4):54-61.
[4] NDIKUMANA A,TRAN N H,HO T M,et al.Joint communication,computation,caching,and control in big data multi-access edge computing[J].IEEE Transactions on Mobile Computing,2020,19(6):1359-1374.
[5] KHAN W Z,AHMED E,HAKAK S,et al.Edge computing:a survey[J].Future Generation Computer Systems,2019,97:219-235.
[6] ZHU Y,HU Y,SCHMEINK A.Delay minimization offloadingfor interdependent tasks in energy-aware cooperative MEC networks[C]//2019 IEEE Wireless Communications and Networking Conference.Marrakesh:IEEE,2019:1-6.
[7] ZHANG K,LENG S,HE Y,et al.Mobile edge computing and networking for green and low-latency internet of things[J].IEEE Communications Magazine,2018,56(5):39-45.
[8] DAB B,AITSAADI N,LANGAR R.A novel joint offloadingand resource allocation scheme for mobile edge computing[C]//2019 16th IEEE Annual Consumer Communications & Networking Conference.Piscataway:IEEE,2019:1-2.
[9] XU C,LEI J,LI W,et al.Efficient multi-user computation offloading for mobile-edge cloud computing[J].IEEE/ACM Tran-sactions on Networking,2016,24(5):2795-2808.
[10] ZHANG H B,ZHANG Y F,LIU K J.Task offloading,migration and caching strategy in internet of vehicles based on NOMA-MEC[J].Computer Science,2022,49(2):304-311.
[11] KAN T,CHIANG Y,WEI H.Task offloading and resource allocation in mobile-edge computing system[C]//2018 27th Wireless and Optical Communication Conference.Hualien:IEEE,2018:1-4.
[12] ZHANG J,XIA W,YAN F,et al.Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing[J].IEEE Access,2018,6:19324-19337.
[13] YANG L,ZHANG H,LI M,et al.Mobile edge computing empowered energy efficient task offloading in 5G[J].IEEE Transac-tions on Vehicular Technology,2018,67(7):6398-6409.
[14] DING Z,NG D,SCHOBRE R,et al.Delay minimization for NOMA-MEC offloading[J].IEEE Signal Processing Letters,2018,25(12):1875-1879.
[15] ZHOU T Q,YUE Y L,QIN D,et al.Joint device association,resource allocation and computation offloading in ultra-dense multi-device and multi-task IoT networks[J].arXiv:2112.05891,2021.
[16] ZHOU T Q,QIN D,NIE X F,et al.Energy-efficient computation offloading and resource management in ultradense heterogeneous networks[J].IEEE Transactions on Vehicular Techno-logy,2021,70(12):13101-13114.
[17] SHI Y,EBERHART R.A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings.IEEE World Congress on Computational Intelligence.Anchorage:IEEE,1998:69-73.
[18] DEN VAN BERGH F.An analysis of particle swarm optimizers[D].South Africa:University of Pretoria,2007.
[19] DAI Y,XU D,MAHARJAN S,et al.Joint computation offloa-ding and user association in multi-task mobile edge computing[J].IEEE Transactions on Vehicular Technology,2018,67(12):12313-12325.
[20] DEN VAN BERGH F,ENGELBRECHT A P.A new locallyconvergent particle swarm optimizer[C]//IEEE International Conference on Systems,Man and Cybernetics.Yasmine Hammamet:IEEE,2002:6-9.
[1] 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英.
VEC中基于动态定价的车辆协同计算卸载方案
Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC
计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166
[2] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[3] 唐枫, 冯翔, 虞慧群.
基于自适应知识迁移与资源分配的多任务协同优化算法
Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation
计算机科学, 2022, 49(7): 254-262. https://doi.org/10.11896/jsjkx.210600184
[4] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[5] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[6] 张翕然, 刘万平, 龙华.
物联网僵尸网络病毒的传播动力学模型与分析
Dynamic Model and Analysis of Spreading of Botnet Viruses over Internet of Things
计算机科学, 2022, 49(6A): 738-743. https://doi.org/10.11896/jsjkx.210300212
[7] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[8] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[9] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[10] 董丹丹, 宋康.
RIS辅助双向物联网通信系统性能分析
Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System
计算机科学, 2022, 49(6): 19-24. https://doi.org/10.11896/jsjkx.220100064
[11] 邱旭, 卞浩卜, 吴铭骁, 朱晓荣.
基于5G毫米波通信的高速公路车联网任务卸载算法研究
Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication
计算机科学, 2022, 49(6): 25-31. https://doi.org/10.11896/jsjkx.211100198
[12] 胥昊, 曹桂均, 闫璐, 李科, 王振宏.
面向铁路集装箱的高可靠低时延无线资源分配算法
Wireless Resource Allocation Algorithm with High Reliability and Low Delay for Railway Container
计算机科学, 2022, 49(6): 39-43. https://doi.org/10.11896/jsjkx.211200143
[13] 沈家芳, 钱丽萍, 杨超.
面向集能型中继窄带物联网的非正交多址接入和多维网络资源优化
Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks
计算机科学, 2022, 49(5): 279-286. https://doi.org/10.11896/jsjkx.210400239
[14] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[15] 张振超, 刘亚丽, 殷新春.
适用于物联网环境的无证书广义签密方案
New Certificateless Generalized Signcryption Scheme for Internet of Things Environment
计算机科学, 2022, 49(3): 329-337. https://doi.org/10.11896/jsjkx.201200256
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!