[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 25-31.doi: 10.11896/jsjkx.211100198

• 6G 赋能智慧物联网技术与应用* 上一篇    下一篇

基于5G毫米波通信的高速公路车联网任务卸载算法研究

邱旭, 卞浩卜, 吴铭骁, 朱晓荣   

  1. 南京邮电大学江苏省无线通信重点实验室 南京 210003
  • 收稿日期:2021-11-18 修回日期:2022-02-22 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 朱晓荣(xrzhu@njupt.edu.cn)
  • 作者简介:(1460732039@qq.com)
  • 基金资助:
    国家自然科学基金(61871237,92067101);江苏省高校“青蓝工程”和江苏省重点研发计划(BE2021013-3)

Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication

QIU Xu, BIAN Hao-bu, WU Ming-xiao, ZHU Xiao-rong   

  1. Jiangsu Key Laboratory of Wireless Communications,Nanjing University of Posts and Telecommunication,Nanjing 210003,China
  • Received:2021-11-18 Revised:2022-02-22 Online:2022-06-15 Published:2022-06-08
  • About author:QIU Xu,born in 1995,postgraduate.His main research interests include task offloading and resource allocation in Internet of vehicles.
    ZHU Xiao-rong,born in 1977,Ph.D,professor,Ph.D supervisor.Her main research interests include 5G communication system,heterogeneous network and Internet of Things.
  • Supported by:
    National Natural Science Foundation of China(61871237,92067101) and “Blue Project” of Universities in Jiangsu Province and Key R & D Program of Jiangsu Province(BE2021013-3).

摘要: 随着车联网的快速发展,不断涌现的新型车载任务对通信、计算能力提出了更高的要求。5G毫米波基站的大量部署为高速公路车辆用户提供了更加高速可靠的服务。同时,移动边缘计算技术将具有计算和存储能力的MEC(Mobile Edge Computing)服务器部署在用户终端周围,为车载任务提供计算服务的同时降低了传输时延。文中针对高速公路场景下车辆任务的卸载决策及通信资源分配问题,将计算及通信资源联合优化问题建模为0-1混合整数线性规划问题。首先,将原优化问题解耦为资源块分配子问题及卸载决策子问题;其次,使用注水算法及粒子群算法分别对子问题进行求解;最后,基于启发式算法对子问题进行迭代求解,以获得最优的资源块分配方案及卸载决策向量。仿真结果表明,该算法可在满足所有车载任务需求的同时最小化系统平均时延。

关键词: 粒子群算法, 任务卸载, 注水算法, 资源分配

Abstract: With the rapid development of the Internet of vehicles,the emerging new types of in-vehicle tasks put forward higher requirements for communication and computing capabilities.The development of satellite communication technology and the large-scale deployment of 5G millimeter-wave base stations provide safer and more reliable services for highway vehicle users.At the same time,mobile edge computing technology deploys mobile edge computing(MEC) servers with computing and storage capabi-lities around user terminals to provide computing services for on-board tasks while reducing transmission delays.Aiming at the problem of offloading decision-making and communication resource allocation of vehicle tasks in highway scenarios,the joint optimization problem of computing and communication resources is modeled as a 0-1 mixed integer linear programming problem.Firstly,the original optimization problem is decoupled into the resource block allocation sub-problem and the offloading decision sub-problem.Secondly,the sub-problems are solved by using the water injection algorithm and the particle swarm algorithm.Finally,the sub-problems are iteratively solved based on the heuristic algorithm to obtain the optimal resource block allocation scheme and offload decision vector.Simulation results show that the algorithm minimizes the average system delay while meeting the requirements of all on-board missions.

Key words: Particle swarm optimization, Resource allocation, Task offload, Water injection algorithm

中图分类号: 

  • TN915.81
[1] LEE U,CHEUNG R,GERLA M.Emerging Vehicular Applications[J/OL].Vehicular Networks:From Theory to Practice,2009:6.1-6.30.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=30C299E6B1F2AD3CD8FDDC36A44ABE72?doi=10.1.1.459.2888&rep=rep1&type=pdf.
[2] YANG Y,BAGRODIA R.Evaluation of VANET-based Ad-vanced Intelligent TransportationSystems[C]//The 6th ACM International Workshop on Vehicular Internet Working.ACM,2009:3-12.
[3] SASAKI K,SUZUKI N,MAKIDO S,et al.Layered vehicle control system coordinated between multiple edge servers[C]//2017 IEEE Conference on Network Softwarization(NetSoft).Bologna:2017:1-5.
[4] JIANG F,LIU W,WANG J,et al.Q-Learning Based Task Offloading and Resource Allocation Scheme for Internet of Vehicles[C]//2020 IEEE/CIC International Conference on Communications in China(ICCC).2020:460-465.
[5] KAO Y,KRISHNAMACHARI B,RA M,et al.Hermes:Latency Optimal Task Assignment for Resource-constrained Mobile Computing[J].IEEE Transactions on Mobile Computing,2017,16(11):3056-3069.
[6] LI Z,XUE J B.Task offloading and resource allocation based on simulated annealing algorithm in C-V2X Internet of Vehicles[J/OL].Computer Applications:1-11.http://www.joca.cn/CN/10.11772/j.issn.1001-9081.2021081490.
[7] XUE N, ZHANG H, ZHANG C,et al.Data-Driven EnergyEfficient Predictive Resource Allocation in Internet of Vehicles[C]//2020 International Conference on Wireless Communications and Signal Processing(WCSP).2020:56-61.
[8] CHANG W,WANG P.Adaptive Replication for Mobile Edge Computing[J].IEEE Journal on Selected Areas in Communications,2018,36(11):2422-2432.
[9] CHEN X,LENG S,ZHANG K,et al.A machine-learning based time constrained resource allocation scheme for vehicular fog computing[J].China Communications,2019,16(11):29-41.
[10] BERALDI R,MTIBAA A,ALNUWEIRI H.Cooperative load balancing scheme for edge computing resources[C]//2017 Se-cond International Conference on Fog and Mobile Edge Computing(FMEC).Valencia,2017:94-100.
[11] YU Z,TANG Y,ZHANG L,et al.Deep Reinforcement Lear-ning Based Computing Offloading Decision and Task Scheduling in Internet of Vehicles[C]//2021 IEEE/CIC International Conference on Communications in China(ICCC).2021:1166-1171.
[12] ZHANG H,GUO F,JI H,et al.Combinational auction-basedservice provider selection in mobile edge computing networks[J].IEEE Access,2017,5:13455-13464.
[13] FAN W,LIU J,HUA M,et al.Joint Task Offloading and Resource Allocation for Multi-Access Edge Computing Assisted by Parked and Moving Vehicles[J/OL].IEEE Transactions on Vehicular Technology,2022.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9709120.
[14] MA T,CHEN X,MA Z,et al.Deep Reinforcement Learning for Pre-caching and Task Allocation in Internet of Vehicles[C]//2020 IEEE International Conference on Smart Internet of Things(SmartIoT).2020:79-85.
[15] ZHANG J,CHEN X,SUN Y,et al.Reservation based Resource Allocation Scheme for Internet of Vehicles[C]//2021 IEEE 93rd Vehicular Technology Conference(VTC2021-Spring).2021:1-5.
[16] WANG H,LI X,JI H,et al.Dynamic Offloading SchedulingScheme for MEC-enabled Vehicular Networks[C]//2018 IEEE/CIC International Conference on Communications in China(ICCC Workshops).IEEE,2018.
[17] ZHENG K,MENG H,CHATZIMISIOS P,et al.An SMDP-Based Resource Allocation in Vehicular Cloud Computing Systems[J].IEEE Transactions on Industrial Electronics,2015,62(12):7920-7928.
[18] MOLINA M,MUÑOZ O,PASCUAL-ISERTE A,et al.Jointscheduling of communication and computation resources in multiuser wireless application offloading[C]//2014 IEEE 25th AnnualInternational Symposiumon Personal,Indoor,and Mobile Radio Communication (PIMRC).2014:1093-1098.
[19] FEI S,HOU F,NAN C,et al.Cooperative Task Scheduling for Computation Offloading in Vehicular Cloud[J].IEEE Transactions on Vehicular Technology,2018,67:11049-11061.
[20] YAMAMOTO A,OGAWA K,HORIMATSU T,et al.Path-Loss Prediction Models for Intervehicle Communication at 60 GHz[J].IEEE Transactions on Vehicular Technology,2008,57(1):65-78.
[21] WU L Q.Research on Mobile Edge Computing Task Offloading and Resource Allocation Management[D].Nanjing:Nanjing University of Posts and Telecommunications,2020.
[1] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[2] 唐枫, 冯翔, 虞慧群.
基于自适应知识迁移与资源分配的多任务协同优化算法
Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation
计算机科学, 2022, 49(7): 254-262. https://doi.org/10.11896/jsjkx.210600184
[3] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[4] 徐汝利, 黄樟灿, 谢秦秦, 李华峰, 湛航.
基于金字塔演化策略的彩色图像多阈值分割
Multi-threshold Segmentation for Color Image Based on Pyramid Evolution Strategy
计算机科学, 2022, 49(6): 231-237. https://doi.org/10.11896/jsjkx.210300096
[5] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[6] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[7] 胥昊, 曹桂均, 闫璐, 李科, 王振宏.
面向铁路集装箱的高可靠低时延无线资源分配算法
Wireless Resource Allocation Algorithm with High Reliability and Low Delay for Railway Container
计算机科学, 2022, 49(6): 39-43. https://doi.org/10.11896/jsjkx.211200143
[8] 李晓东, 於志勇, 黄昉菀, 朱伟平, 涂淳钰, 郑伟楠.
面向河道环境监测的群智感知参与者选择策略
Participant Selection Strategies Based on Crowd Sensing for River Environmental Monitoring
计算机科学, 2022, 49(5): 371-379. https://doi.org/10.11896/jsjkx.210200005
[9] 沈家芳, 钱丽萍, 杨超.
面向集能型中继窄带物联网的非正交多址接入和多维网络资源优化
Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks
计算机科学, 2022, 49(5): 279-286. https://doi.org/10.11896/jsjkx.210400239
[10] 潘燕娜, 冯翔, 虞慧群.
基于自适应资源分配池的竞争合作群协同优化算法
Competitive-Cooperative Coevolution for Large Scale Optimization with Computation Resource Allocation Pool
计算机科学, 2022, 49(2): 182-190. https://doi.org/10.11896/jsjkx.201200012
[11] 梁俊斌, 张海涵, 蒋婵, 王天舒.
移动边缘计算中基于深度强化学习的任务卸载研究进展
Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095
[12] 孙振强, 罗永龙, 郑孝遥, 章海燕.
一种融合用户情感与相似度的智能旅游路径推荐方法
Intelligent Travel Route Recommendation Method Integrating User Emotion and Similarity
计算机科学, 2021, 48(6A): 226-230. https://doi.org/10.11896/jsjkx.200900119
[13] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
[14] 刘炜, 李东坤, 徐畅, 田钊, 佘维.
应急通信网络中基于粒子群优化的信道分配算法
Channel Assignment Algorithm Based on Particle Swarm Optimization in Emergency Communication Networks
计算机科学, 2021, 48(5): 277-282. https://doi.org/10.11896/jsjkx.200400042
[15] 王聪, 魏成强, 李宁, 马文峰, 田辉.
一种H2H和M2M混合场景下的前导码资源动态分配机制
Dynamic Allocation Mechanism of Preamble Resources Under H2H and M2M Coexistence Scenarios
计算机科学, 2021, 48(5): 283-288. https://doi.org/10.11896/jsjkx.200300019
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!