[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 276-286.doi: 10.11896/jsjkx.210900127

• 人工智能 • 上一篇    下一篇

机器学习在金融资产定价中的应用研究综述

许杰1, 祝玉坤1, 邢春晓2   

  1. 1 清华大学五道口金融学院 北京 100084
    2 清华大学北京信息科学与技术国家研究中心 北京 100084
  • 收稿日期:2021-09-15 修回日期:2021-12-05 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 邢春晓(xingcx@mail.tsinghua.edu.cn )
  • 作者简介:(xujie@pbcsf.tsinghua.edu.cn)
  • 基金资助:
    科技部重点研发计划:现代服务可信交易理论与技术研究(2018YFB1402701)

Application of Machine Learning in Financial Asset Pricing:A Review

XU Jie1, ZHU Yu-kun1, XING Chun-xiao2   

  1. 1 PBC School of Finance,Tsinghua University,Beijing 100084,China
    2 Beijing National Research Center for Information Science and Technology(BNRist),Tsinghua University,Beijing 100084,China
  • Received:2021-09-15 Revised:2021-12-05 Online:2022-06-15 Published:2022-06-08
  • About author:XU Jie,born in 1986,Ph.D.His main research interests include machine learning,asset pricing and quantitative trading.
    XING Chun-xiao,born in 1967,Ph.D supervisor.His main research interests include deep learning,big data and knowledge engineering,and fintech.
  • Supported by:
    Key research and Development Plan of Ministry of Science and Technology:Research on the Theory and Techno-logy of Modern Service Trusted Transaction(2018YFB1402701).

摘要: 金融资产配置的关键问题是资产的价格,资产定价是现代金融学的核心内容,揭示资产定价规律一直是金融研究热点之一。文中回顾了机器学习在资产定价领域使用的方法与研究进展,将机器学习资产定价的方法分类为基于特征处理的机器学习方法与端到端处理的深度学习方法;围绕当前机器学习资产定价遇到的主要问题,比较了不同算法在原理和应用场景方面的区别;指出了两类机器学习方法的适用性与局限性;讨论了机器学习资产定价未来可能的研究趋势。

关键词: 机器学习, 价格预测, 深度学习, 投资组合, 资产定价

Abstract: The key problem of financial asset allocation is asset price.Asset pricing is the core content of modern finance,which indicates that asset pricing law has always been one of the hot topics of financial research.This paper reviews the methods used by machine learning in the field of asset pricing and research progresses,classifies machine learning asset pricing method into machine learning method based on the characteristics processing and deep learning method based on end-to-end processing,compares the differences between different algorithms in principle and application scenarios,points out the applicability and limitations of the two kinds of machine learning methods,prospects the research direction on machine learning asset pricing in the future.

Key words: Asset pricing, Deep learning, Machine learning, Portfolio, Price forecasting

中图分类号: 

  • TP181
[1] LO A W,MACKINLAY A C.Stock market prices do not follow random walks:Evidence from a simple specification test[J].The Review of Financial Studies,1988,1(1):41-66.
[2] SHAH D,ISAH H,ZULKERNINE F.Stock market analysis:A review and taxonomy of prediction techniques[J/OL].International Journal of Financial Studies,2019,7(2):26.https://www.mdpi.com/2227-7072/7/2/26.
[3] HARVEY C R,LIU Y.A census of the factor zoo[J/OL].SSRN,2019,3341728.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3341728.
[4] RUNDO F,TRENTA F,DI STALLO A L,et al.Machine lear-ning for quantitative finance applications:A survey[J/OL].Applied Sciences,2019,9(24):5574.https://www.mdpi.com/2076-3417/9/24/5574.
[5] JURCZENKO,EMMANUEL E D.Machine Learning for Asset Management:New Developments and Financial Applications[M].John Wiley & Sons,2020.
[6] CHONG E,HAN C,PARK F C.Deep learning networks for stock market analysis and prediction:Methodology,data representations,and case studies[J].Expert Systems with Applications,2017,83:187-205.
[7] NTI I K,ADEKOYA A F,WEYORI B A.A systematic review of fundamental and technical analysis of stock market predictions[J/OL].Artificial Intelligence Review,2019:1-51.https://linkspringer.53yu.com/article/10.1007/s10462-019-09754-z.
[8] JIANG W.Applications of deep learning in stock market prediction:recent progress[J].arXiv:2003.01859,2020.
[9] DIXON M F,HALPERIN I.The four horsemen of machinelearning in finance[J/OL].SSRN,2019,3453564.https://papers.ssrn.com/sol3/papers.cfm?.
[10] ZHENG A,CASARI A.Feature engineering for machine lear-ning:principles and techniques for data scientists[M/OL].O’Reilly Media,Inc.,2018.
[11] LETTAU M,PELGER M.Factors that fit the time series and cross-section of stock returns[J].The Review of Financial Stu-dies,2020,33(5):2274-2325.
[12] KELLY B T,PRUITT S,SU Y.Characteristics are covariances:A unified model of risk and return[J].Journal of Financial Economics,2019,134(3):501-524.
[13] LETTAU M,PELGER M.Estimating latent asset-pricing factors[J].Journal of Econometrics,2020,218(1):1-31.
[14] ONATSKI A.Asymptotics of the principal components estimator of large factor models with weakly influential factors[J].Journal of Econometrics,2012,168(2):244-258.
[15] AIT-SAHALIA Y,XIU D.Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J].Journal of Econometrics,2017,201(2):384-399.
[16] AVELLANEDA M,HEALY B,PAPANICOLAOU A,et al.PCA for Implied Volatility Surfaces[J].The Journal of Financial Data Science,2020,2(2):85-109.
[17] CARAIANI P.The predictive power of singular value decomposition entropy for stock market dynamics[J].Physica A:Statistical Mechanics and its Applications,2014,393:571-578.
[18] GU R,SHAO Y.How long the singular value decomposed entropy predicts the stock market?-Evidence from the Dow Jones Industrial Average Index[J].Physica A:Statistical Mechanics and Its Applications,2016,453:150-161.
[19] WANG D.Adjustable robust singular value decomposition:Design,analysis and application to finance[J].Data,2017,2(3):29.
[20] BACK A D,WEIGEND A S.A first application of independent component analysis to extracting structure from stock returns[J].International Journal of Neural Systems,1997,8(4):473-484.
[21] BARILLAS F,SHANKEN J.Comparing asset pricing models[J].The Journal of Finance,2018,73(2):715-754.
[22] FULOP A,YU J.Bayesian analysis of bubbles in asset prices[J/OL].Econometrics,2017,5(4):47.https://www.mdpi.com/2225-1146/5/4/47.
[23] TURNER J A.Momentum Portfolios and the Capital Asset Pricing Model:A Bayesian Approach[J/OL].Quarterly Journal of Finance and Accounting,2010:43-59.https://www.jstor.org/stable/23074629.
[24] SCHORFHEIDE F,SONG D,YARON A.Identifying long-run risks:A Bayesian mixed frequency approach[J].Econometrica,2018,86(2):617-654.
[25] BUSSE J A,IRVINE P J.Bayesian alphas and mutual fund persistence[J].The Journal of Finance,2006,61(5):2251-2288.
[26] GEWEKE J,AMISANO G.Hierarchical Markov normal mix-ture models with applications to financial asset returns[J].Journal of Applied Econometrics,2011,26(1):1-29.
[27] PSARADAKIS Z,SOLA M,SPAGNOLO F.On Markov error correction models,with an application to stock prices and dividends[J].Journal of Applied Econometrics,2004,19(1):69-88.
[28] GU S,KELLY B,XIU D.Autoencoder asset pricing models[J/OL].Journal of Econometrics,2020.https://sciencedirect.53yu.com/science/article/pii/S0304407620301998.
[29] SUIMON Y,SAKAJI H,IZUMI K,et al.Autoencoder-BasedThree-Factor Model for the Yield Curve of Japanese Government Bonds and a Trading Strategy[J].Journal of Risk and Financial Management,2020,13(4):82.
[30] LV S,HOU Y,ZHOU H.Financial Market Directional Forecasting With Stacked Denoising Autoencoder[J].arXiv:1912.00712,2019.
[31] HUANG C F.A hybrid stock selection model using genetic algorithms and support vector regression[J].Applied Soft Computing,2012,12(2):807-818.
[32] LEE M C.Using support vector machine with a hybrid feature selection method to the stock trend prediction[J].Expert Systems with Applications,2009,36(8):10896-10904.
[33] KARATHANASOPOULOS A,THEOFILATOS K A,SERMPINIS G,et al.Stock market predictionusing evolutionary support vector machines:an application to the ASE20 index[J].The European Journal of Finance,2016,22(12):1145-1163.
[34] ABEDIN M Z,GUOTAI C,MOULA F E,et al.Topological applications of multilayer perceptrons and support vector machines in financial decision support systems[J].International Journal of Finance & Economics,2019,24(1):474-507.
[35] HUANG W,NAKAMORI Y,WANG S Y.Forecasting stockmarket movement direction with support vector machine[J].Computers & Operations Research,2005,32(10):2513-2522.
[36] CHEN W H,SHIH J Y,WU S.Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets[J].International Journal of Electronic Finance,2006,1(1):49-67.
[37] MORITZ B,ZIMMERMANN T.Tree-based conditional portfolio sorts:The relation between past and future stock returns[J/OL].SSRN,2016,2740751.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2740751.
[38] NTI K O,ADEKOYA A,WEYORI B.Random forest based feature selection of macroeconomic variables for stock market prediction[J/OL].American Journal of Applied Sciences,2019,16(7):200-212.
[39] KRAUSS C,DO X A,HUCK N.Deep neural networks,gra-dient-boosted trees,random forests:Statistical arbitrage on the S&P 500[J].European Journal of Operational Research,2017,259(2):689-702.
[40] THAKKAR A,CHAUDHARI K.A comprehensive survey onportfolio optimization,stock price and trend prediction using particle swarm optimization[J/OL].Archives of Computational Methods in Engineering,2020:1-32.https://linkspringer.53yu.com/.
[41] RATHER A M,AGARWAL A,SASTRY V N.Recurrent neural network and a hybrid model for prediction of stock returns[J].Expert Systems with Applications,2015,42(6):3234-3241.
[42] PARRACHO P,NEVES R,HORTA N.Trading in financialmarkets using pattern recognition optimized by genetic algorithms[C]//Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation.2010:2105-2106.
[43] MERELLO S,RATTO A P,ONETO L,et al.Ensemble Application of Transfer Learning and Sample Weighting for Stock Market Prediction[C]//2019 International Joint Conference on Neural Networks(IJCNN).2019:1-8.
[44] NAM K H,SEONG N Y.Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market[J].Decision Support Systems,2019,117:100-112.
[45] NGUYEN T T,YOON S.A novel approach to short-term stock price movement prediction using transfer learning[J].Applied Sciences,2019,9(22):4745.
[46] LI X,XIE H,LAU R Y K,et al.Stock prediction via sentimental transfer learning[J].IEEE Access,2018,6:73110-73118.
[47] LEE T H,YANG Y.Bagging binary and quantile predictors for time series[J].Journal ofEconometrics,2006,135(1/2):465-497.
[48] SUN J,LI H,FUJITA H,et al.Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting[J].Information Fusion,2020,54:128-144.
[49] RUNDO F,TRENTA F,DI STALLO A L,et al.Machine lear-ning for quantitative finance applications:A survey[J].Applied Sciences,2019,9(24):5574.
[50] GUDELEK M U,BOLUK S A,OZBAYOGLU A M.A deeplearning based stock trading model with 2-D CNN trend detection[C]//2017 IEEE Symposium Series on Computational Intelligence.2017:1-8.
[51] HOSEINZADE E,HARATIZADEH S.CNNPred:CNN-based stock market prediction using several data sources[J].arXiv:1810.08923,2018.
[52] KIM T,KIM H Y.Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data[J/OL].PloS one,2019,14(2):e0212320.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212320.
[53] BOROVKOVA S,TSIAMAS I.An ensemble of LSTM neural networks for high-frequency stock market classification[J].Journal of Forecasting,2019,38(6):600-619.
[54] YILDIZ Z C,YILDIZ S B.A portfolio construction frameworkusing LSTM-based stock markets forecasting[J/OL].International Journal of Finance & Economics,2020.https://online-library.wiley.com/doi/abs/10.1002/ijfe.2277.
[55] CHEN S H,HSIEH Y L.Reinforcement learning in experimental asset markets[J].Eastern Economic Journal,2011,37(1):109-133.
[56] CHOI J J,LAIBSON D,MADRIAN B C,et al.Reinforcementlearning and savings behavior[J].The Journal ofFinance,2009,64(6):2515-2534.
[57] CAO J,CHEN J,HULL J,et al.Deep hedging of derivativesusing reinforcement learning[J].arXiv:2013.16409,2021.
[58] CAO Y,ZHAI J.Estimating price impact via deep reinforcement learning[J/OL].International Journal of Finance &Economics,2020.https://onlinelibrary.wiley.com/doi/abs/10.1002/ijfe.2353.
[59] LEE J,KIM R,KOH Y,et al.Global stock market predictionbased on stock chart images using deep Q-network[J].IEEE Access,2019,7:167260-167277.
[60] DING X,ZHANG Y,LIU T,et al.Deep learning for event-dri-ven stock prediction[C]//Twenty-fourth International Joint Conference on Artificial Intelligence.2015.
[61] XU Y,ZHAO J.Can sentiments on macroeconomic news explain stock returns? Evidence form social network data[J/OL].International Journal of Finance & Economics,2020.https://onlinelibrary.wiley.com/doi/abs/10.1002/ijfe.2260.
[62] FANG L,PERESS J.Media coverage and the cross-section ofstock returns[J].The Journal of Finance,2009,64(5):2023-2052.
[63] LIU J,LU Z,DU W.Combining enterprise knowledge graph and news sentiment analysis for stock price prediction[C]//Procee-dings of the 52nd Hawaii International Conference on System Sciences.2019.
[64] CHEN Y,WEI Z,HUANG X.Incorporating corporation rela-tionship via graph convolutional neural networks for stock price prediction[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:1655-1658.
[65] DENG S,ZHANG N,ZHANG W,et al.Knowledge-driven stock trend prediction and explanation via temporal convolutional network[C]//Companion Proceedings of The 2019 World Wide Web Conference.2019:678-685.
[66] TIWARI S,PANDIT R,RICHHARIYA V.Predicting future trends in stock market by decision tree rough-set based hybrid system with HHMM[J/OL].Iternational Journal of Electronics and Computer Science Engineering,2010,1(3).http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.261.3105&rep=rep1&type=pdf.
[67] CREIGHTON J,ZULKERNINE F H.Towards building a hybrid model for predicting stock indexes[C]//2017 IEEE International Conference on Big Data(Big Data).2017:4128-4133.
[68] ASSIS C A S,PEREIRA A C M,CARRANO E G,et al.Restricted Boltzmann machines for the prediction of trends in financial time series[C]//2018 International Joint Conference on Neural Networks.2018:1-8.
[69] CHEN W,YEO C K,LAU C T,et al.Leveraging social media news to predict stock index movement using RNN-boost[J].Data & Knowledge Engineering,2018,118:14-24.
[70] CHEN Y,LIN W,WANG J Z.A dual-attention-based stockprice trend prediction model with dual features[J].IEEE Access,2019,7:148047-148055.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 冷典典, 杜鹏, 陈建廷, 向阳.
面向自动化集装箱码头的AGV行驶时间估计
Automated Container Terminal Oriented Travel Time Estimation of AGV
计算机科学, 2022, 49(9): 208-214. https://doi.org/10.11896/jsjkx.210700028
[3] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[4] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[5] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[6] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[7] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[8] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[9] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[10] 张光华, 高天娇, 陈振国, 于乃文.
基于N-Gram静态分析技术的恶意软件分类研究
Study on Malware Classification Based on N-Gram Static Analysis Technology
计算机科学, 2022, 49(8): 336-343. https://doi.org/10.11896/jsjkx.210900203
[11] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[12] 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇.
基于大数据的进化网络影响力分析研究综述
Survey of Influence Analysis of Evolutionary Network Based on Big Data
计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240
[13] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[14] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[15] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!