[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 134-141.doi: 10.11896/jsjkx.210500119

• 数据库&大数据&数据科学 • 上一篇    下一篇

自适应权重的级联增强节点的宽度学习算法

蔡欣雨, 冯翔, 虞慧群   

  1. 华东理工大学计算机科学与工程系 上海 200237
    上海智慧能源工程技术研究中心 上海 200237
  • 收稿日期:2021-05-17 修回日期:2021-10-18 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 冯翔(xfeng@ecust.edu.cn)
  • 作者简介:(787997078@163.com)
  • 基金资助:
    国家自然科学基金(61772200,61772201,61602175);上海市浦江人才计划(17PJ1401900);上海市经信委“信息化发展专项资金”(201602008)

Adaptive Weight Based Broad Learning Algorithm for Cascaded Enhanced Nodes

CAI Xin-yu, FENG Xiang, YU Hui-qun   

  1. Department of Computer Science and Engineering,East China University of Science and Technology,Shanghai 200237,China
    Shanghai Smart Energy Engineering Technology Research Center,Shanghai 200237,China
  • Received:2021-05-17 Revised:2021-10-18 Online:2022-06-15 Published:2022-06-08
  • About author:CAI Xin-yu,born in 1998,postgra-duate,is a member of China Computer Federation.His main research interests include swarm intelligence and broad learning.
    FENG Xiang,born in 1977,Ph.D,professor,is a member of China Computer Federation,Her main research interests include artificial intelligence,swarm intelligence and evolutionary computing,and big data intelligence.
  • Supported by:
    National Natural Science Foundation of China(61772200,61772201,61602175),Shanghai Pujiang Talent Program(17PJ1401900) and Shanghai Economic and Information Commission “Special Fund for Information Development”(201602008).

摘要: 进入智能化时代,需要在大数据平台上进行持续自主学习和优化,而持续自主学习的第一步就是进行数据增强。文中提出基于级联增强节点的宽度学习方法,为大数据平台上的持续自主学习提供了新的数据增强方法,也为后续在学习架构基础上的演化优化提供了可能。以时序预测问题为依托,但由于经典宽度学习是典型的前馈神经网络,并不适合建模动态时间序列,因此在传统的宽度学习系统中引入反馈结构,将增强节点层顺序连接,使得增强节点具有记忆性,能够保留部分历史信息。在进行特征提取时,采用了相空间重构来提取数据更本质的特征;同时,引入了权重因子,在训练时依据每个样本对模型的贡献度,为其独立分配不同的权重,从而消除噪声和离群点对学习过程的干扰,提高算法的预测准确率以及鲁棒性。实验结果表明所提算法是有效的。

关键词: 宽度学习, 权重因子, 时序预测, 数据增强

Abstract: In the era of intelligence,continuous autonomous learning and optimization need to be carried out on the big data platform,and the first step of continuous autonomous learning is data enhancement.This paper proposes a broad learning method based on cascaded enhancement nodes,which provides a new data enhancement method for continuous autonomous learning on big data platform,and makes it possible for subsequent evolutionary optimization on the basis of learning architecture.Classical broad learning is a typical feedforward neural network,which is not suitable for modeling dynamic time series.In this paper,the feedback structure is introduced into the traditional broad learning system,which makes the enhancement nodes have memory and retains part of the historical information.In feature extraction,phase space reconstruction is used to extract more essential features of the data.At the same time,a weight factor is introduced to assign different weights to each sample according to its contribution to model during training,so as to eliminate the interference of noise and outliers to the learning process and improve the robustness of the algorithm.Experimental results show that the proposed algorithm is effective.

Key words: Broad learning, Data enhancement, Time series prediction, Weight factor

中图分类号: 

  • TP183
[1] CAO B,WANG N,LI J,et al.Data Augmentation-Based Joint Learning for Heterogeneous Face Recognition[J].IEEE Tran-sactions on Neural Networks and Learning Systems,2018,30(6):1731-1743.
[2] LEMLEY J,BAZRAFKAN S,CORCORAN P.Smart Augmentation Learning an Optimal Data Augmentation Strategy[J].IEEE Access,2017,5:5858-5869.
[3] BOX G E P,PIERCE D A.Distribution of Residual Autocorrela-tions in Autoregressive-Integrated Moving Average Time Series Models[J].Journal of the American Statistical Association,1970,65(332):1509-1526.
[4] YU G,HU J,ZHANG C,et al.Short-Term Traffic Flow Forecasting Based on Markov Chain Model[C]//IEEE IV2003 Intelligent Vehicles Symposium.IEEE,2003:208-212.
[5] WANG J,DENG W,GUO Y.New Bayesian Combination Me-thod for Short-Term Traffic Flow Forecasting[J].Transportation Research Part C:Emerging Technologies,2014,43:79-94.
[6] FENG L,ZHAO C,CHEN C L P,et al.BNGBS:An Efficient Network Boosting System With Triple Incremental Learning Capabilities for More Nodes,Samples,and Classes[J].Neurocomputing,2020,412:486-501.
[7] HOU J X,LI Q,ZHU Y J,et al.Real-Time Forecasting System of PM2.5 Concentration Based on Spark Framework and Random Forest Model[J/OL].Science of Surveying and Mapping,2007.http://en.cnki.com.cn/Article_en/CJFDTotal-CHKD201701001.htm.
[8] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780.
[9] XIE K,RONG Y T,HU F P,et al.Random Forest Algorithm Based on Data Integration[J].Computer Engineering,2020,46(12):290-298.
[10] CHUNG J,GULCEHRE C,CHO K H,et al.Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[J].arXiv:1412.3555,2014.
[11] CHEN T T,LEE S J.A Weighted LS-SVM Based Learning System for Time Series Forecasting[J].Information Sciences,2015,299:99-116.
[12] SONG X L,LIU Y Z,CHEN S F.Seasonal Time Series Forecasting Based on Seasonality Method Selection[J].Computer Engineering,2011,37(21):131-132,135.
[13] HUANG S,WANG D,WU X,et al.Dsanet:Dual Self-attention Network for Multivariate Time Series Forecasting[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:2129-2132.
[14] CHEN C L P.A Rapid Supervised Learning Neural Network for Function Interpolation and Approximation[J].IEEE Transactions on Neural Networks,1996,7(5):1220-1230.
[15] CHEN C L P,LECLAIR S R,PAO Y H.An Incremental Adaptive Implementation of Functional-Link Processing for Function Approximation,Time-Series Prediction,and System Identification[J].Neurocomputing,1998,18(1/2/3):11-31.
[16] CHEN C L P,WAN J Z.A Rapid Learning and Dynamic Stepwise Updating Algorithm for Flat Neural Networks and the Application to Time-Series Prediction[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics),1999,29(1):62-72.
[17] CHEN C L P,LIU Z.Broad Learning System:An Effective and Efficient Incremental Learning System without the Need for Deep Architecture[J].IEEE Transactions on Neural Networks and Learning Systems,2017,29(1):10-24.
[18] HAN M,ZHANG R,QIU T,et al.Multivariate Chaotic Time Series Prediction Based on Improved Grey Relational Analysis[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,49(10):2144-2154.
[19] WANG M D,XU X Y,YAN G W,et al.Ensemble Weighted Broad Learning System with AdaBoost for Imbalanced Classification[J].Computer Engineering,2020,48(4):99-105,112.
[20] XU M,HAN M,CHEN C L P,et al.Recurrent Broad Learning Systems for Time Series Prediction[J].IEEE Transactions on Cybernetics,2018,50(4):1405-1417.
[1] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[2] 许华杰, 陈育, 杨洋, 秦远卓.
基于混合样本自动数据增强技术的半监督学习方法
Semi-supervised Learning Method Based on Automated Mixed Sample Data Augmentation Techniques
计算机科学, 2022, 49(3): 288-293. https://doi.org/10.11896/jsjkx.210100156
[3] 线岩团, 高凡雅, 相艳, 余正涛, 王剑.
融合多策略数据增强的低资源依存句法分析方法
Improving Low-resource Dependency Parsing Using Multi-strategy Data Augmentation
计算机科学, 2022, 49(1): 73-79. https://doi.org/10.11896/jsjkx.210900036
[4] 暴雨轩, 芦天亮, 杜彦辉, 石达.
基于i_ResNet34模型和数据增强的深度伪造视频检测方法
Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation
计算机科学, 2021, 48(7): 77-85. https://doi.org/10.11896/jsjkx.210300258
[5] 刘舒康, 唐鹏, 金炜东.
基于智能数据增强和改进YOLOv3算法的接触网吊弦及支架检测研究
Study on Catenary Dropper and Support Detection Based on Intelligent Data Augmentation and Improved YOLOv3
计算机科学, 2020, 47(11A): 178-182. https://doi.org/10.11896/jsjkx.200200053
[6] 王绪亮, 聂铁铮, 唐欣然, 黄菊, 李迪, 闫铭森, 刘畅.
流式数据处理的动态自适应缓存策略研究
Study on Dynamic Adaptive Caching Strategy for Streaming Data Processing
计算机科学, 2020, 47(11): 122-127. https://doi.org/10.11896/jsjkx.190800093
[7] 胡海根, 孔祥勇, 周乾伟, 管秋, 陈胜勇.
基于深层卷积残差网络集成的黑色素瘤分类方法
Melanoma Classification Method by Integrating Deep Convolutional Residual Network
计算机科学, 2019, 46(5): 247-253. https://doi.org/10.11896/j.issn.1002-137X.2019.05.038
[8] 高山,刘炜,崔勇,张茜,王宗敏.
一种融合多种用户行为的协同过滤推荐算法
Collaborative Filtering Algorithm Integrating Multiple User Behaviors
计算机科学, 2016, 43(9): 227-231. https://doi.org/10.11896/j.issn.1002-137X.2016.09.045
[9] 李军伟,刘先省.
基于向量冲突表示方法的证据组合规则
Evidence Combination Rule Based on Vector Conflict Representation Method
计算机科学, 2016, 43(12): 58-62. https://doi.org/10.11896/j.issn.1002-137X.2016.12.010
[10] 李鹏飞,吴为民.
基于混合模型推荐算法的优化
Optimized Implementation of Hybrid Recommendation Algorithm
计算机科学, 2014, 41(2): 68-71.
[11] 汤胤 彭宏 郑启伦.
一个基于范例推理的时序预测模型

计算机科学, 2004, 31(8): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!