[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 686-693.doi: 10.11896/jsjkx.210500194

• 交叉&应用 • 上一篇    下一篇

基于改进人工势场的未知障碍物无人机编队避障

陈博琛1, 唐文兵2, 黄鸿云3, 丁佐华1   

  1. 1 浙江理工大学信息学院 杭州 310018
    2 华东师范大学软件工程学院 上海 200062
    3 浙江理工大学图书馆多媒体大数据中心 杭州 310018
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 丁佐华(zouhuading@hotmail.com)
  • 作者简介:(chbc@foxmail.com)
  • 基金资助:
    国家自然科学基金(61751210)

Pop-up Obstacles Avoidance for UAV Formation Based on Improved Artificial Potential Field

CHEN Bo-chen1, TANG Wen-bing2, HUANG Hong-yun3, DING Zuo-hua1   

  1. 1 School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China
    2 Software Engineering Institute,East China Normal University,Shanghai 200062,China
    3 Center of Multimedia Big Data of Library,Zhejiang Sci-Tech University,Hangzhou 310018,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:CHEN Bo -chen,born in 1995,postgra-duate.His main research interests include autonomous vehicles,artificial intelligence and multi-robot collaboration.
    DING Zuo -hua,born in 1964,professor,Ph.D supervisor.His main research interests include system modeling,software reliability prediction,intelligent software systems and service robots.
  • Supported by:
    National National Natural Science Foundation of China(61751210).

摘要: 随着无人机相关技术的成熟,无人机的发展前景和潜在的应用场景也被越来越多的人所认识,其中无人机编队能够打破单个无人机在载荷和任务种类等方面受到的限制,因此无人机编队飞行是未来重要的发展方向。在飞行的过程中,无人机编队可能会受到新建高楼、临时禁飞区等未知障碍物的限制。目前避障方法的主要关注点是在出发前且障碍物信息已知的条件下,为二维场景下的无人机生成不与障碍物相交的参考路径。但是这种方法不够灵活,无法满足在实际三维环境前进的过程中避开这些未知障碍物的要求。文中提出一种碰撞风险感知的编队防碰撞系统(Formation Collision Avoidance System,FCAS),通过对无人机的运动趋势进行分析,筛选出编队中最有可能发生碰撞的无人机;通过改进人工势场(Improved Artificial Potential Field,iAPF)对未知障碍物进行躲避,能够有效避免避障过程中编队中无人机间的碰撞,有效减少编队内部通信链路的数量,将障碍物对无人机编队的影响降到最低。在完成避障后,所有无人机将重新保持原来的队形并返回参考路径。模拟实验显示,该系统使无人机编队在参考路径飞行过程中能够处理静态未知障碍物,并最终无碰撞地抵达终点,验证了策略的可行性。

关键词: 避障, 编队防碰撞系统, 多旋翼无人机, 人工势场

Abstract: With the maturity of UAV-related technologies,the development prospects and potential application scenarios of UAVs are also recognized by more and more people.Among them,UAV formation can overcome the load,endurance and mission of a single UAV.Due to restrictions on types and other aspects,UAV formation flying is an important development direction in the future.During the flight,the UAV formation may be restricted by unknown obstacles such as new high-rise buildings and temporary no-fly zones.The main focus of current obstacle avoidance methods is to generate a reference flight path that does not intersect the obstacle for the UAV in the two-dimensional scene before the departure,with the obstacle information is known.However,this method is not flexible enough to meet the requirements of avoiding these unknown obstacles in the process of advancing in the actual three-dimensional environment.A formation collision avoidance system(FCAS) for collision risk perception is proposed.By analyzing the movement trend of UAVs,those UAVs within the formation that are most likely to collide are screened out,and the improved artificial potential field is used to unknown obstacles.Avoidance of such obstacles can effectively avoid collisions between UAVs within the formation during the obstacle avoidance process,effectively reduce the number of communication links within the formation,and minimize the impact of obstacles on the formation of UAVs.After the obstacle avoi-dance is completed,all UAVs will resume their original formation and return to the reference paths.Simulation results show that the system enables the UAV formation to deal with static unknown obstacles during the flight of the reference path,and finally reaches the destination without collision,thus verifying the feasibility of the strategy.

Key words: Artificial potential field, Formation collision avoidance system, Multi-rotor UAV, Obstacle avoidance

中图分类号: 

  • TP301
[1] KANG H,JOUNG J,KANG J.Power-Efficient Formation ofUAV Swarm:Just Like Flying Birds?[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference.2020:1-6.
[2] TANG J,FAN L,LAO S.Collision avoidance for multi-UAV based on geometric optimization model in 3D airspace[J].Arabian Journal for Science and Engineering,2014,39(11):8409-8416.
[3] SEO J,KIM Y,KIM S,et al.Collision avoidance strategies for unmanned aerial vehicles in formation flight[J].IEEE Transactions on Aerospace and Electronic Systems,2017,53(6):2718-2734.
[4] GOSS J,RAJVANSHI R,SUBBARAO K.Aircraft conflict detection and resolution using mixed geometric and collision cone approaches[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.2004:670-689.
[5] NIE Z L,ZHANG X J,GUAN X M.UAV formation flightbased on artificial potential force in 3D environment[C]//Chinese Control and Decision Conference.2017:5465-5470.
[6] ZHOU C,ZHOU S L,LEI M,et al.UAV formation flight based on nonlinear model predictive control[J].Mathematical Problems in Engineering,2012:1-16.
[7] PEREZ-CARABAZ S,SCHERER J,RINNER B,et al.UAVtrajectory optimization for Minimum Time Search with communication constraints and collision avoidance[J].Engineering Applications of Artificial Intelligence,2019,85:357-371.
[8] BISWAS S,ANAVATTI S G,GARRATT M A.A particleswarm optimization based path planning method for autonomous systems in unknown terrain[C]//2019 IEEE InternationalConference on Industry 4.0,Artificial Intelligence,and Communications Technology(IAICT).2019:57-63.
[9] HASAN K M,AL-NAHID A,REZA K J,et al.Sensor basedautonomous color line follower robot with obstacle avoidance[C]//2013 IEEE Business Engineering and Industrial Applications Colloquium(BEIAC).2013:598-603.
[10] YU Y,TINGTING W,LONG C,et al.Stereo vision based obstacle avoidance strategy for quadcopter UAV[C]//2018 Chinese Control and Decision Conference(CCDC).IEEE,2018:490-494.
[11] CHENG H H,YANG S,QI S H.Online Obstacle Avoidanceand Path Planning of Quadrotor Oriented to Urban Environment[J].Computer Science,2019,46(4):241-246.
[12] GIULIETTI F,POLLINI L,INNOCENTI M.Autonomous formation flight[J].IEEE Control Systems Magazine,2000,20(6):34-44.
[13] KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots [M]//Autonomous Robot Vehicles.Springer,1986:396-404.
[14] LI G,TAMURA Y,YAMASHITA A,et al.Effective improved artificial potential field-based regression search method for autonomous mobile robot path planning[J].International Journal of Mechatronics and Automation,2013,3(3):141-170.
[15] PAMOSOAJI A K,HONG K S.A path-planning algorithmusing vector potential functions in triangular regions[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2013,43(4):832-842.
[16] TANNER H G,BODDU A.Multiagent navigation functions revisited[J].IEEE Transactions on Robotics,2012,28(6):1346-1359.
[17] CHEN Y,LUO G,MEI Y,et al.UAV path planning using artificial potential field method updated by optimal control theory[J].International Journal of Systems Science,2016,47(6):1407-1420.
[18] SUN J,TANG J,LAO S.Collision avoidance for cooperativeUAVs with optimized artificial potential field algorithm[J].IEEE Access,2017,5:18382-18390.
[19] MAC T.T,COPOT C,HERNANDEZ A,et al.Improved potential field method for unknown obstacle avoidance using UAV in indoor environment[C]//International Symposium on Applied Machine Intelligence and Informatics.2016:345-350.
[20] KOREN Y,BORENSTEIN J.Potential field methods and their inherent limitations for mobile robot navigation[C]//International Conference on Robotics and Automation.1991:1398-1404.
[21] GARRIDO S,MORENO L,LIMA P U.Robot formation motion planning using fast marching[J].Robotics and Autonomous Systems,2011,59(9):675-683.
[22] ZHAO Y C,LU J,ZHOU R,et al.UAV formation control with obstacle avoidance using improved artificial potential fields[C]//Chinese Control Conference.2017:6219-6224.
[23] LEE D,JEONG J,KIM Y H,et al.An improved artificial potential field method with a new point of attractive force for a mobile robot[C]//International Conference on Robotics and Automation Engineering.2017:63-67.
[24] MOHAMED E F,EL-METWALLY K,HANAFY A R.An improved Tangent Bug method integrated with artificial potential field for multi-robot path planning[C]//International Sympo-sium on Innovations in Intelligent Systems and Applications.2011:555-559.
[25] WEERAKOON T,ISHII K,NASSIRAEI A A F.An artificial potential field based mobile robot navigation method to prevent from deadlock[J].Journal of Artificial Intelligence and Soft Computing Research,2015,5(3):189-203.
[26] XUE Y,LUO Y,ZHU M.UAV Formation Control MethodBased on Consistency Strategy[C]//IOP Conference Series:Earth and Environmental Science.2020:052084.
[1] 王兵, 吴洪亮, 牛新征.
基于改进势场法的机器人路径规划
Robot Path Planning Based on Improved Potential Field Method
计算机科学, 2022, 49(7): 196-203. https://doi.org/10.11896/jsjkx.210500020
[2] 杜婉茹, 王潇茵, 田涛, 张越.
面向未知环境及动态障碍的人工势场路径规划算法
Artificial Potential Field Path Planning Algorithm for Unknown Environment and Dynamic Obstacles
计算机科学, 2021, 48(2): 250-256. https://doi.org/10.11896/jsjkx.191100170
[3] 陈继清, 谭成志, 莫荣现, 王志奎, 吴家华, 赵超阳.
基于人工势场的A*算法的移动机器人路径规划
Path Planning of Mobile Robot with A* Algorithm Based on Artificial Potential Field
计算机科学, 2021, 48(11): 327-333. https://doi.org/10.11896/jsjkx.200900170
[4] 陈骏岭, 秦小麟, 李星罗, 周杨淏, 鲍斌国.
基于人工势场法的多机器人协同避障
Multi-robot Collaborative Obstacle Avoidance Based on Artificial Potential Field Method
计算机科学, 2020, 47(11): 220-225. https://doi.org/10.11896/jsjkx.190900026
[5] 成浩浩, 杨森, 齐晓慧.
面向城市环境的四旋翼无人机在线避障航迹规划方法
Online Obstacle Avoidance and Path Planning of Quadrotor Oriented to Urban Environment
计算机科学, 2019, 46(4): 241-246. https://doi.org/10.11896/j.issn.1002-137X.2019.04.038
[6] 泰应鹏,邢科新,林叶贵,张文安.
多AGV路径规划方法研究
Research of Path Planning in Multi-AGV System
计算机科学, 2017, 44(Z11): 84-87. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.016
[7] 徐飞.
基于改进人工势场法的机器人避障及路径规划研究
Research on Robot Obstacle Avoidance and Path Planning Based on Improved Artificial Potential Field Method
计算机科学, 2016, 43(12): 293-296. https://doi.org/10.11896/j.issn.1002-137X.2016.12.054
[8] 徐腾飞,罗 琦,王 海.
基于向量场的移动机器人动态路径规划
Dynamic Path Planning for Mobile Robot Based on Vector Field
计算机科学, 2015, 42(5): 237-244. https://doi.org/10.11896/j.issn.1002-137X.2015.05.048
[9] 汤一平,姜荣剑,林璐璐.
基于主动式全景视觉的移动机器人障碍物检测
Obstacle Detection Method for Mobile Robot Using Active Omnidirectional Vision Sensor
计算机科学, 2015, 42(3): 284-288. https://doi.org/10.11896/j.issn.1002-137X.2015.03.059
[10] 王芳,李昆鹏,袁明新.
一种人工势场导向的蚁群路径规划算法
AntColony Algorithm Based on Optimization of Potential Field Method for Path Planning
计算机科学, 2014, 41(Z11): 47-50.
[11] 余帅,李艳,王熙照,赵鹤玲.
游戏场景中基于势场的交互寻路方法
Interactive Path-planning Method Based on Artificial Potential Field in Game Scenarios
计算机科学, 2014, 41(2): 131-135.
[12] 肖国宝,严宣辉.
一种新型协作多机器人路径规划算法
New Cooperative Multi-robot Path Planning Algorithm
计算机科学, 2013, 40(4): 217-220.
[13] 陈晋音,杨东勇,邹青华.
AS-R移动机器人的动态避障与路径规划研究
Research on Dynamic Obstacle Avoidance and Path
计算机科学, 2012, 39(3): 223-227.
[14] 陈佐,涂员员,万新.
基于移动障碍的MWSN节点协同转向避障方法
Cooperative Obstacle Avoidance Approach in Mobile Wireless Sensor Network:Mobile Obstacle
计算机科学, 2012, 39(2): 95-100.
[15] 刘传领,雷燕,杨静宇.
基于量子遗传算法的移动机器人的一种路径规划方法
Path Planning Method of Mobile Robot Based on Quantum Genetic Algorithm
计算机科学, 2011, 38(8): 208-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!