[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 165-171.doi: 10.11896/jsjkx.210400276

• 数据库&大数据&数据科学 • 上一篇    下一篇

融合用户偏好的图神经网络推荐模型

熊中敏, 舒贵文, 郭怀宇   

  1. 上海海洋大学信息学院 上海 201306
  • 收稿日期:2021-04-26 修回日期:2021-05-25 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 舒贵文(422197957@qq.com)
  • 作者简介:(zmxiong@shou.edu.cn)
  • 基金资助:
    国家自然科学基金(41501419);上海市地方院校能力建设项目(19050502100)

Graph Neural Network Recommendation Model Integrating User Preferences

XIONG Zhong-min, SHU Gui-wen, GUO Huai-yu   

  1. College of Information,Shanghai Ocean University,Shanghai 201306,China
  • Received:2021-04-26 Revised:2021-05-25 Online:2022-06-15 Published:2022-06-08
  • About author:XIONG Zhong-min,born in 1971,Ph.D,postdoctor,associate professor,is a member of China Computer Federation.His main research interests include database theory and application,data warehouse and data mining,network analysis technology and information recommendation.
  • Supported by:
    National Natural Science Foundation of China(41501419) and Shanghai Local College Capacity Building Project(19050502100).

摘要: 针对知识图谱驱动的图神经网络推荐算法无法同时学习用户和项目表示的问题,提出了融合用户偏好的图神经网络推荐模型,该模型分别从用户视角和实体视角学习用户和项目表示。首先,用户视角根据用户历史交互记录在知识图谱中传播用户偏好,增强用户表示;其次,实体视角通过图卷积网络聚集候选实体邻居信息以丰富实体的表示,同时设计一个混合层,分别从宽度和深度两个方面捕获高阶连通性和混合分层信息来增强项目表示,再将增强的用户表示向量和项目表示向量输入预测函数中,用于预测交互概率;最后,使用固定个数采样方法和阶段性训练策略优化模型的性能。在MovieLens-1M数据集上进行点击率预测实验,结果表明,所提模型的AUC与基准方法RippleNet和KGCN相比分别提升了1.7%和2.3%。

关键词: 个性化推荐, 偏好传播, 图神经网络, 推荐系统, 知识图谱

Abstract: Aiming at the problem that knowledge graph-driven graph neural network recommendation algorithm cannot learn the user and item representations at the same time,a graph neural network recommendation model that integrates user preferences is proposed.The model learns user and item representations from user’s perspective and entity’s perspective respectively.Firstly,the user’s perspective spreads user preferences in the knowledge graph based on user historical interaction records and enhances user representation.Secondly,the entity perspective gathers neighbor information of candidate entities through graph convolu-tional network to enrich the representation of the entity.At the same time,a hybrid layer is designed to capture high-level connectivity and hybrid hierarchical information from both the width and depth aspects to enhance the item representation.The enhanced user representation vector and item representation vector are input to the prediction function to predict the interaction probability.Finally,the fixed-size sampling method and phased training strategy are used to optimize the model.The click-through rate prediction experiment is conducted on the MovieLens-1M data set,and the results show that,compared with the benchmark methods RippleNet and KGCN,its AUC increases by 1.7% and 2.3% respectively.

Key words: Graph neural network, Knowledge graph, Personalized recommendation, Preference propagation, Recommendation system

中图分类号: 

  • TP391.3
[1] HE X N,LIAO L Z,ZHANG H W,et al.Neural CollaborativeFiltering[C]//Proceedings of the 26th International Conference on World Wide Web.New York,USA:ACM,2017:173-182.
[2] JAMALI M,ESTER M.A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the 4th ACM Conference on Recommender Systems.New York,USA:ACM,2010:135-142.
[3] ZHANG F,YUAN N,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,USA:ACM,2016:353-362.
[4] SUN Y,YUAN N,XIE X,et al.Collaborative Intent Prediction with Real-Time Contextual Data[J].ACM Transactions on Information Systems,2017:35(4):30:1-30:33.
[5] QIN C,ZHU H S,ZHUANG F Z,et al.Research review ofrecommendation system based on knowledge graph[J].Science in China:Information Science,2020,50(7):937-956.
[6] YU X,REN X,GU Q,et al.Personalized entity recommendation:A heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.New York,USA:ACM,2014:283-292.
[7] HUANG Z,ZHENG Y,CHENG R,et al.Meta structure:Computing relevance in large heterogeneous information networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,USA:ACM,2016:1595-1604.
[8] HU B,SHI C,ZHAO W,et al.Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.London,UK,2018:1531-1540.
[9] HUANG J,ZHAO W,DOU H,et al.Improving sequentialrecommendation with knowledge-enhanced memory networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York,USA,2018:505-514.
[10] WANG H W,ZHANG F Z,XIE X,et al.DKN:Deep know-ledge-aware network for news recommendation[C]//Procee-dings of the 2018 World Wide Web Conference.Lyon,France,2018:1835-1844.
[11] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J/OL].Advances in Neural Information Processing Systems.https://dblp.uni-trier.de/rec/conf/nips/BordesUGWY13.html.
[12] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Quebec,Canada,2014:1112-1119.
[13] LIN Y,LIN Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.Texas,USA,2015:2181-2187.
[14] JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Beijing,China,2015:687-696.
[15] SOCHER R,CHEN D,MANNING C D,et al,Reasoning with neural tensor networks for knowledge base completion[C]//Annual Conference on Neural Information Processing Systems.2013:926-934.
[16] GUAN N,SONG D,LIAO L,Knowledge graph embedding with concepts[J].Knowledge-Based Systems,2019,164:38-44.
[17] WESTON J,BORDES A,YAKHNENKO O,et al.Connecting language and knowledge bases with embedding models for relation extraction[C]//Conference on Empirical Methods in Natural Language Processing.Washington,USA,2013:1366-1371.
[18] WANG H W,ZHANG F Z,WANG J,et al.Ripplenet:Propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.Torino,Italy,2018:417-426.
[19] WANG H W,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference.San Francisco,USA,2019:3307-3313.
[20] JIA Z H,BIN C Z,GU T L,et al.Personalized attraction recommendation based on knowledge graph and long-term and short-term preferences of users[J].Journal of Intelligent Systems,2020,15(5):990-997.
[21] LIU Q,CHEN S P,HUO H.An entity recommendation model
based on user preference dissemination of knowledge graph[J].Application Research of Computers,2020,37(10):2926-2931.
[22] WANG X,HE X N,CAO Y X,et al.KGAT:Knowledge Graph Attention Network for Recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining(KDD ’19).New York:ACM,2019:950-958.
[23] ABU-EI-HAIJA S,PEROZZI B,KAPOOR A,et al.MixHop:Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing[J].arXiv:1905.00067,2019.
[24] MIKOLOV T,SUTSKEVER I,CHEN K,et al.DistributedRepresentations of Words and Phrases and their Compositio-nality[J].arXiv:1310.4546,2013.
[25] YING R,HE R,CHEN K,et al.Graph Convolutional Neural Networks for Web-Scale Recommender Systems[J].arXiv:1806.01973,2018.
[26] TAICH Y,WU M R,CHU Y W,et al.GraphSW:a training protocol based on stage-wise training for GNN-based Recommender Model[J].arXiv:1908.05611,2019.
[27] TAI C Y,WU M R,CHU Y W,et al.MVIN:Learning Multi-view Items for Recommendation[C]//43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,2020:99-108.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[4] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[5] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[6] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[7] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[8] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[9] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[10] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[11] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[12] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[13] 杨炳新, 郭艳蓉, 郝世杰, 洪日昌.
基于数据增广和模型集成策略的图神经网络在抑郁症识别上的应用
Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition
计算机科学, 2022, 49(7): 57-63. https://doi.org/10.11896/jsjkx.210800070
[14] 王杰, 李晓楠, 李冠宇.
基于自适应注意力机制的知识图谱补全算法
Adaptive Attention-based Knowledge Graph Completion
计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129
[15] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!