1. Nelson, S. O., "Agricultural applications of dielectric measurements," IEEE Trans. Dielectr. Electr. Insulat., Vol. 13, 688-702, Aug. 2006.
doi:10.1109/TDEI.2006.1667726
2. Baker-Jarvis, J., R. G. Geyer, J. H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials - A comparison of techniques," IEEE Trans. Dielectr. Electr. Insulat., Vol. 5, 571-577, Aug. 1998.
doi:10.1109/94.708274
3. Von Hippel, A. R., Dielectric Materials and Applications, Wiley, 1961.
4. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, Nov. 1970.
doi:10.1109/TIM.1970.4313932
5. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382
6. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, 789-793, Jun. 1989.
doi:10.1109/19.32194
7. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability at magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, Apr. 1990.
doi:10.1109/19.52520
8. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Trans. Instrum. Meas., Vol. 61, No. 11, 3039-3046, Nov. 2012.
doi:10.1109/TIM.2012.2203450
9. Lee, C. and C. Yang, "Single-compound complementary split-ring resonator for simultaneously measuring the permittivity and thickness of dual-layer dielectric materials," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 2010-2023, Apr. 2015.
doi:10.1109/TMTT.2015.2418768
10. Lee, C.-S. and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wireless Comp. Lett., Vol. 24, No. 8, 563-565, Aug. 2014.
doi:10.1109/LMWC.2014.2318900
11. Bogosanovich, M., "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials," IEEE Trans. Instrum. Meas., Vol. 49, No. 5, 1144-1148, Oct. 2000.
doi:10.1109/19.872944
12. High Frequency Structure Simulator (HFSS 18.0), Canonsburg, PA, Boston, MA: ANSYS. [Online]. Available: http://www.ansoft.com/products/hf/hfss.
doi:10.1109/19.872944
13. Rogers Corporation "RT/duroid 5870/5880 high frequency laminates,", 5870/5880 datasheet, [Revised Jun. 2017].
14. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons Inc., 2016.
15. Oberhart, M. L., Y. T. Lo, and R. Q. H. Lee, "New simple feed network for an array module of four microstrip elements," Electron. Lett., Vol. 23, No. 9, 436-437, Apr. 1987.
doi:10.1049/el:19870314
16. Huynh, T. and K. F. Lee, "Cross polarization characteristics of rectangular patch antennas," 1988 IEEE AP-S. Int. Symp. Antennas Propag., Syracuse, NY, Jun. 6-10, 1988.
17. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
18. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, Feb. 2010.
doi:10.1109/LAWP.2010.2042565
19. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 300-305, Jan. 2016.
doi:10.1109/TAP.2015.2496628
20. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Aug. 2012.
doi:10.1109/TAP.2012.2213231
21. Yang, H. Y. and H. G. Alexopoulau, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. Antennas Propag., Vol. 35, No. 7, 860-863, Jul. 1987.
doi:10.1109/TAP.1987.1144186
22. Kramer, B. A., M. Lee, C.-C. Chen, and J. L. Volakis, "Design and performance of an ultrawide-band ceramic-loaded slot spiral," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2193-2199, Jul. 2005.
doi:10.1109/TAP.2005.850715
23. Al-Tarifi, M., D. Anagnostou, A. Amert, and K. Whites, "Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1898-1908, Feb. 2013.
doi:10.1109/TAP.2012.2231931
24. Asaadi, M. and A. Sebak, "Gain and bandwidth enhancement of 2×2 square dense dielectric patch antenna array using a holey superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1808-1811, Mar. 2017.
25. Ta, S. X. and T. K. Nguyen, "AR bandwidth and gain enhancement of patch antenna using single dielectric superstrate," Electron. Lett., Vol. 53, No. 15, 1015-1017, Jul. 2017.
doi:10.1049/el.2017.1676