1. Emami, S., P. Hajireza, F. Abd-Rahman, H. Abdul-Rashid, H. Ahmad, and S. Harun, "Wide-band hybrid amplifier operating in S-band region," Progress In Electromagnetics Research, Vol. 102, 301-313, 2010.
doi:10.2528/PIER10012303
2. Raab, F., P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, J. Sevic, and N. Sokal, "RF and microwave power amplifier and transmitter technologies --- Part 1," High Frequency Electronics, Vol. 2, No. 3, 22-36, 2003.
3. Thein, T., C. Law, and K. Fu, "Frequency domain dynamic thermal analysis in GaAs Hbt for power amplifier applications," Progress In Electromagnetics Research, Vol. 118, 71-87, 2011.
doi:10.2528/PIER11050301
4. Liu, T., S. Boumaiza, and F. Ghannouchi, "Deembedding static nonlinearities and accurately identifying and modeling memory effects in wide-band RF transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3578-3587, 2005.
doi:10.1109/TMTT.2005.857105
5. Ku, H. and J. Kenney, "Behavioral modeling of nonlinear RF power amplifiers considering memory effects," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 12, 2495-2504, 2003.
doi:10.1109/TMTT.2003.820155
6. Wulich, D., "Definition of efficient PAPR in OFDM," IEEE Communications Letters, Vol. 9, No. 9, 832-834, 2005.
doi:10.1109/LCOMM.2005.1506718
7. Ding, L., Z. Ma, D. Morgan, M. Zierdt, and G. T. Zhou, "Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, No. 1, 390-397, 2008.
doi:10.1109/TCSI.2007.910545
8. Narasimhan, B., D. Wang, S. Narayanan, H. Minn, and N. Al Dhahir, "Digital compensation of frequency-dependent joint Tx/Rx I/Q imbalance in OFDM systems under high mobility," IEEE Journal of Selected Topics in Signal Processing, Vol. 3, No. 3, 405-417, 2009.
doi:10.1109/JSTSP.2009.2020325
9. Anttila, L., P. Handel, and M. Valkam, "Joint mitigation of power amplifier and I/Q modulator impairments in broadband directconversion transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 4, 730-739, 2010.
doi:10.1109/TMTT.2010.2041579
10. Rugh, W., Nonlinear System Theory, Johns Hopkins University Press, Baltimore, MD, 1981.
11. Gharaibeh, K., O. Al-Zoubi, and A. Alzayed, "Adaptive predistortion using threshold decomposition-based piecewise linear modeling," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 2, 145-156, 2011.
doi:10.1002/mmce.20498
12. Rawat, M., K. Rawat, and F. Ghannouchi, "Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 95-104, 2010.
doi:10.1109/TMTT.2009.2036334
13. Heath, M., Computing: An Introductory Survey, McGraw-Hill, 1998.
14. Haykin, S., Adaptive Filter Theory, Prentice-Hall, 1996.
15. Htike, K. and O. Khalifa, "Rainfall forecasting models using focused time-delay neural networks," 2010 IEEE International Conference on Computer and Communication Engineering (ICCCE), 1-6, 2010.
16. Doyle, F., R. Pearson, and B. Ogunnaike, Identification and Control Using Volterra Models, Springer Verlag, 2002.
doi:10.1007/978-1-4471-0107-9_1
17. Cao, H., A. Tehrani, C. Fager, T. Eriksson, and H. Zirath, "Dual-input nonlinear modeling for I/Q modulator distortion compensation," IEEE Radio and Wireless Symposium, RWS' 09, 39-42, 2009.
18. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electronics Letters, Vol. 37, No. 23, 1417-1418, 2001.
doi:10.1049/el:20010940
19. Bridewell, W., N. Asadi, P. Langley, and L. Todorovski, "Reducing overfitting in process model induction," Proceedings of the 22nd International Conference on Machine Learning, ACM,, 81-88, 2005.