In this study, Ghotbi et al. identify transcription factor Krox20 as a marker of an epidermal stem cell population that is indispensable for hair formation and regeneration, as in vivo deletion of this population results in hair loss. In the cover image, the spheres within the strands of healthy hair represent stem cell reservoirs derived from KROX20-positive cells that are necessary for hair growth. Image credit: Renee McKay/Microsoft Designer
Kristine Bousset, Stefano Donega, Najim Ameziane, Tabea Fleischhammer, Dhanya Ramachandran, Miriam Poley-Gil, Detlev Schindler, Ingrid M. van de Laar, Franco Pagani, Thilo Dörk
BACKGROUND. Previous epidemiologic studies of autoimmune diseases in the United States (US) have included a limited number of diseases or used meta-analyses that rely on different data collection methods and analyses for each disease. METHODS. To estimate the prevalence of autoimmune diseases in the US, we used electronic health record data from six large medical systems in the US. We developed a software program using common methodology to compute the estimated prevalence of autoimmune diseases alone and in aggregate that can be readily used by other investigators to replicate or modify the analysis over time. RESULTS. Our findings indicate that over 15 million people, or 4.6% of the US population, have been diagnosed with at least one autoimmune disease from January 1, 2011, to June 1, 2022, and 34% of those are diagnosed with more than one autoimmune disease. As expected, females (63% of those with autoimmune disease) were almost twice as likely as males to be diagnosed with an autoimmune disease. We identified the top 20 autoimmune diseases based on prevalence and according to sex and age. CONCLUSION. Thus, we provide, for the first time, a large-scale prevalence estimate of autoimmune disease in the US by sex and age. FUNDING. Autoimmune Registry Inc., the National Heart Lung and Blood Institute, the National Center for Advancing Translational Sciences, the Intramural Research Program of the National Institute of Environmental Health Sciences.
Aaron H. Abend, Ingrid He, Neil Bahroos, Stratos Christianakis, Ashley B. Crew, Leanna M. Wise, Gloria P. Lipori, Xing He, Shawn N. Murphy, Christopher D. Herrick, Jagannadha Avasarala, Mark G. Weiner, Jacob S. Zelko, Erica Matute-Arcos, Mark Abajian, Philip R.O. Payne, Albert M. Lai, Heath A. Davis, Asher A. Hoberg, Chris E. Ortman, Amit D. Gode, Bradley W. Taylor, Kristen I. Osinski, Damian N. Di Florio, Noel R. Rose, Frederick W. Miller, George C. Tsokos, DeLisa Fairweather
Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not Tlr9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid Tlr9-deleted mice. Plasma cytokine analysis in these mice revealed distinct sepsis clusters characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-Tlr9 deletion attenuated plasma and tissue IL-6 production in the most severe group. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.
LK Metthew Lam, Nathan J. Klingensmith, Layal Sayegh, Emily Oatman, Joshua S. Jose, Christopher V. Cosgriff, Kaitlyn A. Eckart, John McGinnis, Piyush Ranjan, Matthew Lanza, Nadir Yehya, Nuala J. Meyer, Robert P. Dickson, Nilam S. Mangalmurti
BACKGROUND. Partial protective immunity to schistosomiasis develops over time, following repeated praziquantel treatment. Moreover, animals develop protective immunity after repeated immunisation with irradiated cercariae. Here, we evaluated development of natural immunity through consecutive exposure-treatment cycles with Schistosoma mansoni (Sm) in healthy, Schistosoma-naïve participants using single-sex controlled human Sm infection. METHODS. Twenty-four participants were randomised double-blind (1:1) to either the reinfection group, which received three exposures (week 0,9,18) to 20 male cercariae or the infection control group, which received two mock exposures with water (week 0,9) prior to cercariae exposure (week 18). Participants were treated with praziquantel (or placebo) at week 8, 17 and 30. Attack rates after the final exposure (week 19-30) using serum circulating anodic antigen (CAA) positivity were compared between groups. Adverse events were collected for safety. RESULTS. Twenty-three participants completed follow-up. No protective efficacy was seen, given 82% (9/11) attack rate after the final exposure in the reinfection group and 92% (11/12) in the infection control group (protective efficacy 11%; 95% CI -24% to 35%; p =0.5). Related adverse events were higher after the first infection (45%), compared to the second (27%) and third infection (28%). Severe acute schistosomiasis was observed after the first infections only (2/12 in reinfection group and 2/12 in infection control group). CONCLUSION. Repeated Schistosoma exposure and treatment cycles resulted in apparent clinical tolerance, with fewer symptoms reported with subsequent infections, but did not result in protection against reinfection. TRIAL REGISTRATION. ClinicalTrials.gov NCT05085470. FUNDING. ERC Starting grant (no. 101075876).
Jan Pieter R. Koopman, Emma L. Houlder, Jacqueline J. Janse, Olivia A.C. Lamers, Geert V.T. Roozen, Jeroen C. Sijtsma, Miriam Casacuberta-Partal, Stan T. Hilt, M.Y. Eileen C. van der Stoep, Inge M. van Amerongen-Westra, Eric A.T. Brienen, Linda J. Wammes, Lisette van Lieshout, Govert J. van Dam, Paul L.A.M. Corstjens, Angela van Diepen, Maria Yazdanbakhsh, Cornelis H. Hokke, Meta Roestenberg
The aging process is characterized by cellular functional decline and increased susceptibility to infections. Understanding the association between virus infection and aging is crucial for developing effective strategies against viral infections in older individuals. However, the relationship between Kaposi's sarcoma-associated herpesvirus (KSHV) infection, a cause of Kaposi's sarcoma prevalent among the elderly without HIV infection, and cellular senescence remains enigmatic. This study uncovers a fascinating link between cellular senescence and enhanced KSHV infectivity in human endothelial cells. Through a comprehensive proteomic analysis, we identified caveolin-1 and CD109 as novel host factors significantly upregulated in senescent cells that promote KSHV infection. Remarkably, CRISPR-Cas9-mediated knockout of these factors reduced KSHV binding and entry, leading to decreased viral infectivity. Furthermore, surface plasmon resonance analysis and confocal microscopy revealed a direct interaction between KSHV virions and CD109 on the cell surface during entry, with recombinant CD109 protein exhibiting an intriguing ability to inhibit infection by blocking virion binding. These findings uncover a previously unrecognized role of cellular senescence in enhancing KSHV infection through upregulation of specific host factors and provide novel insights into the complex interplay between aging and viral pathogenesis.
Myung-Ju Lee, Jun-Hee Yeon, Jisu Lee, Yun Hee Kang, Beom Seok Park, Joo Hee Park, Sung-Ho Yun, Dagmar Wirth, Seung-Min Yoo, Changhoon Park, Shou-Jiang Gao, Myung-Shin Lee
JCI celebrates a century of publishing scientific discoveries with a special collection highlighting major innovations in medicine and key contributing mechanistic studies.
Substance use disorders are characterized by heavy, regular use of one or more psychoactive substances, such as alcohol, nicotine, opioids, cannabis, and stimulants, as well as the development of tolerance and loss of control over use, risk-taking behavior, and physiological dependence. Misuse of psychoactive substances constitutes a growing worldwide burden with broad-ranging health consequences. In this review series, curated by Dr. Henry R. Kranzler, reviews will provide detailed updates on studies of the genetics, biology, and evolving treatment of substance use disorders.
×