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Abstract

Background: Most artificial intelligence–based research on acute kidney injury (AKI) prediction has focused on intensive care
unit settings, limiting their generalizability to general wards. The lack of standardized AKI definitions and reliance on intensive
care units further hinder the clinical applicability of these models.

Objective: This study aims to develop and validate a machine learning–based framework to assist in managing AKI and acute
kidney disease (AKD) in general ward patients, using a refined operational definition of AKI to improve predictive performance
and clinical relevance.

Methods: This retrospective multicenter cohort study analyzed electronic health record data from 3 hospitals in South Korea.
AKI and AKD were defined using a refined version of the Kidney Disease: Improving Global Outcomes criteria, which included
adjustments to baseline serum creatinine estimation and a stricter minimum increase threshold to reduce misclassification due to
transient fluctuations. The primary outcome was the development of machine learning models for early prediction of AKI (within
3 days before onset) and AKD (nonrecovery within 7 days after AKI).

Results: The final analysis included 135,068 patients. A total of 7658 (8%) patients in the internal cohort and 2898 (7.3%)
patients in the external cohort developed AKI. Among the 5429 patients in the internal cohort and 1998 patients in the external
cohort for whom AKD progression could be assessed, 896 (16.5%) patients and 287 (14.4%) patients, respectively, progressed
to AKD. Using the refined criteria, 2898 cases of AKI were identified, whereas applying the standard Kidney Disease: Improving
Global Outcomes criteria resulted in the identification of 5407 cases. Among the 2509 patients who were not classified as having
AKI under the refined criteria, 2242 had a baseline serum creatinine level below 0.6 mg/dL, while the remaining 267 experienced
a decrease in serum creatinine before the onset of AKI. The final selected early prediction model for AKI achieved an area under
the receiver operating characteristic curve of 0.9053 in the internal cohort and 0.8860 in the external cohort. The early prediction
model for AKD achieved an area under the receiver operating characteristic curve of 0.8202 in the internal cohort and 0.7833 in
the external cohort.

Conclusions: The proposed machine learning framework successfully predicted AKI and AKD in general ward patients with
high accuracy. The refined AKI definition significantly reduced the classification of patients with transient serum creatinine
fluctuations as AKI cases compared to the previous criteria. These findings suggest that integrating this machine learning framework
into hospital workflows could enable earlier interventions, optimize resource allocation, and improve patient outcomes.
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Introduction

Acute kidney injury (AKI) is an escalating critical health and
socioeconomic issue, marked by prolonged hospital stays,
elevated medical costs, and high mortality rates [1]. AKI is a
secondary condition arising from hospital interventions, such
as medication, surgery, and infections, with a prevalence of
10%-15% among general inpatients [2]. Studies have shown
that the duration of AKI correlates with increased risks of
complications and mortality [3]. AKI and its progression to
acute kidney disease (AKD) are associated with significant
increases in postdischarge morbidity and mortality. The
prolonged duration of AKI in general wards has been associated
with higher risks of complications and increased mortality [3-5].
Early prediction of AKI and its progression to AKD using
artificial intelligence (AI) models improve patient outcomes
through timely intervention and personalized management
strategies [5-7]. There are research findings indicating that
applying a clinical decision support system for actual AKI
occurrences has significantly improved patient outcomes [8-10].
However, there is a lack of standardized operational definitions
for AKI, particularly in retrospective studies, where data
collection may not be systematic [11,12]. This inconsistency in
defining AKI, especially in terms of baseline serum creatinine
(SCr) and recovery criteria for AKD, leads to ambiguity in
labeling and makes it difficult to compare the performance of
different AI models across studies [13,14]. The variability in
baseline SCr determination further complicates the issue [14-16].
Studies that investigated the impact of baseline SCr on model
performance are limited to the intensive care unit (ICU) setting
and do not address real-time early prediction in general wards
[17-19], in differing AKI labels for the same patient. Defining
the recovery for AKD is even more challenging [4,20-23].

General ward patients typically exhibit milder disease severity,
less frequent laboratory measurements, and different baseline
characteristics compared with ICU patients [15,20,24-27].
Applying the criterion of baseline SCr being 1.5 times higher
requires more caution, especially in cases with low SCr levels.
For instance, in a patient with 3 SCr measurements within 48
hours showing values of 0.9 mg/dL, 0.6 mg/dL, and 0.9 mg/dL
in chronological order, additional consideration may be needed
to determine whether the patient should be classified as
experiencing AKI. Furthermore, when the baseline SCr is set
below 0.6 mg/dL, even small fluctuations can easily meet the
1.5-fold criterion within 7 days, leading to the classification of
AKI occurrence [28]. This study aimed to develop and validate
a machine learning-based framework for early prediction of
AKI and AKD, applicable to general ward patients, using a
refined operational definition of AKI.

Methods

Study Setting and Participants
This multicenter, retrospective study was conducted across the
general wards of 3 different hospitals. Data were collected from

patients admitted to Korea University Guro Hospital and Anam
Hospital between January 1, 2015, and December 31, 2021
(internal cohort), and from Soonchunhyang University Cheonan
Hospital between March 1, 2016, and March 31, 2021 (external
cohort). Patients younger than 19 years, those with fewer than
3 SCr measurements during their hospital stay, and those with
an estimated glomerular filtration rate (eGFR) ≤60 mL/minute
on the first day of SCr measurement were excluded.

Operative Definition
AKI was defined based on the Kidney Disease: Improving
Global Outcomes (KDIGO) criteria as follows [1].

• An increase in SCr level ≥0.3 mg/dL (or ≥26.5 μmol/L)
within 48 h.

• An increase in SCr ≥1.5 times the baseline within 7 days.

The KDIGO criteria are widely used; however, they are
sometimes modified based on the characteristics of the cohort
or the objectives of the study [28]. Compared with ICU patients,
general ward patients are in relatively better condition with less
frequent measurements of vital signs and laboratory data.
Additionally, individuals with healthy kidneys and low SCr
levels can be identified as having AKI due to simple fluctuations
[14]. There may be more bias in real-time predictions, as SCr
estimation is more frequently performed for patients with
missing SCr values. Therefore, to prevent these issues, we
restricted the application of baseline SCr levels and refined the
labeling. To improve the labeling criteria, baseline SCr was
defined as the lowest SCr measured within the previous 7 days.
If the patient’s baseline SCr was ≥0.3 mg/dL lower than the
median and recent SCr values, it was excluded as a baseline to
avoid errors due to SCr measurement inaccuracies or temporary
fluctuations caused by medication, measurement error, and other
factors. AKI was defined as a minimum increase of 0.3 mg/dL
to ensure appropriate identification without mislabeling due to
minor variations [2,29,30]. AKD was defined as the persistence
of AKI for more than 7 days. Cases in which SCr did not return
to <1.5 times the baseline SCr within 7 days were identified as
AKD [21,29-32]. None of the previous definitions or studies
have taken these aspects into consideration.

To develop an early prediction model for AKI occurrence, data
from 1 to 3 days before AKI onset were labeled as 1, and the
remaining data were labeled as 0. The data from the day of AKI
onset were not used. For patients who did not develop AKI, all
data were labeled as 0. Days without SCr measurements within
7 days were excluded from training and evaluation. Additionally,
patients with ambiguous AKI labeling were excluded from the
training and evaluation. Data from the day of AKI onset were
used to predict AKD progression. Patients were labeled 0 or 1
based on whether they recovered within 7 days post AKI onset.
Patients with insufficient SCr measurements after AKI onset
were excluded. Multimedia Appendix 1 illustrates the previous
KDIGO criteria, the improved AKI criteria proposed in this
study, and examples of AKI and AKD labeling.
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Data Preprocessing
The data collected from the electronic health records contained
numerous missing values, including measurement values, times,
and specific variables. To address this issue, data were
summarized at 24-hour intervals, a method validated in previous
studies [33]. Vital signs, laboratory data, and variables such as
nephrotoxic drugs (eg, nonsteroidal anti-inflammatory drugs,
nephrotoxic antibiotics [ANTIs], and cytotoxic
chemotherapeutic agents), vascular imaging examinations,
surgeries under general anesthesia, contrast-enhanced computed
tomography (CECT), and ICU transfers within the past 7 days
were collected.

Vital sign data measured multiple times within 24 hours were
summarized using mean, maximum, and minimum values, and
the number of measurements. The laboratory test results were
determined based on recent measurements. Additionally,
variables such as nephrotoxic drugs, vascular imaging
examinations, surgeries under general anesthesia, CECT, and
ICU transfers within the past 7 days were included. eGFR was
calculated using the Chronic Kidney Disease Epidemiology
Collaboration 2021 equation [34]. The “BUN/Cr ratio” was
defined as blood urea nitrogen (BUN) level divided by serum
creatinine level.

Robust scaling was applied to all continuous variables and
one-hot encoding was used for categorical variables.
Approximately 120 features were extracted from the electronic
health records, including basic patient information, vital sign
data, laboratory test results, and other factors. Through a
comprehensive literature review and consultation with
specialists, a feature selection process was undertaken [6,23,35],
and 42 features were ultimately selected based on their
correlation coefficients and missing value ratios.

To handle outliers, the data distribution for each feature was
reviewed along with the individual patient records. Outliers for
some numerical variables were determined using histograms
and quantiles with input from clinical experts. The missing
values were imputed in 2 stages. First, where feasible, missing
values were replaced with previous values to maintain data
continuity. For variables with low missing values (less than
20%), the multiple imputation by chained equations method
was used [36,37]. For variables with a missing rate exceeding
20%, the missing indicator method was used to denote missing
values as unknown [38]. Numerical variables were categorized
into 2 to 4 groups based on data distribution and expert
consultation, and missing values were assigned to the “missing”
category. For laboratory test results not subjected to missing
indicators, changes in each variable were calculated by
subtracting the median of the previous values from the current
value (Multimedia Appendix 2).

Model Training and Evaluation
Various traditional machine learning models have been used,
including logistic regression [39], random forest [40], eXtreme
gradient boosting [41], light gradient boosting machine [42],
and categorical boosting (CAT) [43]. For detailed model training
procedures (Multimedia Appendix 3). The model evaluation
metrics included accuracy, precision, recall, specificity, F1-score,

the area under the receiver operating characteristic (AUROC),
and the area under the precision-recall curve. The primary
outcomes were the development of models for early AKI
prediction within 3 days and its progression to AKD, along with
the establishment of a framework. Simulations of the designed
framework were repeatedly performed using the external
validation cohort by dividing the period into 1-year increments
and assessing the generalization performance of the models
across different institutions and over time.

Statistical Analysis
Descriptive statistics were used to present the baseline
differences between the days with and without AKI. The
distribution of continuous and categorical variables was
expressed as means and SDs and counts and percentages,
respectively. Normally distributed continuous variables were
evaluated using 2-tailed t tests. For those that did not follow a
normal distribution, the Mann-Whitney U test was used. The
chi-square test was used to analyze categorical variables.
Statistical significance was set at P<.05. Calibration plots were
used to assess the agreement between the predicted probabilities
and observed outcomes [44]. The Cox proportional hazards
model was used to compare hazard ratios (HRs) between patients
with actual AKD and those predicted by the model [45].

Ethical Considerations
The study was conducted in accordance with the ethical
principles of the Declaration of Helsinki and was approved by
the institutional review boards of Soonchunhyang University
Cheonan Hospital, Korea University Anam Hospital, and Guro
Hospital (approvals 2019-10-023, 2023AN0145, and
2023GR0425, respectively). The need for individual consent
was waived due to the retrospective nature of the study and the
use of anonymized clinical data. To ensure privacy and data
security, only fully anonymized data were used, and all analyses
were conducted within a designated secure environment with
restricted access. No financial compensation was provided to
participants, as the study was purely observational and used
deidentified retrospective data. All processes adhered to the
guidelines developed for machine learning model development
in the biomedical field [46] and followed the STROE
(Strengthening the Reporting of Observational Studies in
Epidemiology) guidelines for observational studies.

Results

Labeling
Figure 1 is a flowchart of cohort formation and labeling. To
compare the previous labeling criteria [7,32,47-49] with the
labeling criteria used in this study, we developed and evaluated
the model using the same methodology. Additionally, we
calculated and presented the HRs for a 30% or 40% reduction
in eGFR at the time of AKI onset (Figure 2 and Multimedia
Appendix 4). In Table S7 in Multimedia Appendix 4, individuals
with a baseline SCr<0.6 mg/dL were included, leading to the
classification of AKI in patients with very low changes in SCr
or very low baseline SCr levels. Additionally, subtracting the
baseline median from the SCr at this point yielded a median of
0.10 (IQR 0.00-0.20).
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Figure 2A illustrates this trend. Of the 2509 patients, 2242
(89.36%) had a baseline SCr<0.6 mg/dL at the time of AKI
occurrence. The remaining 267 patients experienced decreased
SCr levels before being diagnosed with AKI. This trend is
illustrated in Figure S5 in Multimedia Appendix 4. Additionally,

of the 2072 patients whose AKD status could be determined,
only 50 (2.41%) progressed to AKD, and only 1 patient
experienced a more than 30% decrease in eGFR within 30 days
of AKI onset.

Figure 1. The data composition process. Hospitals A, B, and C refer to Korea University Anam Hospital, Korea University Guro Hospital, and
Soonchunhyang University Cheonan Hospital, respectively. Since at least 1 day of data is required for model prediction, patients who developed AKI
on the first day of hospitalization were excluded from the final cohort. AKI: acute kidney injury; AKD: acute kidney disease.

Figure 2. Serum creatinine trends in patients with AKI from the external validation cohort. (A) Results for 2509 patients who meet only the previous
AKI criteria. (B) Results for 2898 patients who meet the refined AKI criteria. The blue line represents the median value for patients of each group,
while the pink bar graph shows the proportion of serum creatinine measurements across all patients within 7 days before and after the day of acute
kidney injury (day 0). The colored lines depict the serum creatinine levels for individual patients. AKI: acute kidney injury.

Early AKI Prediction Model
The final analysis included 95,555 and 39,513 cases in the
internal and external cohorts, respectively. Within these cohorts,
AKI was identified in 7658 (8.1%) and 2898 (7.3%) patients,
respectively. The median length of hospital stay was 11 (IQR
7-20) days for the internal cohort and 10 (IQR 6-18) days for
the external cohort. The median number of days to AKI
occurrence from admission was 8 (IQR 3-17) days for the
internal cohort and 7 (IQR 3-16) days for the external cohort
(Multimedia Appendix 5). Tables S9 and Table S10 in
Multimedia Appendix 5 present the basic statistics of patients
with and without AKI. Comparing the days on which AKI
occurred to the days on which it did not, there were statistically
significant differences in most characteristics between the

internal and external cohorts. However, differences in blood
pressure and sodium and chloride levels were observed between
the internal and external cohorts.

The models were evaluated based on the results of 5-fold
cross-validation, with all performance metrics presented at a
cutoff of 0.5. The CAT model demonstrated a strong predictive
capability (AUROC=0.9134). The logistic regression model
performed poorly (AUROC=0.7754). Model evaluation was
conducted through both internal and external validations,
showing a slight decrease in performance based on the AUROC
(range 0.0097-0.0216). Table 1 presents the performance
evaluation results of the early AKI prediction model. The
hyperparameters used in the model are listed in Table S11 in
Multimedia Appendix 5.
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Figure 3 shows the Shapley additive explanations (SHAP)
analysis for the early AKI prediction model. The interpretation
of the CAT model using SHAP values indicated that the most
important features were the SCr level and its changes. Other
significant features included heart rate, BUN level, activated
partial thromboplastin time (aPTT), total bilirubin level, and
BMI, all of which increased the AKI risk. Conversely, lower
eGFR, platelet count, body temperature, and pH were associated
with a higher risk of AKI. Figure S7 in Multimedia Appendix
5 shows the results of testing the probability of the early AKI

prediction model. Calibration plots were generated for both the
internal and external cohorts. The slope of the calibration plot
was 1.15 for the internal cohort and 1.08 for the external cohort,
indicating a good calibration of the model's predicted
probabilities. Additionally, the model probabilities were
evaluated by dividing them into five groups, which demonstrated
excellent calibration. A box plot of the probabilities in relation
to the AKI status showed a clear distinction between AKI and
non-AKI, further validating the predictive value of the model
(Figure S8 in Multimedia Appendix 5).

Table 1. Performance evaluation results of the early prediction model for acute kidney injury.

AUPRCbAUROCaF1-scoreRecallPrecisionAccuracyValidation and model

Cross-validation, mean (SD)

0.1810 (0.0045)0.7754 (0.0049)0.1246 (0.0104)0.0747 (0.0074)0.3764 (0.0193)0.9490 (0.0004)LRc

0.6830 (0.0076)0.9076 (0.0060)0.6356 (0.0080)0.4687 (0.0091)0.9875 (0.0020)0.9739 (0.0004)RFd

0.6830 (0.0062)0.907 (0.0057)0.6555 (0.0066)0.5485 (0.0091)0.8149 (0.0148)0.9720 (0.0006)XGBe

0.6916 (0.0061)0.9132 (0.0053)0.6627 (0.0064)0.5362 (0.0066)0.8679 (0.0184)0.9734 (0.0006)LGBMf

0.6924 (0.0059)0.9134 (0.0053)0.6630 (0.0078)0.5115 (0.0093)0.9423 (0.0095)0.9747 (0.0005)CATg

Internal

0.17120.75840.11920.07090.37280.9485LR

0.68260.90210.63520.46750.99020.9736RF

0.68340.90270.66160.54900.83220.9724XGB

0.69100.90580.66710.53480.88630.9738LGBM

0.68900.90530.66800.51420.95270.9749CAT

External

0.16300.74870.13950.08650.36120.9560LR

0.63030.88330.61680.45020.97890.9769RF

0.61960.88110.59500.52080.69380.9707XGB

0.62380.88530.60990.50710.76510.9732LGBM

0.62900.88600.61910.48230.86440.9755CAT

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cLR: logistic regression.
dRF: random forest.
eXGB: eXtreme gradient boosting.
fLGBM: light gradient boosting machine.
gCAT: categorical boosting.
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Figure 3. SHAP values of the early prediction model for acute kidney injury. In the figure, red indicates higher values of the respective features, whereas
blue indicates lower values. The position of the dots placed towards the right signifies a greater contribution of the feature value to the model’s prediction
of nonrecovery for the patient. For categorical variables, red dots represent a value of 1 and blue dots signify a value of 0. CT: computed tomography;
SHAP: Shapley additive explanations.

Early AKD Prediction Model
For the analysis of AKD progression, 5429 and 1998 patients
in the internal and external cohorts, respectively were included
after excluding those with unclear AKD status. Among them,
896 (16.5%) patients in the internal cohort and 287 (14.4%) in
the external cohort were diagnosed with AKD. The median
duration from AKI to discharge was 10 (IQR 4-23) days in the
internal cohort and 9 (IQR 3-21) days in the external cohort.
For patients who recovered within 7 days post AKI, the median
recovery time was 5 (IQR 3-7) days in both cohorts (Figure S9
in Multimedia Appendix 6). The characteristics of progression
to AKD in each cohort are presented in Tables S12 and S13
Multimedia Appendix 6. Variables that demonstrated statistical
significance in both cohorts included hemoglobin, albumin,
SCr, eGFR, glucose, alanine aminotransferase, blood sugar,
calcium, urine specific gravity, C-reactive protein (CRP),
ANTIs, and surgery. Some variables such as sex, diastolic blood

pressure (DBP), white blood cell (WBC) count, BUN/Cr ratio,
and total carbon dioxide showed different trends between the
cohorts.

The CAT model outperformed the other models in both the
internal (AUROC=0.8202) and external validations
(AUROC=0.7833). The external validation showed a slight
decrease in performance based on the AUROC (range
0.0262-0.0416). Table 2 presents the performance evaluation
results of the early prediction model for AKD. The
hyperparameters used in the model are listed in Table S14 in
Multimedia Appendix 6.

Figure 4 shows the SHAP analysis of the early-stage AKD
prediction model. For AKD prediction, an increase in SCr level
at the time of AKI was a strong predictor of delayed recovery.
Exposure to ANTIs, high DBP, CRP, aPTT, low eGFR, low
pH, and elevated alkaline phosphatase were associated with an
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increased risk of AKD. Patients who underwent surgery or
CECT tended to recover quicker from AKI.

Figure S10 in Multimedia Appendix 6 shows the results of
testing the probability of the early AKD prediction model.
Calibration plots for both the internal and external cohorts were
generated to assess model performance. The slopes of the

calibration plots were 1.27 for the internal cohort and 1.20 for
the external cohort, indicating a good calibration of the model’s
predicted probabilities. The evaluation of the model probabilities
by box plots showed excellent calibration, similar to that of the
early prediction model for AKI (Figure S11 in Multimedia
Appendix 6).

Table 2. Performance evaluation results of the early prediction model for acute kidney disease.

AUPRCbAUROCaF1-scoreRecallPrecisionAccuracyValidation and model

Cross-validation, mean (SD)

0.4528 (0.0228)0.7710 (0.0197)0.2980
(0.0321)

0.1972
(0.0248)

0.6146
(0.0400)

0.8442
(0.0097)

LRc

0.4346 (0.0166)0.7702 (0.0158)0.0819
(0.0123)

0.0432
(0.0066)

0.7711
(0.0728)

0.8370
(0.0089)

RFd

0.4490 (0.0409)0.7622 (0.0250)0.3382
(0.0406)

0.2372
(0.0327)

0.5972
(0.0848)

0.8439
(0.0165)

XGBe

0.4421 (0.0067)0.7623 (0.0178)0.3149
(0.0109)

0.2142
(0.0173)

0.6066
(0.0545)

0.8436
(0.0095)

LGBMf

0.4695 (0.0255)0.7806 (0.0181)0.1655
(0.0186)

0.0942
(0.0110)

0.6873
(0.0779)

0.8402
(0.0113)

CATg

Internal

0.53760.79670.33640.21820.73470.8460LR

0.53020.80990.10290.05450.90000.8297RF

0.57210.80970.41230.28480.74600.8547XGB

0.55980.79640.40890.27880.76670.8557LGBM

0.55580.82020.17300.09700.80000.8341CAT

External

0.39590.76590.17370.10190.58930.8475LR

0.42030.78370.05330.02780.64290.8446RF

0.39900.76820.25480.16360.57610.8494XGB

0.39450.76850.24520.15740.55430.8475LGBM

0.43680.78330.10800.05860.67860.8475CAT

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cLR: logistic regression.
dRF: random forest.
eXGB: eXtreme gradient boosting.
fLGBM: light gradient boosting machine.
gCAT: categorical boosting.
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Figure 4. SHAP values of the early prediction model for acute kidney disease. In the figure, red indicates higher values of the respective features,
whereas blue indicates lower values. The position of the dots placed towards the right signifies a greater contribution of the feature value to the model's
prediction of nonrecovery for the patient. For categorical variables, red dots represent a value of 1 and blue dots signify a value of 0. CT: computed
tomography; SHAP: Shapley additive explanations.

Framework
The framework to assist in managing AKI is shown in
Multimedia Appendix 7. Figure 5A presents the framework
simulation results for the early AKI prediction model. The
designed framework was simulated using an external validation
cohort at yearly intervals of 5 years. Among the 7284 patients
included annually in the external validation cohort, 501 (6.9%)
experienced AKI. Of these, 439 (87.68%) were predicted at

least 1 day in advance. The F1-score showed a decreasing trend
after 2018 compared to evaluations between 2016 and 2018,
with a minimum of 0.39 and a maximum of 0.46. Figure 5B
presents the framework simulation results for the early
prediction model for AKD. Excluding patients with insufficient
SCr tracking from an average of 410 patients annually, 64
(15.6%) did not recover from AKI within 7 days. Among them,
approximately 38 (58.4%) were predicted early.
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Figure 5. Simulation results of the framework to assist in the management of AKI using external validation data. (A) Results of the early prediction
model for AKI, and (B) results of the early prediction model for AKD. Blue indicates patients included in the yearly prediction, orange indicates event
occurrence, green indicates patients successfully predicted by the model, and red indicates events successfully predicted by the model compared with
actual events. AKI: acute kidney injury; AKD: acute kidney disease.

Discussion

Principal Findings
In this study, we developed a framework to assist in the
management of AKI. The early AKI prediction model
demonstrated high performance with an AUROC of 0.9053,
while the early AKD prediction model achieved an AUROC of
0.8202. External validation results showed excellent model
performance, although slight variations over time were observed,
likely due to changes in disease incidence rates. Our study
represents an integrated effort to identify patients with AKI
early and, in cases where AKI occurs, classify them into
high-risk and low-risk groups. Furthermore, we successfully
refined and applied the KDIGO criteria to retrospective data,
addressing its limitations and enhancing its applicability for
AKI-related research in general ward patients.

Furthermore, our model predicted AKD in patients with AKI
and showed an adjusted HR of 2.03 (95% CI 1.38-3.00) for
events where eGFR decreased by 30% within 30 days from the

onset of AKI. This adjusted HR was higher than that of the
model developed using previous criteria, which had an HR of
1.66 (95% CI 1.17-2.34). This indicates that the refined criteria
more precisely identify high-risk groups and suggests that the
model developed using these criteria performs better. The AKI
incidence was higher using the previous criteria, whereas the
AKD incidence was higher using the refined criteria. This
indicated that the previous criteria identified milder cases.
Despite including milder cases, the model developed using the
refined criteria showed a higher risk of a poorer prognosis than
the previous criteria. Among patients tracked for more than 30
days after AKI, there were 934 and 482 patients before and after
criteria advancement, respectively, with 138 and 103 showing
poor prognosis. In other words, before the criteria advancement,
35 more patients with a poor prognosis were identified, but 452
additional AKI cases were identified. As shown in Figure S5
in Multimedia Appendix 4, many patients who met only the
previous criteria included those whose AKI status was difficult
to determine owing to the significant sensitivity to fluctuations.
Regardless of how the baseline SCr level is imputed, it is
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important in general wards to set a minimum increase criterion
when applying a relative standard. Additionally, it is crucial to
ensure that the baseline SCr level does not become too low
when the SCr decreases. Advancements in labeling criteria
should consider both patient prognosis and clinical settings.
Excessive identification of AKI can lead to the detection of
more patients with poor prognoses but may also result in
inefficient allocation of medical resources.

Using the SHAP, factors contributing to AKI and AKD were
identified and quantitatively measured. These results are largely
aligned with the trends suggested by previous studies on risk
factors and variable tendencies. Factors indicating poor patient
status, such as low albumin or high alkaline phosphatase levels,
were associated with increased AKI and AKD risks.
Specifically, albumin is considered a critical biomarker closely
related to renal function and may decrease in conditions
associated with liver dysfunction [50]. Elevated WBC, heart
rate, body temperature, and respiratory rate may indicate
infection in patients [51], while the use of nephrotoxic drugs
such as ANTIs, nonsteroidal anti-inflammatory drugs, and
cytotoxic chemotherapeutic agents increases the risk of AKI
[52,53]. Analysis of SHAP for AKD risk factors indicated that
patients with increased WBC and high BT tended to recover
renal function relatively quickly. Resolving infections appears
to reduce the risk of AKD development in patients with AKI.
ANTIs have emerged as significant risk factors for AKI and
AKD. The difficulty in discontinuing these drugs due to patient
conditions may exacerbate negative outcomes. Patients
undergoing surgery are closely associated with AKI, although
AKI following general anesthesia appears to show transient SCr
fluctuations and overall health improvement following surgical
resolution [54]. Renal function emerged as a crucial factor,
consistent with existing clinical studies that state that baseline
renal function is well-known as a major factor in AKI [55].
Additionally, higher age, heart rate, respiratory rate, total T-bil,
aPTT, and CRP showed increased AKI risk, indicating that
poorer patient condition may correlate with increased AKI
incidence.

Similarly, poor renal function has been identified as a major
risk factor for AKD. Elevated DBP reflects a tendency toward
increased blood vessel volume after AKI, suggesting a possible
correlation between increased volume and AKD [56,57]. AKI
accompanied by surgery may recover relatively quickly due to
transient hemodynamic changes during surgery, while cardiac
surgery is known to have a relationship with AKI [58].
Contrast-induced nephropathy often shows peak levels
approximately 3-5 days after exposure and often returns to
baseline within 7-14 days, indicating relatively good recovery
[59,60]. Conversely, ANTIs are associated with intrinsic AKIs
such as acute tubular necrosis and slower recovery despite
expected renal function impairment [61-63]. A high urine
specific gravity suggests dehydration, which can often be
corrected through fluid supplementation alone, leading to fast
recovery [64,65]. Indicators reflecting infection showed that
higher values tended to be associated with good renal recovery,
while the significant infection marker CRP yielded ambiguous

results. Because the interpretation of our model aligns with that
of previous clinical studies, the patterns learned by the model
are reasonable. Although biomarkers such as cystatin-C are
commonly suggested in various studies, they were not used in
this study due to their low measurement frequency. Future
research should expand the features used in this study to include
such biomarkers [66-68].

Limitations
This study had several limitations. First, owing to the lack of
consensus on the AKI recovery criteria, the definitions had to
rely on previous research findings. Second, there was a lack of
data related to dialysis or kidney transplantation, which was
addressed by excluding patients with an eGFR<60 mL/minute.
As a result, caution is required when applying and interpreting
the model for patients with preexisting chronic kidney disease
or poor kidney function from the initial stages of hospitalization.
However, the primary aim of this study was to predict
“unexpected AKI.” Therefore, the analysis focused on patients
with relatively preserved kidney function, who were considered
to be at lower risk of AKI. Third, the study did not account for
interventions or treatments before or post-AKI, which is crucial
because patients’ preexisting conditions are significant factors
in AKI and AKD. Fourth, in this study, the model was applied
only in cases where AKI occurrences could be clearly identified,
specifically when baseline SCr could be estimated at a specific
time point and SCr measurements were available at that time.
However, the proportion of AKI labels may differ from the
actual occurrences. Therefore, despite the frequent measurement
of SCr, caution is needed when applying and interpreting the
model in situations where SCr measurements have not been
conducted. Fifth, although our study used data extracted from
different hospital information systems in various regions, it
predominantly included data from Korean individuals.
Therefore, we could not sufficiently consider racial diversity.
Since there may be various differences, including kidney
function, depending on ethnicity, future studies should include
a multiethnic population.

Conclusions
This study introduces a machine learning framework aimed at
assisting in the early management of AKI in general ward
patients. To develop the model, we used retrospective data from
general wards, refining the operational definition of AKI and
externally validating our approach. Our findings demonstrate
that AI-driven methods can enhance risk stratification and enable
timely interventions. Beyond improving predictive accuracy,
this study underscores the potential of AI to streamline clinical
workflows, optimize resource allocation, and ultimately reduce
the burden of AKI-related complications. Integrating such
models into routine hospital practice may support proactive
decision-making, allowing physicians to implement tailored
interventions based on individual patient risk profiles. Future
research should focus on prospective validation, real-time
clinical integration, and incorporating additional biomarkers to
improve model generalizability and clinical relevance.
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