Option-Critic in Cooperative Multi-agent Systems

Extended Abstract

Jhelum Chakravorty^{1, 3}, Patrick Nadeem Ward^{1, 3}, Julien Roy^{2, 3}, Maxime Chavelier-Boisvert³,

Sumana Basu^{1, 3}, Andrei Lupu^{1, 3}, Doina Precup^{1, 3, 4}

¹ McGill University, ² University of Montreal, ³ Mila, ⁴ DeepMind

ABSTRACT

We investigate planning and learning temporal abstractions in cooperative multi-agent systems using common information approach and report the competitive performance of our proposed algorithm with baselines in grid-world environment.

ACM Reference Format:

Jhelum Chakravorty^{1, 3}, Patrick Nadeem Ward^{1, 3}, Julien Roy^{2, 3}, Maxime Chavelier-Boisvert³, Sumana Basu^{1, 3}, Andrei Lupu^{1, 3}, Doina Precup^{1, 3, 4}. 2020. Option-Critic in Cooperative Multi-agent Systems. In *Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), Auckland, New Zealand, May 2020, IFAAMAS, 3 pages.*

INTRODUCTION

We leverage *common information approach* [3] to address temporal abstraction in cooperative multi-agent systems. In particular, we address the planning problem in options framework [5] for the Decentralized Partially Observable Markov Decision Process (Dec-POMDP) and propose a model-free learning of temporally abstracted policies. The common information approach circumvents the combinatorial nature of the decentralized system by converting it into an equivalent centralized POMDP. We provide a dynamic programming formulation and argue the existence of an optimal option-policy. We analyze the convergence of our proposed algorithm (DOC) and validate the results with empirical experiments using cooperative multi-agent grid-world environments.

Denote by $\mathcal{E}(\omega_t \mu_t, \mathbf{s}_t)$ the event that joint-option ω_t is executed at time instant *t* at joint-state \mathbf{s}_t until its termination, after which a new joint-option is chosen according to option-policy μ_t at the resultant joint-state. The *dynamic team problem* that we are interested to solve is to choose policies that maximize the the infinite-horizon discounted reward: \mathcal{R}^{μ_t} as given by

$$\mathcal{R}^{\mu_{t}} = \sup_{\mu_{t} \in \mathcal{M}} \sum_{\omega_{t} \in \Omega} \mu_{t}(\omega_{t} | \mathbf{s}_{t}) \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \mathcal{E}(\omega_{0} \mu_{0}, \mathbf{s}_{0}) \right], \quad (1)$$

DEC-POMDP PLANNING WITH TEMPORAL ABSTRACTION

The Common Information Approach [3] is an effective way to solve a Dec-POMDP in which the agents share a common pool of information, updated, for example via broadcasting, in addition to *private* information available only to each individual agent. A *fictitious coordinator* observes the common information and suggests a *prescription* (in our case the Markov joint-option policy μ_t). The joint-option ω_t is chosen from μ_t and is communicated to all agents *j*, who in turn generate their own action a_t^j according to their local (private) information, and their own observation $o_t^j : a_t^j \sim \pi_t^j (a_t^j | o_t^j)$. A *locally fully observable* agent chooses its action a_t^j based on its own state s_t^j or embedding e_t^j according to $a_t^j \sim \pi_t^j (a_t^j | s_t^j)$ The notion of a centralized fictitious coordinator transforms the Dec-POMDP into an equivalent centralized POMDP, so one can exploit mathematical tools from stochastic optimization such as dynamic programming to find an optimal solution.

The common information-based belief on the joint-state $\mathbf{s}_t \in S$ is defined as $b_t^c(\mathbf{s}) \coloneqq \mathbb{P}(\mathbf{s}_t = \mathbf{s} \mid I_t^c)$, where I_t^c is the common information at time t, given by $I_t^c = \{\tilde{\mathbf{o}}_{1:t-1}, \omega_{1:t-1}\}$, where \tilde{o}_t^j is the *broadcast symbol* of agent j. Consequently, $I_{t-1}^c \subseteq I_t^c$. b_t^c evolves in a Bayesian manner. Using the argument of [3, Lemma 1], we can show that the coordinated system is a POMDP with prescriptions μ_t and observations

$$\tilde{\boldsymbol{o}}_t = h_t(\mathbf{s}_t, \mu_t), \tag{2}$$

where h_t is a *Bayesian filter*.

The optimal policy of the coordinated centralized system is the solution of a suitable dynamic program which has a fixed-point. In order to formulate this program, we need to show that b_t^c is an *information state*, i.e. a sufficient statistic to form, with the current joint-option μ_t , a future belief b_{t+1}^c .

Common-belief based option-value

The option-value upon arrival, U^{μ} , and the option-value, Q^{μ} , are defined below, where $\beta_{\text{none}}^{\omega_t}(\mathbf{s}_t)$ is the probability that no agent terminates in \mathbf{s}_t .

$$\begin{aligned} & {}^{\mu_{t}}(b_{t}^{c},\omega_{t}) \coloneqq \sum_{\mathbf{s}_{t}\in\mathcal{S}} U^{\mu_{t}}(\mathbf{s}_{t},\omega_{t})b_{t}^{c}(\mathbf{s}_{t}) = \sum_{\mathbf{s}_{t}\in\mathcal{S}} \left[\beta_{\text{none}}^{\omega_{t}}(\mathbf{s}_{t})Q^{\mu_{t}}(\mathbf{s}_{t},\omega_{t})b_{t}^{c}(\mathbf{s}_{t}) \right. \\ & \left. + \left(1 - \beta_{\text{none}}^{\omega_{t}}(\mathbf{s}_{t})\right) \max_{\mathcal{T}\in\text{Pow}(\mathcal{J})} \max_{\boldsymbol{\omega}_{t}'\in\Omega(\mathcal{T})} Q^{\mu}(\mathbf{s}_{t},\omega_{t}')b_{t}^{c}(\mathbf{s}_{t}) \right]. \end{aligned}$$

Define operators \mathcal{B}^{μ_t} as follows:

$$\begin{split} & [\mathcal{B}^{\mu_{t}}Q^{\mu_{t}}](b_{t}^{c},\omega_{t}) \\ & \coloneqq \gamma \sum_{\mathbf{s}_{t}\in\mathcal{S}} \sum_{\mathbf{o}_{t}\in\mathcal{O}} \left(\sum_{\mathbf{br}_{t}\in\{0,1\}^{J}} \sum_{\mathbf{a}_{t}\in\mathcal{A}} \pi_{t}^{b,\omega_{t}}(\mathbf{br}_{t}|\mathbf{o}_{t})\pi_{t}^{\omega_{t}}(\mathbf{a}_{t}|\mathbf{o}_{t}) \\ & f_{t}(\mathbf{o}_{t},\mathbf{s}_{t},\omega_{t-1}) \sum_{\mathbf{s}_{t+1}\in\mathcal{S}} b_{t+1}^{c}(\mathbf{s}_{t+1}) \left(p_{t}^{\mathbf{a}_{t}}(\mathbf{s}_{t},\mathbf{s}_{t+1})U^{\mu_{t}}(\mathbf{s}_{t+1},\omega_{t}) \right) \right) b_{t}^{c}(\mathbf{s}_{t}). \\ & r^{\omega_{t}}(b_{t}^{c}) \coloneqq \sum_{\mathbf{s}_{t}\in\mathcal{S}} \sum_{\mathbf{o}_{t}\in\mathcal{O}} \sum_{\mathbf{br}_{t}\in\{0,1\}^{J}} \sum_{\mathbf{a}_{t}\in\mathcal{A}} \pi_{t}^{b,\omega_{t}}(\mathbf{br}_{t}|\mathbf{o}_{t})\pi_{t}^{\omega_{t}}(\mathbf{a}_{t}|\mathbf{o}_{t}) \\ & r^{\mathbf{a}_{t},\mathbf{br}_{t}}(\mathbf{s}_{t})f_{t}(\mathbf{o}_{t},\mathbf{s}_{t},\omega_{t-1})b_{t}^{c}(\mathbf{s}_{t}). \end{split}$$

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: (a) *TEAMGrid FourRooms*, (b) average returns with 2 agents and 3 goals, (c) average returns with 3 agents and 5 goals (d) DOC: increasing number of options improved average returns, (e) DOC average returns with always broadcasting (broadcast penalty 0.0) and intermittent broadcasting (broadcast penalty = -0.5).

 Q^{μ_t} in (3) is the solution of the following Bellman update:

$$Q^{\mu_t}(b_t^c, \boldsymbol{\omega}_t) = r^{\boldsymbol{\omega}_t}(b_t^c) + [\mathcal{B}^{\mu_t} Q^{\mu_t}](b_t^c, \boldsymbol{\omega}_t),$$
(5)

where $f_t(\mathbf{o}_t, \mathbf{s}_t, \boldsymbol{\omega}_{t-1})$ can be expressed recursively $f_t(\mathbf{o}_t, \mathbf{s}_t, \boldsymbol{\omega}_{t-1}) \coloneqq \sum_{a_{t-1} \in \mathcal{A}} \eta(\mathbf{o}_t|, \mathbf{s}_t, \mathbf{a}_{t-1}) \pi_{t-1}^{\boldsymbol{\omega}_{t-1}}(\mathbf{a}_{t-1}|\mathbf{o}_{t-1}) f_{t-1}(\mathbf{o}_{t-1}, \mathbf{s}_{t-1}, \boldsymbol{\omega}_{t-2})$ and $r^{\mathbf{a}_t, \mathbf{br}_t}(\mathbf{s}_t)$ is the immediate reward of choosing action \mathbf{a}_t and broad-cast symbol \mathbf{br}_t in state \mathbf{s}_t . The optimal values corresponding to U^{μ} and Q^{μ} are defined as usual.

One can show using Cauchy-Schwartz inequality that \mathcal{B}^{μ_t} is a contraction, which is instrumental in showing the following theorem.

THEOREM 0.1. For a cooperative Dec-POMDP with options

 The optimal state-value is the fixed point solution of the following dynamic program.

$$V^{*}(b_{t}^{c}) \coloneqq \max_{\mu_{t} \in \mathcal{M}^{+}} \sum_{\omega_{t} \in \Omega} \mu_{t}(\omega_{t}|b_{t}^{c}) \\ \left[r^{\omega_{t}}(b_{t}^{c}) + \gamma \sum_{\tilde{o}_{t} \in O \cup \{\varnothing\}} \mathbb{P}(\tilde{o}_{t}|b_{t}^{c},\omega_{t})V^{*}(b_{t+1}^{c}) \right], \quad (6)$$

where \mathcal{M}^+ is the space of joint option-policies and the notations have usual meaning.

(2) There exists a time-homogeneous Markov joint-option policy μ^* , based on common information b_t^c , which is optimal.

LEARNING IN DEC-POMDPS WITH OPTIONS

Our proposed algorithm for learning options, called *Distributed Option Critic* (DOC), builds on the *option-critic* architecture [2] and leverages the assumption of factored actions of agents in the distributed intra-option policy and termination function updates.

The centralized option evaluation is presented from the coordinator's point of view. The agents learn to complete a cooperative task by learning in a model-free manner. In the *centralized option evaluation* step, the centralized critic (coordinator) evaluates in *temporal difference* (TD) manner [1] the performance of all agents via a shared reward (plus a broadcast penalty in case of costly communication) using the common information. Each agent updates its parameterized intra-option policy, broadcast policy and termination function through *distributed option improvement* using their private information.

Following [4, Theorem 1], one can show Distributed gradient descent in a cooperative Dec-POMDP with options and with factored agents leads to local optima. DOC uses one-step off policy temporal difference in centralized option evaluation and the convergence of DOC relies on showing that the expected value of TD-error $\delta := r^{\omega_k}(\mathbf{s}) + \gamma U(\mathbf{s}_{k+1}, \omega_k) - Q(\mathbf{s}_k, \omega_k)$ equals $r^{\omega_t}(b_k^c) + \gamma \mathbb{E}[U(b_{k+1}^c, \omega_t) | b_k^c] - Q(b_k^c, \omega_k).$

Next, note that the by definition of intra-option *Q*-learning with full observability (e.g. see [5, Theorem 3]), we have that for any $\varepsilon \in \mathbb{R}_{>0}$, $\max_{\mathbf{s}'',\boldsymbol{\omega}''} |Q(\mathbf{s}'',\boldsymbol{\omega}'') - Q^*(\mathbf{s}'',\boldsymbol{\omega}'')| < \varepsilon$. The rest of the proof follows by showing that the expected value of $r^{\omega_k}(\mathbf{s}) + \gamma U(\mathbf{s}'_{k+1}, \boldsymbol{\omega}_k)$ converges to Q^* .

EXPERIMENTS

We evaluate empirically the merits of DOC in cooperative multiagent tasks, and compare it to its single-agent counterpart, optioncritic (OC), advantage actor-critic (A2C), A2C with central critic (A2C2) and proximal policy optimization (PPO). We created *TEAM-Grid FourRooms* where the agents need to uncover multiple unknown targets and collect reward when all targets are uncovered. Fig. 1 shows that DOC performs competitively in this environment.

REFERENCES

- [1] Klaas Apostol. 2012. Temporal Difference Learning. SaluPress.
- [2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Architecture. In AAAI.
- [3] A. Nayyar, A. Mahajan, and D. Teneketzis. 2013. Decentralized stochastic control with partial history sharing: A common information approach. *IEEE Trans. Automat. Control* 58, 7 (jul 2013), 1644–1658.
- [4] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling. 2000. Learning to Cooperate via Policy Search. In *Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI'00)*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 489–496.
- [5] Richard Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning. *Artificial Intelligence* 112 (1999), 181–211.