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Abstract. Estimation of extreme event distributions and
depth-duration-frequency (DDF) curves is achieved at any
target site by repeated sampling among all available rain-
gauge data in the surrounding area. The estimate is com-
puted over a gridded domain in Northern Italy, using pre-
cipitation time series from 1929 to 2011, including data from
historical analog stations and from the present-day automatic
observational network. The presented local regionalisation
naturally overcomes traditional station-point methods, with
their demand of long historical series and their sensitivity
to very rare events occurring at very few stations, possi-
bly causing unrealistic spatial gradients in DDF relations.
At the same time, the presented approach allows for spa-
tial dependence, necessary in a geographical domain such as
Lombardy, complex for both its topography and its climatol-
ogy. The bootstrap technique enables evaluating uncertainty
maps for all estimated parameters and for rainfall depths at
assigned return periods.

1 Introduction

Depth-Duration-Frequency (DDF) curves, as well as
Intensity-Duration-Frequency (IDF) curves, are widely used
to characterise frequency of rainfall annual maxima in a geo-
graphical area. Such characterisation is an essential require-
ment for architecture and civil engineering, from housing to
large industrial plant design.Stewart et al.(1999) reviewed
actual applications of estimates of rainfall frequency and
estimation methods.

Recently,Svensson and Jones(2010) have reviewed meth-
ods applied in 9 countries worldwide to characterise rainfall
and flood return periods relevant for dam design. Most meth-
ods are based on parameter estimation of Gumbel or GEV
distribution and make use of a growth curve to relate a statis-
tical rainfall index to a design rainfall/flood estimate (index-
flood method). What is of interest for the present work is
that many methods reviewed bySvensson and Jones(2010)
make use of some form of regionalisation, either by spatially
interpolating the distribution parameters after estimation at
station points, or by using together data from homogeneous
areas, either defined by geographical boundaries, or centred
around a location of interest.

The idea of using an observational network to characterise
a region has been exploited byOvereem et al.(2008), who
use 12 stations for estimating (by L-moments and assuming
stationarity) a single GEV distribution in the Netherlands,
after verifying that the spatial dependence of the maximum
rainfall is weak.Overeem et al.(2008) also evaluate uncer-
tainties due to sample variability associated to estimation
of GEV and DDF curves parameters, by making use of a
bootstrap algorithm (GREHYS, 1996) to estimate standard
deviations (SDV).

Building on the concept of estimating over an area, rather
than a collection of single points,Overeem et al.(2009) make
use of a reliable 11 yr series of radar-estimated rainfall to
compute DDF curves over the Netherlands.Overeem et al.
(2010) take into account spatial variability, by defining a
local maximum in a box surrounding each radar pixel and
letting the GEV parameters depend on the box size.
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Fig. 1. Observing stations providing rainfall annual maxima in
Lombardy’s orography. Lakes are shaded in cyan. The black line
shows the administrative boundary. Circles: “mechanical” stations;
triangle: “automatic” stations. Yellow: less than 10 observations;
blue: more than 10 observations. The inset shows the geographical
position of Lombardy. The squares mark the stations discussed in
Sect.3: LODI, green, and CREMONA, red.

Regionalisation is possible when the local spatial depen-
dence is weak enough to enable transferring information to
a site of interest from surrounding observing sites (Buis-
hand, 1991). Spatial dependence may be important, though,
at a larger scale, comparable with the domain size. Lom-
bardy (Italy) has a central position in the Southern Alps, it
includes part of the Po Plain and, in the South, it reaches
the Appennines (Fig.1). Despite its limited spatial extension
(see the distance scale in Fig.1), Lombardy contains several
different climatic areas, presenting significant rainfall differ-
ences within short distances. For example, the northwestern
area of Lake Como is adjacent to the area Piedmont-Ticino-
Lake Maggiore, which is identified as a mesoscale hotspot
for heavy precipitation in the Alps (Isotta et al., 2013). Con-
versely, the eastern part of Lombardy’s Po Plain presents
rather low values of mean annual precipitation (Brunetti
et al., 2009).

As an example of station-point estimation in an area close
to Lombardy,Borga et al.(2005) estimate DDF curves in
Trentino (Italy), an area adjacent to northeastern Lombardy,
assuming stationarity and making use of a simple scaling law.

After separating the dataset in convective and non-convective
events, they estimate all parameters at station locations, and
subsequently spatially interpolate them over the area. Sep-
arately estimating at station points, however, requires the
availability of long, continuous time series of reliable ob-
servations at fixed sites. This can constitute a strong limi-
tation in the practice, imposing a drastic reduction on the
number of usable observations. In addition, as it is shown
in Sect.3 of the present document, such a station-point ap-
proach is sensitive to the possible presence of rare events,
which, if untreated, may cause unrealistic spatial patterns in
the interpolated fields.

For these reasons, and because of the mentioned charac-
teristics of Lombardy’s topography and precipitation clima-
tology, it is necessary to both introduce a regionalisation and
to allow for spatial dependence.

In order to estimate distribution parameters at any location,
it appears appropriate to take into account all data observed
at surrounding stations, at least until a prescribed distance
(e.g.Reed et al., 1999), or, as in the approach presented here,
with decreasing importance when distance increases. In fact,
whenever time series from station sites are used to estimate
DDF curves in all the points of a given area, it is implicitly
assumed that each time series is representative for an area
surrounding the observing station. Conversely, for any given
site where an observing station is not present, all data from
surrounding stations are relevant: more those from stations
located nearby, less those from stations located far away. This
assumption does not depend on the actual presence or ab-
sence, in the present or in the past, of an observing station at
the considered site.

Considering time series observed at several different sta-
tions may effectively reduce the influence of outliers on pa-
rameter estimation, while appropriately allowing them to in-
fluence the evaluation of the estimate uncertainty. Outliers,
for the underlying extreme event distribution, are events with
a return period much longer than the actual length of the time
series, such as very high annual maxima, representing mete-
orological events that are extremely infrequent, but neverthe-
less possible. Such maxima, observed very few times at very
few locations may have excessive influence on distribution
parameters estimated separately at each station point.

In the present work, standard estimation methods, such
as L-moments and maximum likelihood, are applied to syn-
thetic series generated at any desired location by resampling
from several stations, irregularly distributed in space. By
taking into account the length of each time series to avoid
the possibility of over-sampling, the use of short time series
is enabled, greatly increasing the dataset size. The method
is applied over a 1.5 km× 1.5 km regular grid covering the
whole area of Lombardy.

In this document, Sect.2 presents the dataset. In Sect.3,
the sensitivity to rare events of point-by-point estimation
is discussed with reference to a clarifying example. The
multiple-station spatial bootstrap method is presented in
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Sect.4 and results are presented in Sect.5. Section6 de-
scribes the evaluation of uncertainty on the estimated param-
eters, and discusses how this is transferred into uncertainty
on the computed rainfall depth thresholds.

2 Rainfall annual maxima dataset

Data used in this study are rainfall annual maxima recorded
by tipping-bucket catching gauges (Vuerich et al., 2009).
Two are the main data sources: an “historical” dataset and
the present-day automatic network.

The historical dataset is composed of rainfall annual max-
ima from “mechanical” stations (hereafter indicated as sta-
tions of type M), equipped with analog instrumentation and
originally managed by the National Italian Hydrographic
Service (Servizio Idrografico e Mareografico Italiano, 1917–
1998): these data were digitised in the (recent) past and are
now included in the database of the Hydrographic Service
at ARPA Lombardia. Data from 1929 to 2001 from 69 ob-
serving sites of the historical dataset, selected with a mini-
mum series length of 24 yr (in total 2753 annual records, each
with 5 maxima for different event durations), were used in a
study (De Michele et al., 2005) which originated the previ-
ous operational scheme. In that work, a separate estimation
is computed at each of the 69 stations, then a kriging spa-
tial interpolation is performed to assign DDF curve parame-
ters and quantiles to every location in the domain. Few more
series from type M stations, not used byDe Michele et al.
(2005), have been recently acquired and entered the dataset.
Stations of type M were manned and underwent frequent
maintenance. They continued to be operational until 2005.

Since the 1990s, automatic meteorological stations (here-
after indicated as stations of type A) started to be indepen-
dently installed by several different public institutions, with
different aims and criteria, and with inhomogeneous instru-
mentation. Unfortunately, the continuity of long data series
has not been guaranteed by such an important change of the
observational network: the dismissal of a particular “mechan-
ical” station did not automatically imply that a new auto-
matic station was installed at the same location. Starting from
2004, the different existing networks merged in a single ob-
servational network, the ARPA Lombardia mesonet. An op-
erational quality assurance system started to be set up since
2008 (Ranci and Lussana, 2009; Lussana et al., 2010). Nowa-
days, precipitation data undergo both automatic plausibility
checks and human operator controls, aimed at assessing its
quality and at preventing observations affected by gross er-
rors from entering automatic elaborations.

The high spatial resolution of the present-day station dis-
tribution is considered sufficient to appropriately describe
stratiform precipitation mesoscale events, and convective
events too, though with approximation depending on local
station density (Lussana et al., 2009). However, the data dis-
tribution is not completely homogeneous in space: border ef-

fects are likely to occur where observational information is
lacking outside Lombardy; in mountain areas (Alps, Prealps
and Apennines), stations are mostly located in the populated
valley floors. In such areas, the estimated parameters are ex-
pected to have larger uncertainty: it is then important to eval-
uate it and to assess its spatial distribution, as it can be done
by means of the method proposed in this document.

All data used in this study underwent supplementary
quality control, including comparison of individual series
with data of the same time period from other stations in
the same area. Moreover, every annual maximum obtained
from less than 90 % of acceptable observations in the year
was rejected. Homogenisation and comparison of differ-
ent data sources is still under way at ARPA Lombardia,
also with the purpose of evaluating the stationarity of the
statistics. In order to do that, regional averaging is recom-
mended (Klein Tank et al., 2009), then the method proposed
in this work might also be useful in that context. For the
present study, however, stationarity has been assumed as a
working hypothesis.

After quality control, with the consequent exclusion of
suspect observations and even of few whole series, it has
been possible to merge the historical dataset and the present-
day mesoscale network. The resulting dataset ranges from
1929 to 2011. It includes 4510 annual records (each with 5
maxima for different event durations: 22 431 values, exclud-
ing missing or invalidated data) from 312 stations, shown
in Fig. 1, where different symbols are used to indicate sta-
tions of type M (circles, 125 stations) and A (triangles, 187
stations). The longest time series belong, of course, to sta-
tions of type M. In Fig.1, different colours are used to dis-
tinguish short series, yellow (less than 10 annual maxima),
from longer series, blue. The presence of short series (of both
types M and A) is important both for the size of this por-
tion of the dataset, and because one of the advantages of the
approach presented in this work is that it enables their use,
as opposed to separate station-point estimation that needs to
discard them (Sect.4).

The dataset used in this work includes annual rainfall
maxima for event durationsD = 1, 3, 6, 12 and 24 h.

3 Sensitivity to rare events

Figure 2 shows the time series of annual maxima for the
event durationD = 24 h for two stations located in the Po
Plain and distant about 40 km from each other. Their loca-
tions are shown in Fig.1 as the green square, LODI, and the
red square, CREMONA. The distance between these two sta-
tions is rather small if compared with the expected scale of
spatial variations of precipitation climatology in the Po Plain
(Isotta et al., 2013; Brunetti et al., 2009).

The average behaviour of the two time series is in fact
quite similar, except for the occurrence of two main maxima,
much higher for CREMONA than for LODI. The high values
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Fig. 2. Time series of rainfall annual maxima for event duration
D = 24 h for the stations: CREMONA (solid line) and LODI (dot-
ted line)

observed at CREMONA correspond to infrequent, though
possible, summer thunderstorms occurring in the Po Plain:
the two spikes are, in fact, outliers for the annual maxima
distribution.

When estimation is computed separately at each station, as
in the previous operational scheme (De Michele et al., 2005)
of the Hydrographic Service of ARPA Lombardia, the pres-
ence of the two spikes results in important differences in the
L-moments-estimated parameters of both the GEV and Gum-
bel distributions and, consequently, on the quantiles. The re-
sulting DDF curves are compared for the two stations in
Fig. 3, where large differences can be seen, both in return
periods for an assigned threshold depth, and in depths asso-
ciated to an assigned probability of occurrence. It should be
remarked that removing the two spikes from both series re-
sulted in much similar extreme event distributions and DDF
curves. Finally, the estimation has been repeated using the
maximum likelihood method and the resulting DDF curves
(not shown) still show a similar sensitivity to the presence of
the two spikes in CREMONA’s series.

Another difference between the two series, appearing
from Fig. 2, is that observations start about 30 yr earlier
at CREMONA. However, discarding the first part of CRE-
MONA’s series so that the two samples have comparable size
(i.e. length in time), does not change the parameter estima-
tion in a way comparable with the effect of the two spikes.

The differences found in the estimated probability of rain-
fall events at LODI and CREMONA are not justified for sites
that are so close to each other and so similar to each other,
with regard to the surrounding orography. Moreover, estimat-
ing parameters of the rainfall annual maxima distributions at
station locations is only an intermediate step towards charac-
terising the occurrence probability of extreme rainfall events
for the whole Lombardy. In other words, station data need
to be used to characterise every point in the area. Any place

Fig. 3. Depth-Duration-Frequency curves for return periodsT =

100 yr (thick lines) andT = 20 yr (thin lines) for the stations: CRE-
MONA (solid lines) and LODI (dotted lines). The assumed distri-
bution is GEV and its parameters have been estimated by the L-
moments method, separately on each station.

which is close enough to both LODI and CREMONA sta-
tion is expected, as a result of station-point estimation, to be
influenced by both time series in a way that rapidly vary in
space, because of the occurrence of two outliers.

4 Spatial bootstrap technique

With the purpose of estimating extreme value statistical dis-
tribution parameters (Sect.4.4) in any point X (defined by
its geographical coordinates), data observed at several sur-
rounding stations are taken into account. At each target point
X, the spatial bootstrap procedure can be sketched as follows.

1. Sampling (details in Sect.4.1): observations from dif-
ferent time series are used to resample a new, synthetic,
“time series”, which is attributed to point X.

2. Parameter estimation (details in Sect.4.2): the syn-
thetic series is used to estimate scale invariance param-
eters (Sect.4.4) and distribution parameters, by means
of algorithms such as L-moments (Hosking, 1990) or
maximum likelihood (Coles, 2001).

3. Points (1, sampling) and (2, parameter estimation) are
repeated several times (1000 in the case of the pre-
sented results) to obtain, for each parameter, a distri-
bution of estimates: the mean of such distribution is
finally used as the actual estimate, while the standard
deviation (SDV) measures its associated uncertainty,
due to sample variability.

In the following part of this section, implementation de-
tails and working hypothesis are presented. Remark that nei-
ther the stationarity assumption (Sect.4.3), nor the use of
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a simple scaling law (Sect.4.4), even if they do influence
the obtained estimate, are critically required for the spatial
bootstrap technique, which can be applied using alternative
assumptions as well.

4.1 Sampling

An ensemble of prescribed sizeM of observed values is ex-
tracted randomly among all theN available data. The prob-
ability of extraction of each observation is proportional to a
prescribed functionγ of the distance between station loca-
tion and point X. In the present case, a function with Gaus-
sian shape is used. If thenth observation has been taken at
thekn th station, then:

γn = exp

{
−

1

2

[
d (X,kn)

Dh

]2
}

· exp

{
−

1

2

[
z − zkn

Dv

]2
}

, (1)

whered (X,kn) is the horizontal distance between stationkn

and point X,z and zkn are the elevations above mean sea
level, respectively of point X and of stationkn. Dh andDv are
scale parameters which have been set atDh = 30 km (hori-
zontal scale) andDv = 600 m (vertical scale). These values,
constrained from below by the observational network resolu-
tion, are chosen to impose a weak smoothing (Uboldi et al.,
2008). By Eq. (1), time series from stations nearby are more
frequently sampled from, with respect to time series from
stations located far away from X. Remark that the chosen
function accounts for elevation difference as well, and that
distance-dependent probabilities are assigned to individual
observations, rather than to stations, to avoid oversampling
from “short” time series located near the target point X.

In traditional estimation, separately performed at each sta-
tion point, “short” time series (series with few annual max-
ima) are necessarily discarded, because they do not provide a
sufficient number of data for the estimation. Moreover, they
are useless for “long” return period, with the practical rule
that the maximum significant return period is about twice the
series length. Many data would be discarded in this way, in
particular from stations which have been installed recently.

With the proposed method the use of very short time se-
ries is enabled. For each location X (gridpoint or station),
by prescribing distance-dependent extraction probabilities,
observations from nearby stations are selected more often
than observations from stations located far away. Oversam-
pling from nearby stations with only few data is effectively
avoided. In fact, if a station were chosen with probability
proportional to its associatedγ and, for the selected station,
an observation were chosen with uniform probability after-
wards, then nearby observing locations with only few ob-
servation could be over-sampled: the same few observations
could be chosen many times in each synthetic series. This
is avoided by assigning distance-dependent probabilities to
individual observations, rather than to stations, and normal-

ising with the sum of probabilities of all observed values:

0 =

N∑
n=1

γn (2)

In this way, all observations from the same station still
have the same probability, but the probability of extracting
from a particular station depends both on distance and on
the size of its observation set, i.e. the length of its time se-
ries. For example, if, for a particular location only two sta-
tions existed: “a” with only 3 observations, but very close,
with γ a

= 0.9; and “b” far away, withγ b
= 0.1, but with 100

observations, then the sum of all (observational)γ s would
be0 = 3× 0.9+ 100× 0.1 = 12.7. The individual probabil-
ity would be 0.9/12.7 for each observation from “a” and
0.1/12.7 for each observation from “b”, but the “station”
probability would be 2.7/12.7 for station “a” and 10/12.7
for station “b”.

Appendix A describes how theγ s and their sum (over
all observations) are used, starting from a pseudo-random
real number extracted with uniform probability in the
interval(0,1).

The total number of available observations is aboutN =

4500 (slightly different for each duration because of missing
data, Sect.2).

The length of the synthetic series obtained (i.e. the sample
size) for the presented results (Sect.5) is M = 50, consid-
ered sufficient to obtain stable estimates and to span the time
period covered by the dataset (1929–2011). A larger size,
M = 100 has been tested, without any noticeable difference
in estimates.

4.2 Parameter estimation

Parameter estimation is obtained for each synthetic series,
i.e. at each gridpoint, by applying the L-moments algorithm
first, then using the L-moments estimate to initialise a max-
imum log-likelihood estimation, solved by means of a non-
linear conjugate gradient iteration.

Since the GEV distribution (Sect.4.4) has a lower bound
whenξ > 0, and a higher bound when whenξ < 0, it may
well happen that one or more observationw in the sample
do not satisfy the condition 1+ ξ (w − ε)/α > 0 (Sect.4.4)
for some set of parameters(ε,α,ξ) possibly met after the L-
moments estimation, or during the iterative minimisation. It
has then been necessary to make sure that, before starting the
line minimisation required at each conjugate gradient itera-
tion step (Press et al., 1992), the sought minimum was effec-
tively “bracketed” by two points, i.e. two sets of parameters
(ε,α,ξ), both satisfying the GEV condition.

4.3 Stationarity

In the stationarity hypothesis, the actual order in time of the
sampled observations is not important, then the time coordi-
nate is not used in the parameter estimation: this is the case of
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the results presented in Sect.5. On the contrary, if stationarity
were an issue, sampling could be performed by prescribing
extraction probabilities that effectively ensure uniformity in
time (for example, by extracting one observation, or a fixed
number of them, for each year). In that case the time coordi-
nate could be used in the estimation, for example by prescrib-
ing a linear dependence on time of one or more distribution
parameters, in order to estimate a trend when applying the
maximum-likelihood method (Coles, 2001).

4.4 Depth-Duration-Frequency curves and scale
invariance

The cumulative GEV (Generalised Extreme Value) distribu-
tion is:

F (h) = exp

[
−

(
1+ ξ

h − µ

σ

)−1/ξ
]

, (3)

whereµ, σ andξ are known as the location, scale and shape
parameters, respectively. The GEV expression is defined for
1+ξ (h − µ)/σ > 0 and includes Gumbel distribution as the
particular caseξ = 0 (Wilks, 2011; Coles, 2001).

If 1 −F (h) is interpreted as the probability that, in a year,
a rainfall event (of a given duration) exceeds the “threshold”
h, then the return period is measured in years and defined as:

T (h) ≡
1

1− F (h)
. (4)

The proposed spatial bootstrap method is quite general
and does not depend on particular assumptions with regard
to scaling. Stochastic self similarity, or multifractality, is ac-
knowledged as the general scale invariance condition for
rainfall fields (Veneziano et al., 2006). Here, as a working hy-
pothesis for the operational implementation, we followBur-
lando and Rosso(1996) andDe Michele et al.(2005). Rain-
fall annual maxima follow a scale invariance law such that
the statistical distribution for an event durationλD, and that
of the reference durationD are the same after scaling by a
powerλn, with exponentn to be determined depending on
the process and on the site. Quantiles and momenta of the dis-
tribution scale then with the same factorλn. This corresponds
to assuming that time series related to different event dura-
tions for the same site, after normalisation with the mean, are
sampled from the same extreme event statistical distribution.
If hD is the sample mean for event durationD, the distribu-
tion parameters are redefined as:

ε ≡
µ

hD

(5)

α ≡
σ

hD

(6)

The same is done for the quantiles:

wT ≡
hT

hD

(7)

By inverting the expression of cumulative distribution func-
tion, Eq. (3), the normalised rainfall depth threshold is ex-
pressed as a function of the return period:

wT = ε −
α

ξ

{
1−

[
ln

(
T

T − 1

)]−ξ
}

. (8)

The analytical DDF curve expression for durationD is,
finally:

hT (D) = a1wT Dn (9)

The scale invariance coefficient,a1, and the scaling expo-
nent,n, are obtained by least square optimisation:

n =

〈
(lnD − 〈lnD〉)

(
lnhD −

〈
lnhD

〉)〉〈
(lnD − 〈lnD〉)2〉 (10)

a1 = exp
(〈

lnhD

〉
− n 〈lnD〉

)
, (11)

where the averages〈〉 are taken on event durations.
The assumption that standardized maxima of precipitation

follow the GEV model with constant parameters is based
on standard asymptotic results from Extreme Value theory
(Coles, 2001).

Making use of a simple scaling law such as Eq. (9),
though, is not mandatory.

In recent works (Veneziano et al., 2009; Langousis et al.,
2013) a GEV with shape parameterξ dependent on duration
is advocated as the most appropriate distribution for rain-
fall annual maxima and for durations of finite length. We
remark that, by means of the spatial bootstrap technique pro-
posed here, the sensitivity to outliers is effectively reduced
(Sect.5), the sampling size is increased (M = 50, Sect.4.1)
and the final estimate for each parameter is obtained as the
sample mean, effectively reducing uncertainty. The shape pa-
rameterξ remains however the most uncertain (Sect.6): al-
lowing a direct dependence on duration might improve the
accuracy of the estimate.

Moreover,Di Baldassarre et al.(2006) analyse short du-
rations, up to 1 h, by testing different analytical formulations
for the DDF curves and point out the limitations of simple
formulations of scale invariance, arguing that a transition in
scaling should be acknowledged for storm durations of about
1 h.Overeem et al.(2008), in their study, use event durations
from 1 h to 24 h, describing the dependence of GEV param-
eters on duration by a generalised least-square method. They
find that the ratio scale/locationσ/µ, and, as a consequence,
the coefficient of variation, increase with decreasing dura-
tion, concluding that a simple scaling formula cannot hold. In
other works (Borga et al., 2005; Svensson and Jones, 2010),
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Fig. 4.Left: map of the estimated scale invariance coefficienta1 (mm). Right: map of the estimated scaling exponentn (dimensionless).

Fig. 5. Maps of the estimated GEV parametersε (location, left)α (scale, centre) andξ (shape, right), all dimensionless. In theξ map,
the red scale shows positive values, corresponding to a Fréchet distribution; the (not appearing) blue scale would show negative values,
corresponding to a reverse Weibull distribution. Values of theξ mean that are smaller, in absolute value, than the standard deviation are
masked out: in such areas the GEV distribution is considered equivalent to a Gumbel distribution.
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Fig. 6. Distributions of rainfall depth thresholds (mm) obtained forT = 200 yr andD = 3 h (left panel),D = 24 h (right panel). Boxplot
labelled A refers, in both panels, to the previous operational method, i.e. separate estimation at each of 69 stations; boxplot B is obtained by
applying the proposed method using the same 69 stations only; boxplot C is obtained estimating at the same 69 locations, by applying the
proposed method using the complete dataset. Comparing boxplot A and B shows the effect of applying the new method at the same dataset,
while comparing boxplot B and C shows the effect of the dataset extension (when estimating at the same, old 69 sites). The combined effect
of the method change and of the dataset extension is seen by comparing boxplot A and C.

in fact, annual maxima from convective and non-convective
events are separately treated. Such criticism could lead us, in
the future, to refine the scale invariance assumption, by test-
ing the appropriateness of separating the 1 h duration from
the rest of the dataset, or by replacing Eq. (9) with an alter-
native expression, or again allowing a direct dependence on
duration of the distribution parameters.

5 Estimated parameters and quantiles

The estimates of the scale invariance coefficienta1 and of
the scaling exponentn are shown as maps in Fig.4. Fig-
ure 5 shows the GEV distribution parameters: “location”ε

(left panel), “scale”α (central panel) and “shape”ξ (right
panel). For all these maps, the estimate is obtained as the
mean of the ensemble of estimates computed by repeating
1000 times the resampling and estimation procedure at each
gridpoint.

Since scale invariance has been assumed and Eqs. (5)–(7)
have been used, GEV location parameterε and GEV scale
parameterα (Fig. 5) are dimensionless: the only dimensional
parameter is the scale invariance coefficienta1 (left panel in
Fig.4), measured in mm and representing the average rainfall
depth for unity event duration.

The shape parameterξ assumes values around zero: the
GEV distribution reduces to a Gumbel distribution (with the
same location and scale parameters) in the limitξ = 0. The
estimate ofξ is obtained by the mean, and the uncertainty on
the estimate is evaluated by the SDV: this information is used

in the right panel of Fig.5: the field is masked out when the
absolute value of the mean is smaller than the corresponding
SDV. In this way the unshaded (masked) areas are attributed
to a Gumbel distribution and areas shaded in red to a “heavy-
tailed” Frechét distribution. No negative values of the mean
exceed, in absolute value, the corresponding SDV, then no
gridpoints are attributed to a reversed Weibull distribution.

For a numeric comparison with the previous operational
scheme, the presented method has been applied to the same
“old” dataset, composed by 69 stations, used byDe Michele
et al.(2005) and described in Sect.2. These results are shown
in Fig. 6, where each boxplot shows the distribution of the
rainfall depth thresholdhT values estimated for the return
periodT = 200 yr at the 69 sites: boxplot labelled A corre-
sponds to the previous operational scheme (De Michele et al.,
2005), i.e. separate estimation at each station; boxplot B is
obtained by using the same dataset, but with the new method
described in Sect.4; boxplot C is obtained by applying the
new method to the complete dataset described in Sect.2, but
only estimating, in this case, at the 69 sites composing the
old dataset. The two panels of Fig.6 refers to event duration
D = 3 h, left, and to event durationD = 24 h, right. The two
durations are chosen as representative of annual maxima due
to mainly convective events, in the case ofD = 3 h, and of
longer, stratiform events, in the case ofD = 24 h.

Remark that possible deformations due to the interpolation
step of the old method are excluded in this comparison.

Comparing boxplot A and boxplot B demonstrates the ef-
fect of the method change with the same, old, dataset. Com-
paring boxplot B and boxplot C shows the effect of the
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Fig. 7. Raindepth thresholdhT (mm) for event durationD = 3 h and return periodT = 200 yr. Left panel: estimate obtained with the
previous operational scheme, based on station-point estimation at 69 sites and subsequent interpolation. Right panel: estimate obtained by
applying the proposed method to the same 69 stations.

dataset extension with the same, new, method. The cumula-
tive effect of method change and dataset extension can then
be seen by comparing boxplot A and boxplot C. The most
relevant effects are, in both panels: the upward shift of the
box (first to third quartiles including the median) from box-
plot A to boxplot B, when the estimation is influenced by
nearby stations, and the progressive dispersion decrease, as
measured by the decreasing interquartile range (box height),
when going from boxplot A to boxplot B, then to boxplot C,
with more and more data conditioning the estimation.

The root-mean-square differences between estimates at the
69 sites for the three schemes are shown in Table1, showing
that method change and dataset extension do have an impact,
larger for method change.

Comparing the scheme performances at a common sub-
set of observing sites has the advantage of excluding from
the analysis most effects of local differences in spatial data
density and of differences in elevation above mean sea level.
It is however an important goal of the present work to esti-
mate over the whole of an extended and complex area such as
Lombardy. The three schemes A, B and C are also compared,
then, as rainfall depth threshold maps, in Figs.7–10.

Maps of the rainfall depthhT (mm) exceeded with return
periodT = 200 yr are shown, for event durationD = 3 h, in
Fig. 7 for scheme A (left) and B (right), and in Fig.8 for the
new proposed scheme with the complete dataset, C. Similar

Table 1. Root-mean-square differences (mm) of rainfall depth
thresholds estimated at the 69 sites composing the “old” dataset,
with the three schemes. A: old method, old dataset; B: new method,
old dataset; C: new method, new extended dataset (but only esti-
mates at the 69 sites are considered for this comparison).

RMSD (mm) D = 3 h D = 24 h

B-A 24 48
C-B 10 21
C-A 26 55

maps are shown, for event durationD = 24 h, in Fig.9 for
scheme A (left) and B (right), and in Fig.10 for scheme C.
For schemes B and C, these maps are produced by evaluating
Eq. (9) at each gridpoint and estimating all parameters by
their means.

Using the new method, even with the same, old, 69-station
dataset, has the effect, evident when comparing left and right
panels in both Figs.7 and9, that the unjustified maxima and
minima appearing in the Po Plain are eliminated: these are
due, in scheme A, to the combined effects of outliers present
in individual time series, “CREMONA” in particular, as dis-
cussed in Sect.3, and of the subsequent spatial interpola-
tion. This problem is straightforwardly overcome in the new
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Fig. 8. Map of the rainfall depth thresholdhT (mm) for event du-
rationD = 3 h and return periodT = 200 yr, obtained by applying
the proposed method to the complete dataset.

method (both schemes B and C): rare events are effectively
treated as such, by considering all surrounding data.

Since the interpolation step of scheme A does not account
for elevation difference, no orographic signal can be seen in
its maps. In schemes B and C, the fields appear correlated
with the orographic features for durationD = 24 h, associ-
ated to long stratiform events, and much less for duration
D = 3 h, associated to important thunderstorms.

Differences between scheme B and C, due to the dataset
extension, regard details of the fields. In particular, the cor-
rection in the Plain discussed above is further improved by
using more data in scheme C, including comparatively short
time series from “recent” automatic stations, progressively
installed starting from the 1990s.

It is worthwhile remarking that at the locations of the two
stations discussed in Sect.3, LODI and CREMONA (Fig.1),
the hT fields assume similar values both in Fig.8 and in
Fig. 10, and that the (weak) gradient across the Po Plain even
opposes the difference found in Sect.3 by separately estimat-
ing at the two locations and, consequently, appearing in the
left panels of Figs.7 and9.

Table 2. Ranges of values (in the grid) of the ratio SDV/mean for
a1, n, ε andα and of ratio SDV/max(|mean|) for ξ .

ratio SDV/mean
min max

a1(mm) 0.041 0.094
n 0.053 0.105
ε 0.015 0.048
α 0.038 0.068

ratio SDV/max(|mean|)
min max

ξ 0.172 0.325

To comment on the maps of parameters and of rainfall
depth threshold estimated by applying the new proposed
method to the complete extended dataset, one has to con-
sider that the Alpine climatology is characterised by moist
zones extending along the external flanks of the Alps and
dry conditions in the interior of the mountain range (Frei and
Schär, 1998). Furthermore, the western part of Lombardy’s
Prealpine area is among the alpine areas with the higher val-
ues of mean annual accumulated precipitation (Isotta et al.,
2013; Brunetti et al., 2009). These differences are due to the
complex interaction between the moist and unstable large-
scale southwesterly atmospheric flows with the orography.
In our study, this interaction leads to the occurrence, in the
distribution parameter fields, of a south-westward gradient
across the Alpine area (i.e. the northern part of the domain).
This is apparent, for example, in thea1 field, Fig.4. Conse-
quently, the most exposed southwestern ridges, the Prealps,
present the highesthT values in Figs.8 and 10, while the
lowesthT values are found in the shielded Alta Valtellina,
the alpine area in the extreme northeast.

The Po Plain is characterised by a significant westward
gradient in many parameters (for example, thea1 field in
Fig. 4), resulting in largerhT values in the west with respect
to the east (Figs.8 and10).

ComparinghT for D = 3 h, Fig. 8, and for D = 24 h,
Fig. 10 (both for a return period of 200 yr), the relative dif-
ference between eastern and western Plain for event duration
of D = 3 h appears smaller (about 20 %), than the same dif-
ference relative toD = 24 h (30 % at least). This could be
related to the remark ofIsotta et al.(2013), that in the eastern
Plain a larger fraction of the mean annual accumulated pre-
cipitation comes from the most intense precipitation events.

6 Uncertainty

An important feature of the proposed method is that it en-
ables evaluating uncertainty by means of the SDV of the
1000 estimates calculated at each target point. Table2 shows
the minimum and maximum value, among gridpoints, of the
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Fig. 9.Same as Fig.7, but for the event durationD = 24 h.

ratio between SDV and mean (i.e. the coefficient of varia-
tion) of each estimated parameter, exceptξ : for this parame-
ter, which has values around zero, the ratio between the SDV
and the maximum of the absolute value of the mean is shown.
For a1, n, ε andα the SDV is always below or about 10 %
of the mean, so that the uncertainty on these parameter can
be considered small. On the contrary, forξ , the SDV is about
40 % of the maximum (positive) value of the mean.

Uncertainty on parameters does have an impact on rainfall
depth threshold. For each of the estimated parameters, the
partial relative uncertainty onhT ,D is evaluated as:

ρπ (σπ ) ≡
hT ,D (π + σπ ) − hT ,D (π − σπ )

2hT ,D (π)
, (12)

where the generic parameterπε {a1,n,ε,α,ξ} appears and
σπ is the corresponding standard deviation. Simplified ex-
pressions are easily obtained for each parameter using the
scale invariance expression (Eq.9):

ρa1 =
σa1

a1
(13)

ρn =
Dσn − D−σn

2
(14)

ρπ =
wT (π + σπ ) − wT (π − σπ )

2wT (π)
, (15)

where now, in Eq. (15), πε {ε,α,ξ} represents any of the
three GEV parameters. As it appears in Eqs. (13)–(15), the

Table 3. Relative partial uncertainty component (%) onhT ,D with
respect to each estimated parameter, minimum and maximum value
among all gridpoints.

min MAX

a1 4.1 % 9.4 %
n (D = 3 h) 2.2 % 5.0 %
n (D = 24 h) 6.4 % 14.4 %
ε (T = 20 yr) 0.72 % 1.9 %
ε (T = 200 yr) 0.48 % 1.1 %
α (T = 20 yr) 2.0 % 4.3 %
α (T = 200 yr) 2.6 % 5.5 %
ξ (T = 20 yr) 3.3 % 7.8 %
ξ (T = 200 yr) 7.7 % 19.3 %

a1 component of relative uncertainty onhT ,D is simply the
coefficient of variation fora1; then component only depends
on the duration,D; theε, α andξ components coincide with
the corresponding partial components of relative uncertainty
on the normalised quantilewT : they depend on the return pe-
riod and on all three GEV parameter estimates, but not on the
duration.

Table3 shows, as percentage, the minimum and maximum
value, among all gridpoints in the domain, of partial uncer-
tainty components relative to all parameters, for different val-
ues of duration and return period, when this is relevant. These
values are generally below 10 %, except for the components
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Fig. 10.Map of the rainfall depth thresholdhT (mm) for event du-
rationD = 24 h and return periodT = 200 yr, obtained by applying
the proposed method to the complete dataset.

associated to: (1) the scaling exponentn for long event du-
rations, having a maximum (over the domain) of 14.4 % for
D = 24 h; (2) the shape parameterξ for long return periods,
reaching a maximum of 19.3 % forT = 200 yr.

Figure 11 shows, as percentage, the relative uncertainty
componentρξ (Eq.15) on the rainfall depth thresholdhT ,D,
for return periodT = 200 yr and for any durationD, due
to the uncertainty on the estimate of the parameterξ . As it
appears in Table3, for long return periods this is the most
important uncertainty component. It is higher in the Alpine
area, where the elevation difference between gridpoints and
station points effectively reduces the spatial data density with
respect to its bi-dimensional appearance. Its maximum can
be found in the extreme northwest (Val Chiavenna), where
only few stations are located and distributed along a direc-
tion which stretches outward (Switzerland) with respect to
the more densely and uniformly observed part of the do-
main (Fig.1). This is a typical “border” effect, which also
necessarily affects any interpolation method, and which can
be easily solved by the acquisition of external observations,
when they are available. Swiss observations would be neces-
sary in this case, but, for Lombardy, data from other Italian
departments would be very useful as well: only stations from

Fig. 11.Relative partial uncertainty componentρξ (%) on the rain-
fall depth thresholdhT ,D for return periodT = 200 yr (and for any
durationD), due to the uncertainty on the estimate of the parameter
ξ .

Piedmont (west) and Emilia-Romagna (south) were used in
this study (Fig.1).

Maps of uncertainty components onhT due to uncertainty
on other parameters are not shown here, but all are geograph-
ically distributed in a way similar toρξ (Fig. 11).

7 Conclusions

The multiple-station spatial bootstrap technique makes use
of spatially distributed series of rainfall annual maxima to
estimate parameters of the GEV distribution and of DDF
curves in every location of a geographical domain. In the
case of Lombardy, the domain is characterised by a com-
plex topography, including several climatic areas within short
distances, such as the wet Prealpine areas and the dry east-
ern Po Plain, requiring appropriate techniques to propagate
meteorological information in space. In the presence of a
mesoscale meteorological network, whenever the goal is to
characterise a geographical area rather than a single point,
the spatial bootstrap appears more appropriate than interpo-
lating from estimates separately obtained at station points. In
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fact, the method effectively makes use of the whole dataset,
even short time series from stations recently installed, or ac-
tive for only few years in the past, that must be discarded in
the traditional point-by-point estimation. Uncertainties on all
estimates are directly evaluated and represent an important
information, both for further studies and for users.

In general, as it has been shown, parameter estimation al-
gorithms are sensitive to the presence of outliers in the ob-
served series. The combined use of multiple stations in the
estimation enables reducing the impact of such very rare
events, whereas these are appropriately allowed to affect the
evaluated uncertainties.

L-moments or maximum likelihood algorithms can be in-
differently applied to the synthetic series resampled at every
desired location. In this work, the log-likelihood function has
been maximised by means of a nonlinear conjugate gradient
iteration, initialised with L-moments estimates. The whole
procedure, from sampling to estimation, has been repeated
1000 times at each point of a regular 1.5 km× 1.5 km grid
covering the spatial domain. For each parameter, the mean
and the SDV of such an ensemble of estimates provide the
final estimate and its associated uncertainty, respectively.

A comparison with the previous operational scheme, based
on separate station estimation, has been realised by applying
the new method to the same (old) dataset and comparing the
distributions of rainfall depth thresholds estimated at observ-
ing sites. With the new method all quartiles values includ-
ing the median are increased and including information from
surrounding stations reduces the estimate dispersion. This is
further reduced by the dataset extension enabled by spatial
bootstrap.

The presence of outliers in the time series, emphasised by
separate station estimation, results in unjustified gradients in
rainfall depth threshold maps obtained with the old scheme.
Such unrealistic signals do not appear in maps obtained with
the new method presented here, as a consequence of its abil-
ity to appropriately deal with outliers, in particular when the
complete dataset is used.

For all event durations and return periods, the maps ob-
tained by the spatial bootstrap method with the complete
dataset for distribution parameters and rainfall depth thresh-
olds appear in agreement with the known climatology of
the geographical domain (Frei and Schär, 1998; Isotta et al.,
2013; Brunetti et al., 2009), and realistically account for ele-
vation above sea level.

The spatial bootstrap technique enables evaluating uncer-
tainty due to sample variability. The partial relative uncer-
tainty component on rainfall depth threshold with respect to
each parameter has been evaluated: the largest values are
found in the Alpine area, generally below 10 %, with few
exceptions, notably theξ component, reaching 19 % in the
extreme northwest. In principle, these results could be fur-
ther improved by allowing a direct dependence on duration
of the GEV shape parameter (Veneziano et al., 2009; Lan-
gousis et al., 2013).

The estimated parameters and quantiles can be made avail-
able to users as gridded fields, as precomputed interactive
maps, for example in a web-based GIS (Geographic Infor-
mation System), such as that of ARPA Lombardia (http:
//idro.arpalombardia.it), or, in principle, even by allowing
direct estimation at any requested location in the domain.
Besides the engineering applications cited in the Introduc-
tion, information on rainfall depths associated to different
event durations and return periods, such as the maps shown
in Figs.8 and10, might also be used to characterise and dif-
ferentiate the critical precipitation events for Lombardy’s cli-
matic areas in civil protection emergency plans. In that con-
text, the availability of thresholds uncertainties is of partic-
ular interest, because it enables defining precautionary alert
thresholds in a realistic and statistically founded way.

Assuming stationarity and including short time series en-
ables using a large amount of observations. Conversely, this
relative data abundance could be used in a stationarity study,
with stringent quality control and homogenisation. As a re-
sult of the stationarity study, in the future both the parame-
ter estimation and DDF curves might be recomputed, either
assuming stationarity in a recent portion of the dataset only
(the reference period 1981–2010, for example), or by allow-
ing for, and estimating, a trend in the parameters (such as
GEV location and scale, for example).

Finally, as discussed in Sect.4.4, the scale invariance for-
mulation could be refined in the future to allow for a possible
different behaviour of short-duration convective events and
for the use of more sophisticated GEV models.

Appendix A

Random integers with assigned probabilities

Given a realisationρ of a continuous random variable uni-
formly distributed on the interval(0,1), it is possible to ob-
tain a discrete random variable, uniformly distributed among
the positive integers up to a genericM, by means of the trans-
formation:

m = 1+ int(ρM), (A1)

where “int” is a function that returns the integer part of its
argument, so that:

m − 1 ≤ ρM < m (A2)

Remark thatm is the smallest integer such that:

ρM − m < 0 (A3)

By analogy, the above defined realizationρ can be used to
implement a random number generator for a discrete ran-
dom variable with any prescribed (non-uniform) probability
distribution on positive integers up to a genericN . In our
case,N represents the size of the entire dataset as reported
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in Sect.4. If the probability of extraction of the positive in-
tegern ≤ N is required to be proportional toγn (as defined
by Eq.1 in our case), than the valueρ0 (where0 is the sum
of all γ s as in Eq.2), is associated to a uniform random vari-
able defined in the interval(0,0). The desiredn satisfies, in
analogy with Eq. (A2):

n−1∑
j=1

γj ≤ ρ0 <

n∑
j=1

γj (A4)

Then n is the smallest integer such that (compare with
Eq.A3):

ρ0 −

n∑
j=1

γj < 0 (A5)

To operationally obtain a realisationn consistent with the de-
sired random number generator, eachγj for j = 1,2, . . . is
sequentially subtracted fromρ0 until a negative value is ob-
tained whenj = n.
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