[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kybernetika 54 no. 1, 202-220, 2018

An instrumental variable method for robot identification based on time variable parameter estimation

Mathieu Brunot, Alexandre Janot, Peter Young and Francisco CarrilloDOI: 10.14736/kyb-2018-1-0202

Abstract:

This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a `tailor-made' prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method that is more robust to deficiencies in such a priori knowledge and exploits an optimal recursive algorithm based on a simple integrated random walk model and a Kalman filter with associated fixed interval smoothing. The resultant IDIM-IV instrumental variable method, using this approach to signal generation, is evaluated by its application to an industrial robot arm and comparison with previously proposed methods.

Keywords:

parameter estimation, system identification, Kalman filter, industrial robot system, instrumental variable method, fixed interval smoothing

Classification:

93B30, 70E60

References:

  1. P .R. Bélanger, P. Dobrovolny, A. Helmy and X. Zhang: Estimation of angular velocity and acceleration from shaft-encoder measurements. Int. J. Robotics Research 17 (1998), 1225-1233.   DOI:10.1177/027836499801701107
  2. M. Brunot, A. Janot and F. Carrillo: State Space Estimation Method for the Identification of an Industrial Robot Arm. In: Proc. IFAC World Congress 50 (2017) 1, pp. 9815-9820.   CrossRef
  3. M. Brunot, A. Janot, F. Carrillo, H. Garnier, P.-O. Vandanjon and M. Gautier: Physical parameter identification of a one-degree-of-freedom electromechanical system operating in closed loop. In: Proc. 17th IFAC Symposium on System Identification, 2015, pp. 823-828.   DOI:10.1016/j.ifacol.2015.12.231
  4. D. Coca and S. A. Billings: A direct approach to identification of nonlinear differential models from discrete data. Mech. Systems Signal Process. 13(5), (1999), 739-755.   DOI:10.1006/mssp.1999.1230
  5. M. Dridi, G. Scorletti, M. Smaoui and D. Tournier: From theoretical differentiation methods to low-cost digital implementation. In: IEEE International Symposium on Industrial Electronics 2010, pp. 184-189.   DOI:10.1109/isie.2010.5637595
  6. J. Durbin and S. J. Koopman: Time Series Analysis by State Space Methods. Oxford University Press, 2012.   DOI:10.1093/acprof:oso/9780199641178.001.0001
  7. H. Garnier, M. Gilson, P. C. Young and E. Huselstein: An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control Engrg. Practice 15 (2007), 471-486.   DOI:10.1016/j.conengprac.2006.09.004
  8. H. Garnier, M. Mensler and A. Richard: Continuous-time model identification from sampled data: implementation issues and performance evaluation. Int. J. Control, 76 (2003), 1337-1357.   DOI:10.1080/0020717031000149636
  9. M. Gautier: Dynamic identification of robots with power model. In: Proc. IEEE International Conference on Robotics and Automation 3 (1997), 1922-1927.   DOI:10.1109/robot.1997.619069
  10. M. Gautier, A. Janot and P.-O. Vandanjon: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Trans. Control Systems Technol. 21 (2013), 428-444.   DOI:10.1109/tcst.2012.2185697
  11. M. Gautier and W. Khalil: Exciting trajectories for the identification of base inertial parameters of robots. Int. J. Robotics Research 11 (1992), 362-375.   DOI:10.1177/027836499201100408
  12. M. Gilson, H. Garnier, P. C. Young and P. M. J. Van den Hof: An instrumental variable approach for rigid industrial robots identification. IET Control Theory Appl. 5 (2011), 1147-1154.   DOI:10.1049/iet-cta.2009.0476
  13. A. Janot, P.-O. Vandanjon and M. Gautier: An instrumental variable approach for rigid industrial robots identification. Control Engrg. Practice 25 (2014), 85-101.   DOI:10.1016/j.conengprac.2013.12.009
  14. A. Janot, P.-O. Vandanjon and M. Gautier: A generic instrumental variable approach for industrial robot identification. IEEE Trans. Control Systems Technol. 22 (2014), 132-145.   DOI:10.1109/tcst.2013.2246163
  15. W. Khalil and E. Dombre: Modeling, Identification and Control of Robots. Butterworth-Heinemann, 2004.   CrossRef
  16. K. Mahata and H. Garnier: Identification of continuous-time errors-in-variables models. Automatica 42 (2006), 1477-1490.   DOI:10.1016/j.automatica.2006.04.012
  17. N. Marcassus, P.-O. Vandanjon, A. Janot and M. Gautier: Minimal resolution needed for an accurate parametric identification-application to an industrial robot arm. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems 2007, pp. 2455-2460.   DOI:10.1109/iros.2007.4399476
  18. J. P. Norton: Optimal smoothing in the identification of linear time-varying systems. In: Proc. of the Institution of Electrical Engineers 122 (1975), pp. 663-668.   DOI:10.1049/piee.1975.0183
  19. G. P. Rao and H. Unbehauen: Identification of continuous-time systems. IEE Proc. Control Theory Appl. 153 (2006), 185-220.   DOI:10.1049/ip-cta:20045250
  20. T. Söderström and P. Stoica: Instrumental Variable Methods for System Identification. Springer, 1983.   DOI:10.1049/ip-cta:20045250
  21. Stäubli Favergues: Arm - TX Series 40 Family. Stäubli, 2015.   CrossRef
  22. J. M. Wooldridge: Introductory Econometrics: A Modern Approach. Fourth edition. South-Western, 2008.   CrossRef
  23. P. C. Young: An instrumental variable method for real-time identification of a noisy process Automatica, 6 (1970), 271-287.   DOI:10.1016/0005-1098(70)90098-1
  24. P. C. Young: Recursive Estimation and Time-Series Analysis: An Introduction for The Student and Practitioner. Second edition. Springer Science and Business Media, 2012.   CrossRef
  25. P. C. Young: Refined instrumental variable estimation: Maximum likelihood optimization of a unified {Box-Jenkins} model. Automatica 52, (2015), 35-46.   DOI:10.1016/j.automatica.2014.10.126
  26. P. C. Young, M. Foster and M. Lees: A Direct Approach to the Identification and Estimation of Continuous-Time Systems From Discrete-Time Data Based on Fixed Interval Smoothing. In: Proc. 12th IFAC World Congress 10 (1993), pp. 27-30.   DOI:10.1016/s1474-6670(17)49207-x
  27. P. C. Young and A. J. Jakeman: Refined instrumental variable methods of time-series analysis: Parts {I}, {II} and {III} Int. J. Control 29, 1-30; 30, 621-644, 31, (1979-1980), 741-764.   DOI:10.1080/00207178008961080