[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Kybernetika 52 no. 4, 629-647, 2016

Group synchronization of diffusively coupled harmonic oscillators

Liyun Zhao, Jun Liu, Lan Xiang and Jin ZhouDOI: 10.14736/kyb-2016-4-0629

Abstract:

This paper considers group synchronization issue of diffusively directed coupled harmonic oscillators for two cases with nonidentical and identical agent dynamics. For the case of coupled nonidentical harmonic oscillators with positive coupling, it is demonstrated that distributed group synchronization can always be achieved under two kinds of network structures, i. e., the strongly connected graph and the acyclic partition topology with a directed spanning tree. It is interesting to find that the group synchronization states under acyclic partition are some periodic orbits with the same frequency and are simply related with the initial values of certain group regardless of ones of the other groups. For the case of coupled identical harmonic oscillators with positive and negative coupling, some generic algebraic criteria on group synchronization with both local continuous and instantaneous interaction are established respectively. In particular, an explicit expression of group synchronization states in terms of initial values of the agents can be obtained by the property of acyclic partition topology, and so it is very convenient to yield the desired group synchronization in practical application. Finally, numerical examples illustrate and visualize the effectiveness and feasibility of theoretical results.

Keywords:

directed topology, acyclic partition, group synchronization, coupled harmonic oscillators

Classification:

74H65, 70K40

References:

  1. L. Ballard, C. Y. Cao and W. Ren: Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination. IET Control Theory Appl. 4 (2010), 806-816.   DOI:10.1049/iet-cta.2009.0053
  2. Y. Chen, J. H. L$\ddot{\mathrm{u}}$, X. H. Yu and Z. L. Lin: Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices. SIAM J. Control Optim. 51 (2013), 3274-3301.   DOI:10.1137/110850116
  3. S. Cheng, C. J. Ji and J. Zhou: Infinite-time and finite-time synchronization of coupled harmonic oscillators. Physica Scripta 84 (2011), 035006.   DOI:10.1088/0031-8949/84/03/035006
  4. C. Desoer and M. Vidyasagar: Feedback Systems: Input-output Properties. Academic, New York 1975.   CrossRef
  5. C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, London 2001.   DOI:10.1007/978-1-4613-0163-9
  6. W. L. He, F. Qian, J. Lam, G. R. Chen, Q. L. Han and J. Kurths: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design. Automatica 62 (2015), 249-262.   DOI:10.1016/j.automatica.2015.09.028
  7. W. L. He, B. Zhang, Q. L. Han, F. Qian, J. Kurths and J. D. Cao: Leader-following consensus of nonlinear multi-agent systems with stochastic sampling. IEEE Trans. Cybernetics (2016), 1-12.   DOI:10.1109/tcyb.2015.2514119
  8. Y. G. Hong, J. P. Hu and L. X. Gao: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182.   DOI:10.1016/j.automatica.2006.02.013
  9. R. Horn and C. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge 1990.   DOI:10.1002/zamm.19870670330
  10. J. Liu and J. Zhou: Distributed impulsive group consensus in second-order multi-agent systems under directed topology. Int. J. Control 88 (2015), 910-919.   DOI:10.1080/00207179.2014.985717
  11. S. J. Lu and L. Chen: A general synchronization method of chaotic communication system via kalman filtering. Kybernetika 44 (2008), 43-52.   CrossRef
  12. W. L. Lu, B. Liu and T. P. Chen: Cluster synchronization in networks of coupled nonidentical dynamical systems. Chaos 20 (2010), 013120.   DOI:10.1063/1.3329367
  13. M. H. Ma, H. Zhang, J. P. Cai and J. Zhou: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch. Kybernetika 49 (2013), 539-553.   CrossRef
  14. J. H. Qin and C. B. Yu: Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition. Automatica 49 (2013), 2898-2905.   DOI:10.1016/j.automatica.2013.06.017
  15. W. Ren: Synchronization of coupled harmonic oscillators with local interaction. Automatica 44 (2008), 3195-3200.   DOI:10.1016/j.automatica.2008.05.027
  16. W. Ren and Y. C. Cao: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer-Verlag, London 2011.   CrossRef
  17. J. J. E. Slotine and W. P. Li: Applied Nonlinear Control. Prentice Hall, N.J. 1991.   CrossRef
  18. H. S. Su, X. F. Wang and Z. L. Lin: Synchronization of coupled harmonic oscillators in a dynamic proximity network. Automatica 45 (2009), 2286-2291.   DOI:10.1016/j.automatica.2009.05.026
  19. H. S. Su, M. Chen, X. F. Wang, H. W. Wang and N. V. Valeyev: Adaptive cluster synchronisation of coupled harmonic oscillators with multiple leaders. IET Control Theory Appl. 7 (2013), 765-772.   DOI:10.1049/iet-cta.2012.0910
  20. K. H. Wang, X. C. Fu and K. Z. Li: Cluster synchronization in community networks with nonidentical nodes. Chaos 19 (2009), 023106.   DOI:10.1063/1.3125714
  21. W. Wu, W. J. Zhou and T. P. Chen: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I. Reg. Pap. 56 (2009), 819-839.   DOI:10.1109/tcsi.2008.2003373
  22. W. G. Xia and M. Cao: Clustering in diffusively coupled networks. Automatica 47 (2011), 2395-2405.   DOI:10.1016/j.automatica.2011.08.043
  23. T. Yang: Impulsive Control Theory. Springer 2001.   CrossRef
  24. W. W. Yu, G. R. Chen, M. Cao and J. Kurths: Second-order consensus for multioscillator systems with directed topologies and nonlinear dynamics. IEEE T. Syst. Man Cy. B 40 (2010), 881-891.   DOI:10.1109/tsmcb.2009.203162
  25. C. B. Yu, J. H. Qin and H. J. Gao: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50 (2014), 2341-2349.   DOI:10.1016/j.automatica.2014.07.013
  26. J. Y. Yu and L. Wang: Group consensus of multi-agent systems with undirected communication graphs. In: Proc. 7th Asian Control Conference 2009, pp. 105-110.   CrossRef
  27. H. Zhang and J. Zhou: Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. Syst. Control Lett. 61 (2012), 1277-1285.   DOI:10.1016/j.sysconle.2012.10.001
  28. L. Y. Zhao, Q. J. Wu and J. Zhou: Impulsive sampled-data synchronization of directed coupled harmonic oscillators. In: Proc. 33rd Chinese Control Conference 2014, pp. 3950-3954.   DOI:10.1109/chicc.2014.6895598
  29. J. Zhou, H. Zhang, L. Xiang and Q. J. Wu: Synchronization of coupled harmonic oscillators with local instantaneous interaction. Automatica 48 (2012), 1715-1721.   DOI:10.1016/j.automatica.2012.05.022