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In recent years, neural networks have demonstrated remarkable breakthroughs in percep-

tual tasks such as computer vision and natural language processing, which achieve exceptional

classification accuracy and robust generalization capabilities. My research primarily resides

within the domain of deep learning, including two major dimensions:

1. Interpretability: Tabular data plays a crucial role as a primary source of structured in-

formation, serving as the foundation of decision-making across various fields, ranging

from marketing and healthcare to government policy evaluation. In recognition of its

significance, researchers have recently turned their attention to applying neural network

models to tabular data due to their generally superior performance in comparison to rule-
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based methods. While neural networks excel in performance, they often act as ”black-box”

models, posing challenges for applications requiring human interpretability, including

medical diagnosis and loan analysis. To address this issue, we propose a series of innova-

tive paradigms aimed at generating human-readable predictions in tabular classification

problems through novel neural network training approaches. This allows our interpretable

models to leverage the high generalization capacity of neural networks.

2. Efficiency and Scalability: The continuous improvement in neural network performance

has come at the cost of increased complexity, including higher storage requirements and

computational demands. Despite the substantial processing power of modern hardware

for training these models, real-time inference and energy consumption remain significant

obstacles, particularly in mobile and wearable applications. To tackle this challenge, we

propose to encode deep neural networks using a low-precision number representation,

such that the models could achieve accuracy levels comparable to their full-precision

counterparts. In addition, we introduce an approach that combines certain steps during the

feed-forward phase by pre-computing various intermediate results, allowing the trained

neural network to primarily operate in the low-precision domain with fewer floating-point

operations.

By addressing these two critical aspects, my work contributes to the advancement of

neural network applications in both high-stakes interpretability-sensitive domains and resource-

constrained deployment scenarios.
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Introduction

During the past few years, the emergence of neural networks has generated considerable

excitement across various fields of society. Notably, neural networks have consistently demon-

strated significantly superior performance in comparison with conventional machine learning

techniques. However, neural networks are generally perceived as “black-box” models due to the

challenges for human users seeking to understand their predictions. For instance, even top-tier

human players can hardly decipher the rationale behind AlphaZero’s [83] moves in a Go game.

While such ambiguity might be tolerable in recreational contexts, it significantly hinders neural

networks from being applied to the domains involving financial matters and human well-being.

On the other hand, traditional interpretable approaches such as rule-based models are usually

not as competitive as neural networks and other black boxes in terms of predictive performance.

This motivates the first aspect of my research: bridging the gap between the interpretability of

decision-rule learners and the effective training techniques of neural networks.

In particular, in Section 1, we first propose the decision rules network (DR-Net), which

is a simple three-layer neural network with the neurons carrying out customized arithmetic and

the features specifically encoded. The network can be trained with the common gradient-descent-

based methods with some regularization techniques, and it after training, directly maps to a

decision rule set. Then, in Section 2, we introduce the disjunctive threshold network (DT-Net)

which consists of less constrained neurons than DR-Net. Instead of converting the entire network

to a rule set, DT-Net itself doesn’t directly translate to any specific interpretable model, but the

predictions generated by DT-Net come with human-readable explanations. This difference allows

DT-Net to achieve higher accuracy in comparison with DR-Net while preserving interpretability.
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In addition, we further extend the above approaches with conjunctive threshold network (CT-Net)

and Nand-Nand network (NN-Net) as preliminaries of more works in this direction, as discussed

in Sections 3, and 4, respectively.

The second facet of my work arises from the growing demands on memory consumption

and computation power of neural networks. On one hand, the physical constraints of mobile

devices and wearable applications limit their processing capabilities, posing challenges for

the deployment of large state-of-the-art network architectures. On the other hand, even for

conventional processors, data transfer between the chip and off-chip storage remains challenging.

Therefore, we propose to quantize the weights and activations of deep neural networks into

low-precision integers that represent certain floating-point numbers with a pair of additional

trainable parameters. Our method allows the neural networks to primarily operate with precision

levels as low as 2 bits, resulting in negligibly small loss in comparison with the full-precision

models.

In Section 5, we explore the utilization of metal-oxide resistive random access memory

(ReRAM) for implementing neural network accelerators. In particular, the crossbar structures

within ReRAM cells enable the matrix multiplications to be performed in an analog manner.

However, the precision of ReRAM-based accelerators is constrained by the resolutions of Digital-

to-Analog Converters (DACs) and Analog-to-Digital Converters (ADCs) at the crossbar interface.

In this context, our low-precision number representation is proposed to address this limitation.

The energy and area estimation of our approach demonstrates a significant reduction compared

with the full-precision implementations. Further, in Section 6, we refine our approach and

investigate a real-world application where memory constraints pose a significant challenge: 3D

image segmentation using 3D U-Nets for brain tumor diagnosis.
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Chapter 1

Learning Accurate and Interpretable Deci-
sion Rule Sets from Neural Networks

1.1 Introduction

Machine learning is finding its way to impact every sector of our society, including

healthcare, information technology, transportation, entertainment, business, and criminal justice.

In recent years, machine learning using neural networks have made tremendous advances in

solving perceptual tasks like computer vision and natural language processing, with breakthrough

performance in classification accuracy and generalization capability. However, neural network

methods have generally produced black box models that are difficult or impossible for humans

to understand. Their lack of interpretability makes it difficult to gain public trust for their use

in high-stakes human-centered applications like medical-diagnosis and criminal justice, where

decisions can have serious consequences on human lives [77].

Indeed, interpretability is a well-recognized goal in the machine learning community.

One popular approach to interpretable models is the use of decision rule sets [20, 86, 47, 91, 25],

where the model comprises an unordered set of independent logical rules in disjunctive normal

form (DNF). Decision rule sets are inherently interpretable because the rules are expressed in

simple IF-THEN sentences that correspond to logical combinations of input conditions that must

be satisfied for a classification. An example of a decision rule set with three clauses is as follows:
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IF (age ≤ 50) OR

(NOT smoker) OR

(cholesterol ≤ 130 AND blood pressure ≤ 120)

THEN low heart disease risk.

In this example, the model would predict someone to have a low risk for heart disease if

the person’s cholesterol level and blood pressure are below the specified thresholds. The model

not only provides a prediction, but the corresponding matching rule also provides an explanation

that humans can easily understand. In particular, the explanations are stated directly in terms of

the input features, which can be categorical (e.g., color equal to red, blue, or green) or numerical

(e.g., age ≤ 50) attributes, where the binary encoding of categorical and numerical attributes is

well-studied [91, 25].

In this paper, we propose a new paradigm for learning accurate and interpretable decision

rule sets as a neural network training problem. In particular, we consider the problem of learning

an interpretable decision rule set as training a neural network in a simple two-layer fully-

connected neural network architecture called a Decision Rules Network (DR-Net). In the first

layer, called the Rules Layer, each trainable neuron with binary activation directly maps to a

logical IF-THEN rule after training, where a positive input weight corresponds to a positive

association of the input feature, a negative input weight corresponds to a negative association

of the input feature, and a zero weight corresponds to an exclusion of the input feature. In the

second layer, called the OR Layer, the trainable output neuron with binary activation directly

maps to a disjunction of the first-layer rules to form the decision rule set.

By formulating the interpretable rules learning problem as a neural net training problem,

state-of-the-art training approaches (including recent advances) can be harnessed for learning

highly accurate classification models, including well-developed stochastic gradient descent

algorithms for effective training. We are also able to leverage well-developed regularization

concepts developed in the neural net community to trade off accuracy and model complexity in
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the training process. In particular, we propose a sparsity-based regularization approach in which

the model complexity in terms of the length of the rules and the number of rules are captured in

a regularization loss function. Minimizing the number of decision rules makes it easier for a user

to understand all the conditions that correspond to a classification, and minimizing the lengths

of the decision rules makes it easier for a user to interpret the explanations. This regularization

loss function can be combined with a binary cross-entropy loss function that measures training

accuracy, so that the training process can balance between classification accuracy and the

simplicity of the derived rule set.

Other benefits of a neural net based formulation is the availability of sophisticated

development frameworks [1, 68] for model development, powerful computing platforms (e.g.,

GPUs and deep learning accelerators) for efficient learning and inference, and other developments

like federated learning [46] that enables multiple entities to collaboratively learn a common,

robust model without sharing data, which addresses critical data privacy and security concerns.

In comparison with previous rule-learning approaches, our approach has several notable

advantages. In [47, 91], the pre-mining of frequent rule patterns is first used to produce a set of

candidate rules, from which various algorithmic approaches are used to select a set of rules from

these candidates. However, the requirement for pre-mining frequent rules limits the overall search

space, thus hindering the algorithms from obtaining a globally optimized model. In [86, 25], the

problem is formulated as an integer-programming problem in which the pre-mining of rules is not

required, but approximations are required to solve large scale problems. In contrast, our neural

net based approach does not require rules mining and can take advantage of well-developed

neural net training techniques to derive better interpretable models. By connecting interpretable

rule-based learning to a neural network based formulation, we hope to open a new line of research

that will lead to further fruitful results in the future.

Our experimental results show that our method can generate more accurate decision

rule sets than other state-of-the-art rule-learning algorithms with better accuracy-simplicity

trade-offs. Further, when compared with uninterpretable black box machine learning approaches
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such as random forests and full-precision deep neural networks, our approach can easily find

interpretable decision rule sets that have comparable predictive performance.

1.2 Related Work

The learning of Boolean rules and rule sets is well studied with different variants. While

the learning of two-level Boolean decision rule set has an extensive history in different commu-

nities, most of them employ heuristic algorithms that optimize for certain criteria that are not

directly related to classification accuracy or model simplicity. Representatives of these methods

include logical analysis of data [23, 8], association rule mining and classification [19, 54], and

greedy set covering [20].

With the increasing interest in the field of explainable machine learning, researchers

have in recent years added model complexity to the optimization objective so that accuracy

and simplicity can be jointly optimized. Several approaches select rules from a pre-mined

set of candidate rules [91, 47]. A Bayesian framework is presented in [91] for selecting pre-

mined rules by approximately constructing a maximum a posteriori (MAP) solution. In [47],

the joint optimization problem is approximately solved by a local search algorithm. In these

methods, the requirement for rules pre-mining limits the overall search space, hindering their

ability to find a globally optimized model. Other approaches based on integer-programming (IP)

formulations [86, 25] do not require rules pre-mining, but they rely on approximate solutions

for large datasets. In [25], the IP problem is approximately solved by relaxing it into a linear

programming problem and applying the column generation algorithm, whereas [86] utilizes

various optimization approaches including block coordinate descent and alternating minimization

algorithm.

Besides decision rule sets, decision lists [74, 6, 48] and decision trees [9, 75] are also

interpretable rule-based models. In decision lists, rules are ordered in an IF-THEN-ELSE

sequence. However, the chaining of rules via an IF-THEN-ELSE sequence means that the
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interpretation of an activated rule requires an understanding of all preceding rules. This can make

the explanation more difficult for humans to understand. In decision trees, rules are organized

into a tree structure. However, they are often prone to overfitting.

1.3 Decision Rules Network

Given a classification dataset with binarized input features, our goal is to train a classifier

in the form of a Boolean logic function in disjunctive normal form (OR-of-ANDs). In particular,

each of the lower level conjunctive clauses (logical ANDs), which consists of a subset of

input features and their negations, individually serves as a decision rule. An instance satisfies a

conjunctive clause if all conditions specified in the clause are true in the instance. In the upper

level of the function, all conjunctive clauses are unified by a disjunction (logical OR). Thus,

a negative final prediction is produced only if none of the conjunctive clauses are satisfied.

Otherwise, a positive final prediction will be made.

Mathematically, the training set contains N data samples (xn,yn), n = 1, ...,N, where

xn comprises D binarized features xn,i ∈ {0,1}, i = 1, ...,D, and yn ∈ {0,1}. The final decision

rule set C learned from our method comprises parallel rules that we denote as clauses: C =

{c1,c2, ...,cm}. We define a clause c to be a conjunction of k predicates where 1≤ k ≤ D and a

predicate to be either an input feature xi or the negation of an input feature xi. If an input feature

or the negation of an input feature is not present in clause c, then we say that feature is excluded

from clause c, i.e. whether xn,i is 0 or 1 has no effect to the prediction of clause c. Under this

definition, an instance xn satisfies a clause only if all predicates in the clause are true in the

instance i.e. xn,i = 1 for xi and xn,i = 0 for xi.

In this section, we introduce the architecture of our Decision Rules Network (DR-Net),

which is a simple two-layer fully-connected neural network. The first layer, called the Rules

Layer, consists of trainable neurons that map to logical IF-THEN rules, and the second layer,

called the OR Layer, contains a trainable output neuron that maps to a disjunction of the first-layer
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rules to form the decision rule set. The goal of the design of this network is to simulate the

logical formula in disjunctive normal form so that a trained DR-Net can be directly mapped to a

set of interpretable decision rules.

1.3.1 Handling of Categorical and Numerical Attributes

Common tabular datasets generally comprise binary, categorical and numerical features.

While our method is based on binary encoded input vectors, we employ the following pre-

processing procedures, which are well established and studied in the machine learning literature,

to binarize the input features. In particular, the values of binary features are left as what they

are, whereas we apply standard one-hot encoding to transform categorical attributes to vectors

of binary values. As for numerical features, we adopt quantile discretization to get a set of

thresholds for each feature, where the original numerical value is one-hot-encoded into a binary

vector by comparing with the thresholds (e.g., age ≤ 25, age ≤ 50, age ≤ 75) and encoded as

1 if less than the threshold or 0 otherwise. For example, considering a dataset that consists of

the categorical feature “color” chosen from {red, green, blue} and a numerical feature “age”

with thresholds {25, 50, 75}, our pre-processing approach will encode an instance [color: red,

age: 30] as [red, green, blue, age ≤ 25, age ≤ 50, age ≤ 75] = [1, 0, 0, 0, 1, 1]. Most other

rule-learning methods [91, 25] require to convert binary, categorical and numerical features into

both positive conditions, e.g., (color = blue) and (age ≤ 50), and negative conditions, e.g., (color

̸= blue) and (age > 50), of the binary vectors in their pre-processing procedures. On the other

hand, our encoding approach only involves those positive conditions without separately having

their negations included. Further explanations will be discussed in the next section.

1.3.2 Rules Layer

The essence of a fully-connected layer is the dot-product operation shifted by a bias term.

In this context, we notice that with binarized input features, a neuron can be constructed such

that it effectively performs a logical AND operation by dynamically adjusting the bias based on
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the weight values and applying a binary step activation function afterwards. Then, by interpreting

the full precision weights in a certain way, each neuron is effectively a conjunction of input

features and thus the whole layer can be mapped to a set of clauses that can be later combined

with disjunction to form a DNF rule set.

Mathematically, given the input to the Rules Layer as x ∈ {0,1}D and the output as y, a

neuron in the Rules Layer performs its operation as follows:

y =
D

∑
i=0

wixi− ∑
wi>0

wi +1. (1.1)

In Equation 1.1, the dot product of the weights and inputs is added with a dynamic bias, which

depends on the weights of the neuron. With the dynamic bias and binarized inputs, the range

of the outputs of the neurons in the Rules Layer is within (−∞,1]. Note that the output y = 1

can only be achieved when all inputs match the sign of the corresponding weights: all positive

weights should have the inputs of 1 and all negative weights should have the inputs of 0. Just like

the behavior of weights in regular neurons, the zero weights in the Rules Layer mean that the

corresponding inputs will not have any effect on the output.

In order for the neuron in the Rules Layer to function as a proper logical AND operation,

we need to apply a binary step activation function to its output:

f (x) =


1 if x = 1

0 otherwise
(1.2)

When applied at the Rules Layer, the binary step function defined in Equation 1.2 simply maps

the range (−∞,1) to 0, which ensures that the neuron is turned on only when Equation 1.1

evaluates to 1. With the dynamic bias and binary step function, each neuron in the Rules Layer

encodes a rule that has k predicates, where k is the number of non-zero weights of that neuron.

As discussed earlier, in effect neuron in the Rules Layer maps to a logical IF-THEN rule after
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training, where a positive input weight corresponds to a positive association of the input feature,

a negative input weight corresponds to a negative association of the input feature, and a zero

weight corresponds to an exclusion of the input feature.

However, as can be observed, the activations of the first layer are discretized into binary

integers that are not naturally differentiable and the classic gradient computation approach

doesn’t apply here. Therefore, we utilize the straight-through estimator discussed in [5] with the

gradient clipping technique. Denoted by ŷi the binarized activation based on yi, we compute the

gradient as follows:

gŷi =

{
0

if yi < 0

or yi > 1 ∂L
∂yi

< 0

gyi otherwise

(1.3)

where gŷi and gyi are the gradients of classification loss w.r.t. ŷi and yi, respectively. The condition

yi < 0 simulates the backward computation of the ReLU function, which introduces non-linearity

into the training process and empirically improves the performance; whereas our motivation

of the second condition is to address the saturation effect: we suppress the update of the full-

precision activations that are greater than 1 and are still driven by the gradient to increase, since

further raising activations does not produce any difference after binarization.

As discussed in above, the addition of the negative conditions in the input space is critical

to the selection-based methods [91, 25] since they only consider the presence and absence of

features and cannot deduce negative correlations unless they are explicitly provided in the input

space. On the other hand, besides the presence of a positive association or an exclusion, our

Rules Layer also learns the negation of an input feature by assigning a negative weight to it, and

hence, DR-Net can directly derive negative conditions from the corresponding input features.

Therefore, appending negative conditions in the input binary vector is redundant in DR-Net, and

the input space of our DR-Net is reduced by half comparing with those selection-based method.
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1.3.3 OR Layer

To produce the disjunction of the logical rules learned in the Rules Layer, the OR Layer

contains only one output neuron, where the weights are binarized as follows:

ŵi =

{
0 if wi ≤ 0

1 otherwise
(1.4)

The output neuron performs a dot product with a negative bias −ε as follows:

y =
D

∑
i=1

ŵixi− ε, (1.5)

where 0 < ε < 1 is a small value such that y is positive when at least one input is activated. With

a sigmoid activation function and a binary cross-entropy loss, this particular neuron behaves as

an OR gate: the output is by default turned off because of the negative bias, while it produces

a positive value if at least one rule is activated with a corresponding ŵi = 1, which exactly

mimics the behavior of the logical OR function. The binarized weights ŵi act as rule selectors

that filter out rules that do not contribute to the model’s predictive performance. An example

of our complete network structure is shown in Figure 1.1. We practically use ε = 0.5 in our

implementations.

1.3.4 Sparsity-Based Regularization

The neural network structure proposed above outlines a way to derive a set of decision

rules using stochastic gradient descent. As discussed above, a zero weight for a Rules Layer

neuron corresponds to the exclusion of the corresponding input feature. Similarly, a zero weight

for the OR Layer output neuron corresponds to the exclusion of the corresponding rule from

the rule set. Thus, it should be clear that maximizing the sparsity of the Rules Layer neurons

corresponds to simplifying the corresponding rules, and maximizing the sparsity of the OR Layer

neuron corresponds to minimizing the number of rules.
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Figure 1.1. An example of the DR-Net architecture where three rules from the Rules Layer are
included in the OR Layer, and one rule is excluded. The decision rule set that the network directly
maps into is shown in the box on the right. The dashed lines represent the masked weights
(weights that are set to zero). The green lines in the Rules Layer represent positive weights while
red lines represent negative weights. Please note that we represent (NOT age ≤ 50) as (age >
50) in the third rule, and it is not included in the final rule set because it has been masked in the
OR Layer.

However, to eliminate an input feature from a logical rule or a logical rule from the

complete rule set, the corresponding weight has to be exactly zero, which is difficult to achieve

in the typical network training process. To achieve a high degree of sparsity with exact zero

weights, we explicitly incorporate a sparsity-based regularization mechanism into the training

process using an approach akin to L0 regularization by explicitly training mask variables.

As discussed in [58] as a way to achieve network sparsity through L0 regularization, a

binary random variable zi ∈ {0,1} is attached to each weight of the model to indicate whether

the corresponding weight is kept or removed. With this, we can reparameterize each weight wi

as the product of a weight w̃i and the corresponding binary random variable zi:

wi = w̃izi. (1.6)
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Assuming each zi is subject to a Bernoulli distribution with parameter πi, i.e. q(zi|πi) = Bern(πi),

the probability that zi is 1 is just πi. In [58], L0 regularization is implemented by summing all πi

parameters as the penalty term in the loss function1. In order to train the binary random variables

with stochastic gradient descent, two different gradient estimators have been proposed in [58]

and [51], respectively, to approximate the Bernoulli distribution.

Applying the above regularization method to the Rules Layer is straightforward: all

weight parameters are replaced by their product with the corresponding mask variables. For the

OR Layer, since the weights will ultimately be binarized, we can just directly substitute the mask

variables for the weights to simplify the process. That is, we can simply treat wi = zi, with no

need for a separate w̃i variable2.

We then incorporate a sparsity-based regularization term in the loss function to model

the complexity of the rule set represented by the neural network. We denote by π1,i, j and π2, j the

penalty of the non-zero mask variables of the Rules Layer and the OR Layer, respectively, where

i = 1,2, . . . ,D is the feature index, and j = 1,2, . . . ,m is the index to the j-th neuron (rule). Then

the regularization loss is defined as follows:

LR =
1
m

(
m

∑
j=1

π2, j +
m

∑
j=1

π2, j

D

∑
i=1

π1,i, j

)
, (1.7)

which explicitly captures the model complexity, as similarly defined in [25]. In particular, the

model complexity of a rule set is defined as the sum of the number of rules and the total number

of predicates in all rules. Following this definition, the first and the second terms of Equation 1.7

quantify the losses for the number of rules and the total number of predicates, respectively. Note

that, according to the second term in Equation 1.7, the loss for the number of predicates in the

j-th rule will be effectively removed if π2, j is at or near zero: i.e., the j-th neuron in the Rules

1As explained below, we do not use L0 normalization as the regularization term. Instead, we explicitly capture
the model complexity with Equation 1.7 as the regularization term.

2Since wi = zi is already binarized, there is no need to further binarize wi to derive ŵi with Equation 1.4. i.e., we
can just use ŵi = wi = zi.
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Layer is disconnected from the OR Layer.

With the above sparsity-based regularization applied to DR-Net, the overall loss function

we optimize for can be expressed as follows:

L = LBCE +λLR, (1.8)

where LBCE is the binary cross-entropy loss, LR is the regularization penalty that is specified by

Equation 1.7, and λ is the regularization coefficient that balances the classification accuracy and

rule set complexity.

1.3.5 Alternating Two-Phase Training Strategy

As previously discussed, each neuron in the first layer (the Rules Layer) of our proposed

network architecture encodes an interpretable decision rule, whereas the output neuron in the

second layer (the OR Layer) chooses some of the rules to be included in the set of decision

rules. Empirically, we noticed that it is more effective to train our DR-Net with gradient-based

optimizers (e.g., SGD) in an alternating manner, potentially due to the reduced search space

and simpler optimization goals. In particular, our “alternating training strategy” consists of two

training phases. We first freeze the OR Layer and only update the parameters in the Rules Layer

to learn plausible rules. In the second phase, the Rules Layer is then fixed and we optimize the

OR Layer such that redundant rules are eliminated while necessary inactive rules can also be

re-enabled. The whole network is trained by alternating between the two training phases until

convergence.

In addition, since the sparsity of the Rules Layer is directly related to the simplicity

of rules, whereas the second layer is more focused on the selection of these derived rules,

we further allow the flexible weighting of the sparsity-based regularization loss of the two

layers. Specifically, as illustrated in Equation 1.8, the balance between classification loss and

regularization loss is implemented via the regularization coefficient λ , where we can practically
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use different values for the two phases. In other words, the Rules Layer and the OR Layer are

optimized over L1 and L2, respectively, where L1 and L2 are defined as follows:

L1 = LBCE +λ1LR,

L2 = LBCE +λ2LR.
(1.9)

In this way, the trade-off between model simplicity and accuracy in our experiments can be

modulated by the adjustments of λ1 and λ2.

1.4 Experimental Evaluation

The numerical experiments were evaluated on 4 publicly available binary classification

datasets, which all have more than 10,000 instances and more than 10 attributes for each instance

before binarization. The first two selected datasets are from UCI Machine Learning Repository

[27]: MAGIC gamma telescope (magic) and adult census (adult), which are also used in recent

works on rule set classifiers [24, 91, 25]. The magic dataset is a dataset with pure numerical

attributes while the adult dataset has a mix of both categorical and numerical attributes. The other

two datasets are relatively recent datasets: the FICO HELOC dataset (heloc) and the home price

prediction dataset (house), which have all numerical attributes. In all datasets, pre-processing

is performed to encode categorical and numerical attributes into binary variables, as discussed

earlier in the paper. Also, we append negative conditions for all other models except DR-Net.

Our goal is to learn a set of decision rules using our DR-Net and compare our model

with other state-of-the-art rule learners and machine learning models. The results include model

accuracies and complexities. Apart from the model complexity defined earlier (the number of

rules plus the total number of conditions in the rule set), we also define the rule complexity,

which is the average number of conditions in each rule of the model. We consider three other

rule learners to directly compare with our work in terms of both accuracy and interpretability:

the RIPPER algorithm [20], Bayesian Rule Sets (BRS) [91], and the Column Generation (CG)
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algorithm from [25]. The first one is an old rule set learning algorithm that is a variant of the

Sequential Covering algorithm, while the other two are representatives of recent works in rule

learning classifiers. We used open-source implementations on GitHub for all three algorithms,

where the CG implementation [3] is slightly modified from the original paper. Other models

used for comparison are the scikit-learn [69] implementations of the decision tree learner CART

[9] and Random Forests (RF) [10]. We also include a full-precision deep neural network (DNN)

model with 6 layers, 50 neurons per hidden layer and ReLU activations. The last two models are

uninterpretable models intended to provide baselines for typical performances that black-box

models can achieve on these datasets. These uninterpretable baseline results serve as benchmarks

for accuracy comparisons.

For DR-Net, we used the Adam optimizer with a fixed learning rate of 10−2 and no

weight decay across all experiments. There are 50 neurons in the Rules layer to ensure there is

an efficient search space for all datasets. The alternating two-phase training strategy discussed

earlier is employed with 10,000 total number of training epochs and 1,000 epochs for each layer.

For simplicity, the batch size is fixed at 2,000 and the weights are uniformly initialized within

the range between 0 and 1. The parameters that are related to sparsity-based regularization are

set the same as in the original paper [58].

1.4.1 Classification Performance

We evaluated the predictive performance of DR-Net by comparing both test accuracy and

complexity with other state-of-the-art machine learning models. 5-fold nested cross validation

was employed to select the parameters for all rule learners that explicitly trade-off between

accuracy and interpretability to maximize the training set accuracies. To ensure that the final

rule learner models are interpretable, we constrained the possible parameters for nested cross

validation to a range that results in a low model complexity. For DR-Net, We fixed the λ2 to

be 10−5 in Equation 1.9 and only λ1 was varied in the experiment. Although there are many

parameters in BRS to control the rule complexity, we followed the procedure used in [25]
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and only varied the multiplier κ in prior hyper-parameter to save running time. For RIPPER,

we varied the maximum number of conditions and the maximum number of rules as hyper-

parameters of the implementation, which are directly related to the complexity of the model.

The CG implementation in [3] doesn’t have the complexity bound parameter C as specified in

[25] but instead provides two hyper-parameters to specify the costs of each clause and of each

condition, which were used in our experiment to control the rule set complexity. We left all other

parameters for these three algorithms (CG, BRS, RIPPER) as default. For CART and RF, we

constrained the maximum depth of trees to be 100 for all datasets to achieve better generalization.

For DNN, we used the same training parameters (number of epochs, batch size, learning rate,

etc.) with a weight decay of 10−2. The test accuracy results of all models on all datasets are

shown in Table 1.1 and the corresponding complexities are shown in Table 1.2. We omitted the

results of the complexities of CART, RF and DNN because they have a different notion of model

complexity and rule complexity.

It can be seen in Table 1.1 that our method outperforms other interpretable models on all

datasets. For these better accuracy results, our method does not establish a similar superiority

in the complexity comparison (Table 1.2). However, as shown Figure 1.2 and further discussed

in the next section, our DR-Net approach can often achieve higher accuracy at comparable

complexities. It is interesting to see that DR-Net maintains a relatively good model complexity

compared with the corresponding rule complexity, which is exactly because our regularization

loss function is designed specifically to minimize the model complexity instead of the rule

complexity. Compared with RIPPER, which greedily mines good rules in each iteration to

maximize the training accuracy, DR-Net is very competitive in the sense that it has similar or

better test performance while consistently maintaining a lower model complexity. One advantage

of the BRS algorithm over other models is that it consistently generates sparse models across

all datasets, but at the expense of significantly inferior accuracies. The CART decision tree

algorithm turned out to be the worst performing model in our experiments, which might result

from overfitting. The results in Table 1.1 and Table 1.2 suggest that our DR-Net approach is very

17



Table 1.1. Test accuracy based on the nested 5-fold cross validation (%, standard error in
parentheses).

dataset magic adult heloc house

interpretable

DR-Net
84.42 82.97 69.71 85.71
(0.53) (0.51) (1.05) (0.40)

CG
83.68 82.67 68.65 83.90
(0.87) (0.48) (3.48) (0.18)

BRS
81.44 79.35 69.42 83.04
(0.61) (1.78) (3.72) (0.11)

RIPPER
82.22 81.67 69.67 82.47
(0.51) (1.05) (2.09) (1.84)

CART
80.56 78.87 60.61 82.37
(0.86) (0.12) (2.83) (0.29)

uninterpretable

RF
86.47 82.64 70.30 88.70
(0.54) (0.49) (3.70) (0.28)

DNN
87.07 84.33 70.64 88.84
(0.71) (0.42) (3.37) (0.26)
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competitive as a machine learning model for interpretable classification. Finally, our DR-Net

approach is able to achieve accuracies within only 3% of the uninterpretable models (RF and

DNN) on the datasets evaluated.

Table 1.2. Model complexity (upper) and rule complexity (lower) corresponding to the accuracy
results shown in Table 1.1 based on the nested 5-fold cross validation. While DR-Net, using
parameters selected by the nested 5-fold cross validation with the priority for accuracy, does not
achieve the best complexity in comparison with other models, it can be observed in Figure 1.2
that our approach can generally achieve a higher accuracy at the cost of comparable complexities.

dataset magic adult heloc house

DR-Net
109.4 86.0 13.8 85.0
5.22 13.54 6.33 6.31

CG
112.8 120.0 3.4 28.6
3.72 3.77 1.90 5.15

BRS
40.0 16.8 16.6 31.2
3.00 3.00 2.96 3.00

RIPPER
189.4 117.6 72.8 328.0
6.01 4.66 5.24 7.01

1.4.2 Accuracy-Complexity Trade-off

In this experiment, we compared the accuracy-complexity trade-off of our DR-Net with

other rule learning algorithms: CG, BRS and RIPPER. The parameters that were selected to be

varied in this experiment are the same as the ones in the first experiment. Instead of using nested

cross validation to select best parameters on the validation set, we manually picked a set of values

for each selected parameters for each algorithm to generate different sets of accuracy-complexity

pairs. We ran the experiments on all datasets and the results with the average of the 5-fold

cross validation are shown in Figure 1.2. Apart from model complexity and rule complexity, we

included a third metric to show the average number of rules in each generated rule set versus

the test accuracy. For each method compared, the dots connected by the line segments shown

correspond to Pareto efficient models where all other points below the Pareto frontier have either
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(a) magic

(b) adult

(c) heloc

(d) house

Figure 1.2. Accuracy-Complexity trade-offs on all datasets. Pareto efficient points are connected
by line segments.

lower accuracies or higher complexities.

The characteristic of being able to attain a high test accuracy with an acceptable model

complexity for DR-Net in Table 1.1 and Table 1.2 is carried over to Figure 1.2. For the magic,
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adult and house datasets, DR-Net outperforms all other rule learners in terms of the accuracy

by a substantial margin when the model complexity, the rule complexity or the number of rules

exceeds a certain threshold. Although DR-Net does not dominate RIPPER on the heloc dataset,

their accuracy comparison is very close if enough model complexity or number of rules is

given. The only thing that DR-Net falls behind a little bit is in the rule complexity vs. accuracy

comparison on the heloc dataset. In theory, DR-Net can achieve relatively low rule complexity

with a different regularization loss function that can quantify the average number of conditions

in the rule set, which we leave as future work. It is also interesting to note that the number of

rules from DR-Net varies in a relatively narrower range compared with other approaches as

shown in the third column of Figure 1.2, which is directly resulted by fixing λ2 in Equation 1.9.

BRS does not demonstrate a clear accuracy-complexity trade-off as its results all group in a very

narrow range, which is also noted and explained in [25]. This experiment shows that DR-Net can

be preferred over other rule learners because of its potential for achieving a much higher test

accuracy with a relatively moderate complexity sacrifice.

1.5 Conclusion and Extensions

In this paper, we presented a simple two-layer neural network architecture, which can be

directly mapped to a set of interpretable decision rules, along with a procedure to accurately train

the network for classification. We described a sparsity-based regularization approach that can

capture the complexity of the trained model in terms of the length of the rules and the number

of rules. The incorporation of this regularization loss into the overall loss function enables the

training process to balance between classification accuracy and model complexity. With our

neural net formulation, we are able to leverage state-of-the-art neural net infrastructures to learn

highly accurate and interpretable rule-based models. Our experimental results show that our

method can generate more accurate decision rule sets than other state-of-the-art rule-learners with

better accuracy-simplicity trade-offs. When compared with uninterpretable black box models
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such as random forests and full-precision deep neural networks, our approach can easily learn

interpretable models that have comparable predictive performance.

We focus in this paper on the binary classification problem, but the approach can be

easily extended to multi-class classification by deploying separate output neurons for each class

and mapping each output neuron to a corresponding set of rules for the respective class. A default

class and a tie-breaking function could be used in the event that no class or more than one class is

activated, respectively [47], or these cases can be handled by error correcting output codes [78].

We plan to investigate in future work potentially more powerful tie-breaking mechanisms that

can be directly trained as part of the neural net formulation, for example by directly interpreting

softmax results.
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Chapter 2

Disjunctive Threshold Networks for Tabu-
lar Data Classification

2.1 Introduction

Machine learning is finding its way to impact every sector of our society, including

healthcare, transportation, finance, retail, and criminal justice. In high-stakes human-centered

applications like medical-diagnosis and criminal justice, where decisions can have serious

consequences on human lives, the critical importance of interpretability to explain predictions or

decisions is well-recognized in the machine learning community [77].

2.1.1 Related Work

One popular approach to interpretable models is the use of decision rule sets [20, 47,

91, 25], which are inherently interpretable because the rules are expressed in simple if-then

sentences that correspond to logical combinations of input conditions that must be satisfied for a

classification. Besides decision rule sets, decision lists [74, 48] and decision trees [9] are also

interpretable rule-based models. Not only do these decision models provide predictions, but the

corresponding matching rules also serve as human-understandable explanations.

Gradient boosting decision trees [15, 44] and random forests [10] have also been success-

fully used in learning problems involving tabular data. Although these methods provide superior

predictive performance in comparison with design rule learning, they are generally considered to
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be lacking in interpretability, which may limit their adoption in certain application domains.

Neural networks have also been recently proposed for tabular data classification [53,

43, 2]. The work in [43, 2] introduces additional inductive bias to over-parameterized neural

networks by designing specific neural network structures to emulate the axis-aligned splits of

decision trees that have made the ensembles of trees so successful for tabular datasets. Although

both works leverage feature selection techniques as part of their structure design, which can

be extracted to interpret the feature attributions to the prediction or classification, this level of

interpretability is very limited compared to rule-based sentences that can be easily understood by

humans.

In contrast, the recent work in [53] proposed a neural network model that is specifically

designed have an underlying disjunctive normal form representation of a decision rule set. To

achieve this one-to-one correspondence, the hidden layer neurons in the proposed model are

restricted in a manner so that they directly map to conjunctions (logical-ANDs) of input features.

These conjunctions correspond to interpretable decision rules. The output neuron implements a

disjunctive (logical-OR) operation that aggregates the interpretable decision rules in the hidden

layer into a decision rule set. The proposed solution has the same advantage as the class of

decision rule learning and tree approaches [20, 47, 91, 25, 9] in that it can also provide meaningful

explanations, but it is able to do so with superior predictive performance. However, the approach

in [53] imposes restrictions on the hidden layer neurons in a way that limits the search space.

There is also a body of work [82, 81, 18, 36, 40, 4] on compiling models into tractable

forms. The tractable form can then be analyzed to produce explanations. In contrast, our approach

derives human understandable explanations directly from our proposed model using a fast and

simple algorithm.

2.1.2 Our Contribution

We propose to address the tabular data classification problem with a new neural network

model called DT-Net (Disjunctive Threshold Network). The hidden layer neurons in the proposed
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model are trained with floating point weights and binary output activations. These neurons can

be interpreted as threshold logic functions, which provides considerably greater flexibility than

the DR-net [53] approach that restricts hidden layer neurons to implement conjunction (AND)

operations. State-of-the-art techniques can be used to train the proposed neural network model

to achieve high predictive performance. Unlike traditional black-box approaches like gradient

boosting trees, random forests, and conventional neural networks, DT-Net can also provide rule-

like explanations that are comprehensible to humans. However, unlike prior work on decision

rule learning [91, 25, 53], our approach does not require the explicit construction of a decision

rule set. This means that our disjunctive network of threshold functions can implicitly encode a

potentially complicated set of rules to achieve high predictive performance, but yet the derived

explanations can nonetheless be simple.

The remainder of the paper is organized as follows: Section 2.2 describes our proposed

DT-Net architecture. Section 2.3 describes how explanations can be efficiently derived from a

DT-Net inference. Section 2.4 describes how sparsity-inducing regularization can help to simplify

explanations. Our proposed approach is extensively evaluated in Section 2.5. Finally, concluding

remarks are given in Section 2.6.

2.2 Disjunctive Threshold Network

We introduce in this section the Disjunctive Threshold Neural Network architecture, or

DT-Net for short. It is aimed at tabular classification problems in which the ability to explain

decisions is essential, in addition to making accurate predictions. DT-Net is a simple three-layer

neural network architecture comprising n input units, k hidden layer units, and a single output

unit. A toy example of the proposed architecture is shown in Figure 2.1, which we use to explain

the main points of our work.

Input layer: Each of the n units at the input layer passes its corresponding assigned binarized

value to each neuron in the hidden layer. Generally, tabular datasets can have input attributes
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f1 : x1  + x2 – 0.8 ≥ 0 

f2 : 1.1 x3 + x4 + 0.9 x5 – 1.9 ≥ 0 
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feature 
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0 

high heart 
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risk 

Figure 2.1. An example of the DT-Net architecture. Each hidden layer unit implements a
threshold logic function, and the output unit implements a disjunction of these threshold functions.
Explanations can be readily derived from the network to explain positive predictions.

that are binary, categorical, or numerical. To handle categorical and numerical attributes, well

established and studied pre-processing procedures in the machine learning literature can be used

to encode them into binarized input vectors. In particular, standard one-hot encoding can be used

to transform categorical attributes into binary vectors, and standard quantile discretization can be

used to encode numerical values into binary vectors1.

Hidden layer of threshold functions: Each of the k units in the hidden layer is a threshold

function that is trainable with arbitrary (positive or negative) full-precision weights and biases.

This is implemented using a binary step activation function. The blue dashed lines in Figure 2.1

indicate that the corresponding features have zero weights, which means the corresponding

threshold function is not dependent on them. As discussed in the next section, each threshold

function implicitly encodes an underlying Boolean logic function of inputs that will yield to a

positive result.

Output disjunction layer: The output layer is designed to implement a disjunction of the k

1Widely studied interpretable rule-learning methods [91, 25, 53] on tabular classification problems also com-
monly assume the datasets to be binarized through pre-processing.
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hidden layer threshold functions, which consists of a single neuron with all weights and the bias

fixed at 1 and −ε , respectively, where ε is a small constant between 0 and 1 (we use ε = 0.5

in our experiments). This output threshold unit implements a logical-OR operation since by

default, it makes a negative prediction if none of the threshold functions in the hidden layer is

activated, whereas any activated threshold function is sufficient to cause the output unit to make

a positive prediction. Since each threshold function essentially encodes an underlying Boolean

logic function, the whole network also implicitly implements a Boolean logic function by taking

the disjunction of these threshold functions. We note that these two layers together compose a

logic function in disjunctive normal form, which is capable of encoding any possible Boolean

logic function. In other words, our proposed model is applicable to any binary classification

problem.

Straight-through estimator: As previously mentioned, the outputs of the threshold functions

are fed into a step activation function, which has an impulse derivative function that prevents the

gradients from propagating through. In this work, we adopt the straight-through estimator with

the gradient clipping technique to address this issue, which is detailed as follows:

gẑi =

{
0, if zi < 0 or (zi > 1,gzi < 0)

gzi, otherwise
(2.1)

where gẑi =
∂L
∂ ẑi

and gzi =
∂L
∂ zi

are respectively the gradients of classification loss with respect to

ẑi and zi.

Similar to the ReLU activation function, the step function only produces non-negative

outputs. Therefore, we follow ReLU and clip the gradient w.r.t. negative outputs. Moreover,

since the step function has an upper bound of 1 for its output, further increasing an activation

that is already greater than 1 does not make any improvement, which empirically can even lead

to an explosion of the weights. Therefore, we propose to clip such gradient that tries to further

increase an activation greater than 1.
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Example: Consider the heart disease risk prediction example again, as depicted in Figure 1.

Each input instance corresponds to an individual and the features of this person, i.e., smoker,

overweight, older than 50, cholesterol, and high blood pressure, are encoded as x1,x2, . . . ,x5,

respectively. In this toy example, threshold function (hidden neuron) f1 can be activated by the

individual being either a smoker or overweight, and threshold function f2 evaluates to true if

at least two out of the three features with non-zero weights (older than 50, high cholesterol,

and high blood pressure) are 1, due to the fact that for any combination of at least two of these

features, the summation of their weights is sufficiently greater than 1.9. Given the individual

represented as ⟨x1,x2,x3,x4,x5⟩= [10110], both neurons f1 and f2 produce a 1 for this instance.

Therefore, the entire network produces a positive prediction (the individual has a high heart

disease risk).

There can be several explanations as to why the individual is predicted to have a high

heart disease risk. One explanation is that the individual is a smoker, which sufficiently explains

the high heart disease risk prediction. This explanation is also the simplest explanation in that

there is no other explanation that is more concise. A more complex explanation is that the person

is older than 50 with high cholesterol. This explanation is the simplest when only considering

f2, but it is not the simplest explanation overall as identifying the individual as a smoker is a

more concise explanation. However, it is a minimal explanation in that no other condition can

be removed from the explanation so that the explanation remains sufficient: i.e., older than 50

by itself is insufficient to explain a high heart disease risk prediction. As detailed later in the

paper, given a positive prediction, we can easily derive the simplest explanation with respect to

an activated threshold function.

Unlike existing interpretable rule-learning methods [91, 25, 53] that explicitly generate

sets of decision rules as classifiers, our approach does not require the generation of any specific

decision rule set from the trained disjunctive threshold network model. Instead, predictions are

made through standard neural network operations so that potentially complicated rules can still

be implicitly encoded to achieve better generalizations, where simple explanations for each
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positive prediction can nonetheless be readily generated afterwards. In addition, due to the

natural use of stochastic gradient descent (SGD), any state-of-the-art SGD training techniques

can be applied to improve the classification performance. In particular, we will discuss later in

the paper a well-developed sparsity-inducing method that we incorporate to simplify the network,

which further leads to concise explanations. In the next section, we describe how human-readable

explanations can be readily derived for positive predictions produced by the proposed network.

2.3 Explaining DT-Net Predictions

An important feature of our DT-Net approach is that human understandable explanations

can be easily derived from DT-Net predictions. We first prove several important properties about

threshold functions that we will use to derive explanations from them. We then describe how

explanations can be derived in the single threshold function case, followed by a discussion

regarding how explanations can be derived from the overall DT-Net. All proofs to theoretical

results in this section can be found in the supplementary material.

2.3.1 Threshold Functions and Primes

A feed-forward neural network typically comprises layers of neurons. Further, a neuron

with binary inputs and full-precision weights performs the following computation:

f (x) = ϕ
(
wT x+b

)
, (2.2)

where w∈Rn is a weight vector ⟨w1,w2, . . . ,wn⟩, x∈Rn is an input vector ⟨x1,x2, . . . ,xn⟩, b∈R

is a bias term, and ϕ(·) is a non-linear activation function. Common activation functions include

ReLU activation, the sigmoid function, and the step function.

When the n inputs are binary features, and the step function is used for activation, the
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neuron f (x) corresponds to a threshold function2, where

z(x) = wT x+b, (2.3)

f (x) =

 1 if z(x)≥ 0

0 otherwise.
(2.4)

A threshold function f implements an underlying Boolean logic function f : {0,1}n→{0,1}.

As such, terminologies and properties from Boolean algebra apply.

An instance α ∈ {0,1}n is a specific assignment to the input features. With respect to the

threshold function f , a positive instance is one such that f (α) = 1, and a negative instance is

one such that f (α) = 0. A literal ℓi is a feature (positive literal) or its negation (negative literal),

denoted as ℓi = xi and ℓi = x̄i, respectively. A term π is a consistent conjunction of literals, e.g.,

x1∧ x̄2∧ x3, or simply x1x̄2x3
3. The length of π , denoted as |π|, is the number of literals that it

includes. We say that a term πi covers or contains another term π j, written as π j⇒ πi, if and

only if π j includes all the literals in πi (e.g., x1x̄2 covers x1x̄2x3).

An implicant π of a Boolean function f is a term that satisfies f , written as π ⇒ f ,

meaning all instances covered by π are positive instances. A prime implicant (or simply a prime)

is an implicant that is not covered by any other implicant. A prime is essential if it covers an

instance that is not covered by any other prime. A set of primes {π1, . . . ,πm} is a prime cover

for f if ∨m
i=1πi is equivalent to f , and it is a prime and irredundant cover if no prime πi can be

removed from {π1, . . . ,πm} such that the set remains a prime cover.

Several concepts are introduced next to prove several important properties about deriving

prime implicants from threshold functions.

Definition 1 (Slack). The slack of an instance α with respect to a threshold function f corre-

2A threshold function is also commonly written in the form wT x≥ θ , which is equivalent to wT x−θ ≥ 0, where
θ is referred to as the threshold. This is equivalent to Equations 2.3 and 2.4, with θ =−b. We will use the form
expressed in Equations 2.3 and 2.4, as this is the common expression form for describing neurons.

3As a shorthand, [101] is used to denote the term x1x̄2x3. Here is another shorthand example: [10−] is used to
denote the term x1x̄2, where “−” means the corresponding feature is excluded from the term.
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sponds to z(α) in Equation 2.3. Therefore,

f (α) =

 1 if the slack is non-negative

0 otherwise.
(2.5)

The slack of a term π is defined as the minimum slack among the instances that π covers:

z(π) = min
α

z(α), s.t. α ⇒ π. (2.6)

Note z(π) can be directly computed by setting every feature xi that does not appear in the

term π to its worst-case value, which minimizes z(π): i.e., if wi > 0, set xi = 0; otherwise, set

xi = 1.

Definition 2 (Maximum Slack). We define the maximum slack of a threshold function f to be

the largest slack among all possible assignments. In other words,

zmax = max
α

z(α), ∀α ∈ {0,1}n. (2.7)

This maximum slack can be directly computed by setting a feature xi to its best-case

value to maximize z(α) if it appears in f with a non-zero weight: i.e., set xi = 1 if wi > 0 and

xi = 0 otherwise.

Definition 3 (Base Term). For a threshold function f , we define the base term πbase to be a term

that includes the literal xi if wi > 0 and the literal x̄i if wi < 0 (no literal for xi is included if

wi = 0).

Proposition 1. The base term always achieves the maximum slack. In other words, z(πbase) =

zmax.

Next, we illustrate the above definitions with two examples, as depicted in Figure 2.2.

Consider the first example depicted in Figure 2.2b The base term is [111] as it achieves the
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(a) 2.1x1 + x2 + x3−2≥ 0. (b) −x1− x2− x3 +1≥ 0.

Figure 2.2. Threshold function examples with the corresponding base terms (e.g., 111) and
primes (e.g., 1−−).

maximum slack of 2.1+ 1+ 1− 2 = 2.1. The base term is shown in a black circle, while the

remaining positive instances are shown in white circles. There are two primes in this example

(shown in red). One prime [−11] can be derived by expanding the base term [111] in the

x1 direction (by removing the literal x1), whereas the other prime [1−−] can be derived by

expanding the base term [111] in both the x2 and x3 directions. In both primes, the slack of each

is non-negative, but removing one more literal would cause the corresponding slack to become

negative.

Intuitively, all primes can be generated from the base term πbase with the maximum

slack. If there exists a non-zero wi such that |wi| ≤ zmax, then the corresponding literal for xi can

be removed from πmax to produce an intermediate implicant π̃ . This process can be repeated

by removing each additional literal as long as there is a corresponding non-zero wi such that

|wi| ≤ z(π̃), the remaining slack, until a prime is produced.

In the second example depicted in Figure 2.2b, the base term is [000] as it achieves the

maximum slack of 0−0−0+1 = 1. There are three primes in this example, corresponding to

expanding in each of the three directions, to produce [−00], [0−0], and [00−].
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Theorem 2. All primes of a threshold function cover the base term.

Proof. We prove this by contradiction. Assume a prime π does not cover the base term. Then,

there must exist a literal ℓi ∈ {xi, x̄i} that is in π but not in πbase. Consider the following two

cases. First, if ℓ̄i is present in πbase, then ℓi corresponds to the worst-case value and removing it

from π will increase the slack. Second, if πbase does not include ℓi or ℓ̄i, then it implies wi = 0

and removing ℓi from π does not change the slack. In both cases, since π is a prime, we have

z(π)≥ 0, and hence z(π \{ℓi})≥ 0, which is contradictory to the definition of primes.

Theorem 3. All primes of a threshold function are essential.

Proof. We prove this by contradiction. Assume a prime π1 is not essential, which means there

exists an instance covered by π1 that is also covered by another prime. Consider an instance

α covered by π1 that disagrees with every literal ℓi that is in πbase but not in π1. Suppose α is

covered by another prime π2, implying that for every such ℓi, π2 either includes ℓ̄i or excludes

both ℓi and ℓ̄i. According to Theorem 2, we have πbase⇒ π1 and πbase⇒ π2. Since ℓi is covered

by πbase, we must have π2 excludes every such ℓi and ℓ̄i, which implies all literals removed from

πbase to produce π1 are also removed to produce π2. As a result, π1⇒ π2. This means either

π1 = π2 or π1 is not a prime, which are contradictory in both cases.

Corollary 4. The prime cover of a threshold function is unique and irredundant.

Proof. It follows from the proof of Theorem 3.

2.3.2 Explaining a Single Threshold Function

We first consider the problem of deriving an explanation for the single threshold function

case. A threshold function f is equivalent to a Boolean classifier, where f (α) = 1 means the

decision is positive, and f (α) = 0 means the decision is negative. For a positive prediction, an

explanation can be thought of as some subset of its literals. Referring to the example depicted

in Figure 2.1, an explanation why an individual is at high heart disease risk may be that the
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individual is older than 50 and has high cholesterol. Another explanation may be that the

individual is a smoker. We formalize below what explanations are and how they can be readily

derived in the case of a single threshold function.

Definition 4 (Explanation). An explanation for a positive decision on an instance α is an

implicant that contains the instance.

Definition 5 (Minimal Explanation). A minimal explanation is a prime that contains the instance.

Definition 6 (Simplest Explanation). A simplest explanation a shortest length minimal explana-

tion.

Note that minimal and simplest explanations are not unique. As shown in [82], for a threshold

function f and a positive instance α , finding minimal explanations corresponds to finding prime

implicants4 of f that contain α . The prime associated with a minimal explanation corresponds to

a minimal subset of features that are sufficient for the positive prediction. This can be achieved

by first converting the threshold function f into a logic representation, followed by using known

prime generation algorithms to generate all minimal explanations, where the simplest explanation

(shortest prime containing α) can be found, but this approach is worst-case exponential in time

and space. Fortunately, the simplest explanation can be directly derived from the threshold

function f , as discussed below.

Definition 7 (Base Explanation). Given a threshold function f as a classifier and a positive

instance α , we define the base explanation, written as πbase-exp, to be the supercube of the base

term πbase and the instance α , written as super(πbase,α).

The supercube of two terms, super(πi,π j), is a new term derived by removing literals from πi

that do not appear in π j. The operation is symmetric in that the new term can also be derived by

removing literals from π j that do not appear in πi.

4In [82], minimal explanations are referred to as PI-explanations, where PI refers to prime implicants. The work
in [82] was developed for Naive Bayes Classifiers, but the same PI-explanation concept also applies to threshold
functions. In [36], PI-explanations are referred to as abductive explanations.
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Figure 2.3. An example of base and minimal explanations,
with f defined as 2.1x1 + x2 + x3−2≥ 0 and α = [110].

Theorem 5. The set of minimal explanations of a positive instance for a threshold function

includes only essential primes.

Proof. It follows from the proof of Theorem 3.

Theorem 6. All minimal explanations of a positive instance for a threshold function cover the

base explanation.

Proof. We prove this by contradiction. Assume a minimal explanation π has a literal ℓi that the

base explanation πbase-exp does not have. Then there are two possibilities. The first is that πbase-exp

has the literal ℓ̄i instead of ℓi. Based on the definition of the base explanation, the instance α

must also have ℓ̄i. Since ℓi and ℓ̄i cannot both appear in π , π does not have ℓ̄i and thus does not

contain instance α . This contradicts the definition of an explanation. The second possibility is

that πbase-exp does not have ℓi or ℓ̄i. Since π is an explanation of α , π contains α and thus α also

has the literal ℓi. Then, we know that the base term of the threshold function must have ℓ̄i, so that

πbase-exp, as a supercube of πbase and α , does not have ℓi or ℓ̄i. According to the definition of the

base term, the corresponding weight wi of the threshold function is negative. At this point, it is

obvious that a new term π \{ℓi} is still a valid explanation because removing ℓi from π does not

change the slack of π , which is contradictory to the premise that π is a minimal explanation.
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Consider the example depicted in Figure 2.3. In this example, πbase = [111] and α = [110]

(shown as a gray circle), then the base explanation is [11−] (shown in blue). The generation of

explanations can be performed in a similar way as prime generation. According to Theorem 6,

all minimal explanations, which are primes containing the instance α , can be generated from

the base explanation πbase-exp with the available slack z(πbase-exp). Consider again the example

depicted in Figure 2.3. The base explanation [11−] can be expanded into a minimal explanation

by expanding in the x2 direction (by removing the literal x2) to obtain the prime and minimal

explanation [1−−]. There are no other minimal explanations, making [1−−] also the simplest

explanation. In particular, if there exists a non-zero wi such that |wi| ≤ z(πbase-exp), then the

corresponding literal for xi can be removed from πbase-exp to produce an intermediate implicant.

This process can be repeated as long as there is a corresponding non-zero wi such that |wi| is less

than or equal to the remaining slack, until a minimal explanation is produced.

Based on this intuition, we propose the smallest-absolute-weights-first removal algorithm,

which is summarized in Algorithm 1. This is a very fast and simple greedy algorithm that can

guarantee the simplest explanation.

Algorithm 1. Smallest-absolute-weights-first removal
Input: Threshold function f , base explanation πbase-exp
Output: Simplest explanation π

1: L←{ℓi ∈ πbase-exp} sorted by |wi| in ascending order
2: π ← πbase-exp
3: for ℓi ∈ L do
4: if z(π \{ℓi})≥ 0 then
5: π ← π \{ℓi}
6: else
7: break
8: end if
9: end for

10: return π

Theorem 7. Algorithm 1 finds a simplest explanation for a positive instance of a threshold

function.
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Proof. We prove this by contradiction. Assume π1 is the explanation generated by Algorithm 1

and π2 is a shorter explanation. According to Algorithm 1, π1 is a minimal explanation (prime)

since further removing any literal from π1 would cause its slack to become negative. Consider

two sets of literals {ℓi | ℓi ∈ π2, ℓi /∈ π1} and {ℓ j | ℓ j ∈ π1, ℓ j /∈ π2}. Since π2 is shorter than π1,

we have |{ℓi | ℓi ∈ π2, ℓi /∈ π1}|< |{ℓ j | ℓ j ∈ π1, ℓ j /∈ π2}|. For π2, keep replacing such ℓi with ℓ j

until there does not exist such ℓi and denote by π3 the produced term. Since π1 is generated by

Algorithm 1, we always have wi > w j for wi and w j corresponding to any combinations of ℓi

and ℓ j, respectively. Therefore, we must have z(π3)≥ 0 and π3 is an implicant. Further, we have

π1⇒ π3, which is contradictory to the premise that π1 is a prime.

2.3.3 Explaining the Disjunctive Threshold Network

We next consider the problem of deriving an explanation for the entire disjunctive

threshold network. Since all threshold functions are combined using a logical OR operator,

an explanation of a positive instance for one of the activated threshold functions is also an

explanation for the whole network. Therefore, we can simply enumerate Algorithm 1 on each

of the activated threshold functions and return the shortest explanation among them as an

explanation for the overall network. This enumeration algorithm is also very fast and simple, as

depicted in Algorithm 2.

2.4 Simplifying Explanations Through Sparsity-Inducing
Regularization

DT-Net can be accurately trained using well-developed stochastic gradient descent

training algorithms. We use a binary cross-entropy loss function at the output, and we use

a straight-through estimator with gradient clipping [5] in the hidden layer to backpropagate

gradient updates through the binary step activations.

It should be clear from the previous section that zero weights in a threshold function

mean that the corresponding inputs will not have any effect on the logic of the threshold
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Algorithm 2. Deriving explanations from DT-Net
Input: Set of threshold functions F = { f1, f2, . . . , fn}, positive instance α

Output: DT-Net explanation π̃

1: S←{}
2: for fi ∈ F do
3: if fi(α) = 1 then
4: πbase-exp← get base explanation of fi
5: π ← Algorithm 1( fi,πbase-exp)
6: S← S∪{π}
7: end if
8: end for
9: π̃ ← argmin

π∈S
|π|

10: return π̃

function, which means those input features can be removed from any explanation derived from

that threshold function. Therefore, promoting the sparsity of hidden layer threshold functions

indirectly simplifies explanations. Further, as shown in [31], neurons with zero input connections

(meaning all its weights are zero) can be safely removed since these dead neurons will have

no effect on the output classification. Besides a training strategy that maximizes the number of

zero weights, encouraging weights with small absolute magnitudes is also beneficial in deriving

simpler explanations. This is because more input features can be removed from an explanation if

the corresponding weights have small absolute values relative to the available slack.

We can encourage sparsity by including a regularization term into the overall loss function

of the form

L = LBCE +λLR(W ), (2.8)

where LBCE is the binary cross-entropy loss, LR(·) is the regularization loss over the weight

matrices W in the network, and λ is the regularization coefficient. Fortunately, we can encourage

both zero weights and weights with small values in absolute magnitude by means of sparsity-

inducing regularization. In particular, we use the reweighted L1 regularization [13] approach that

penalizes smaller absolute value weights so that they are driven towards zero faster, resulting in
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more weights near zero. We also incorporate a pruning method [31] to eliminate weights with

absolute magnitudes below a certain threshold. Weights near this threshold that remain tend to

be small so that they are more likely to be eliminated in our algorithms to derive explanations.

As shown in [13], a log-sum penalty term,

LR(W ) = log(∥W∥1 + ε), (2.9)

can be used to achieve reweighted L1 minimization, where ε > 0 is a small value (e.g., ε = 0.1)

added to ensure numerical stability. As shown in the evaluation section, this sparsity-inducing

regularization approach not only simplifies the explanations, but it also leads to the removal of

many dead neurons.

2.5 Evaluation

Table 2.1. Average test accuracy and complexity (in parentheses) based on the 5-fold cross-
validation.

dataset DT-Net DR-Net CG RIPPER BRS CART RF XGB

adult
83.64 82.55 82.60 82.25 78.78 82.44 84.03 84.41
(11.83) (11.46) (6.54) (5.16) (3.00) (13.11)

magic
85.34 83.91 83.33 82.86 81.37 83.18 86.71 87.16
(4.70) (2.73) (2.82) (4.55) (3.00) (11.98)

house
87.61 86.07 83.80 81.43 83.26 85.10 88.49 88.92
(10.43) (3.56) (2.90) (5.74) (3.00) (12.22)

recidivism
65.39 64.09 64.57 64.84 61.98 62.85 66.77 64.33
(6.31) (2.06) (2.98) (4.22) (3.00) (9.86)

chess
89.30 84.47 81.93 85.46 74.66 85.36 92.63 94.98
(7.28) (7.70) (6.97) (9.80) (3.00) (16.02)

retention
93.47 87.78 90.77 88.92 89.37 90.11 93.43 94.29
(3.64) (3.23) (3.68) (3.73) (3.00) (11.86)

churn
79.51 78.85 79.21 78.27 76.74 79.00 80.35 77.45
(8.92) (6.80) (2.71) (4.81) (3.00) (9.82)

airline
94.41 93.32 90.10 93.08 90.71 90.21 94.79 95.94
(4.71) (3.45) (3.50) (4.28) (2.90) (12.64)
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Benchmarks. The numerical experiments were evaluated on 8 publicly available binarized

classification datasets, most of which have more than 10,000 instances and comprise categorical

and numerical attributes for each instance before binarization. We used three datasets from

the UCI Machine Learning Repository [27], namely adult (Adult Census), magic (MAGIC

Gamma Telescope), and chess (Chess: King-Rook vs. King). Two of the selected datasets are

from Kaggle: churn (Telco Customer Churn) and airline (Airline Passenger Satisfaction). The

other three datasets are: house (House 16H) [89], retention (TED Dataset) [3], and recidivism

(Predicting Recidivism) [79]. These datasets were shuffled (with a fixed seed to ensure the

consistency for all approaches) and split into 5 sets of training and test datasets using 5-fold

cross-validation. All experimental results are derived by running the classifiers on 5 test sets and

averaging the results.

DT-Net Configurations. For DT-Net, we used the Adam optimizer with a fixed learning rate

of 10−2 and no weight decay across all experiments. There are 100 neurons in the hidden layer

to ensure there is an efficient search space for all datasets, and the network is trained for 1,000

epochs to guarantee complete convergence. For simplicity, the batch size is fixed at 2,000 and

the weights are uniformly initialized within the range between 0 and 1. Other parameters were

selected according to the nested 5-fold cross-validation, which will be discussed in the following

subsections.

2.5.1 Classification Performance

Baselines and Pre-processing. In this evaluation, we compare our approach with four rule

learners, including Decision Rule Net (DR-Net) [53], the Column-Generation-Based algorithm

(CG) [25], RIPPER [20], and Bayesian Rule Sets (BRS) [91]. We also compare our approach

with decision trees (CART), random forests (RF), and gradient boosting trees (XGB). RIPPER is

a greedy rule mining approach based on sequential covering. DR-Net, BRS and CG are recent

rule-set-generation classifiers that optimize both for accuracy and interpretability, and CART

[9] is a decision tree learning algorithm. We use random forest (RF) [10] and XGBoost (XGB)
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[15] to provide baselines for typical performances that black-box models can achieve on the

datasets evaluated. For all datasets, we adopted the pre-processing approach discussed in [53] to

binarize numerical and categorical features. BRS and CG do not directly consider the negation of

features. Therefore, we followed the procedures described in their papers to append the negations

of binarized features so that they can be considered in their rule sets.

Complexity Measurement. For our model and other interpretable models, the classification

performance was evaluated using both accuracy and interpretability. The accuracy was evaluated

on the test set and the interpretability was measured by the average explanation complexity. We

note that while rule learners generally consider the complexity of generated rules, our model

carries out the prediction without pre-learning any rules, but derives the explanation afterwards.

Therefore, we proposed a new complexity metric, namely explanation complexity, as the average

length of explanations for all positive instances in the test dataset. For DT-Net, the explanations

were produced according to the algorithm discussed in Section 2.3.3 and therefore the complexity

is the length of the explanation. For rule learners, the complexity was computed based on the

simplest rule that covers the test instance. For CART, the explanation was derived by tracing

down the decision path from the root node, and the complexity is measured by the number of

nodes in the decision path.

Parameter Tuning. We evaluated the predictive performance of DT-Net by comparing both test

accuracy and complexity with other state-of-the-art machine learning models. For parameter

selection in all models, we used a 5-fold nested cross-validation to improve training accuracy.

Specifically, the best accuracy is achieved by tuning the regularization coefficient λ for DT-Net,

minimum number of samples per leaf for CART and RF, and the regularization term for XGBoost.

We tuned the same parameters mentioned in [53] for DR-Net, CG, RIPPER and BRS. We take

the average performance over the 5 training-testing pairings as the final reported results. We

summarize the accuracies of all models and the complexities of the interpretable models in

Table 2.1, where the best accuracies among interpretable models are highlighted in bold.
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As can be observed in Table 2.1, DT-Net achieves the best accuracy among all inter-

pretable models on all datasets, indicating that DT-Net has a significant advantage over other

interpretable models on generalization capability. At the same time, DT-Net achieves an accuracy

very close to the uninterpretable models on most datasets (except for the chess dataset) and it

even outperforms them in some cases (see churn and airline datasets). Moreover, since DT-Net

is a neural network, the performance of DT-Net can possibly be further improved with finer

parameter tuning and more advanced training techniques. Regarding complexity, it can be seen

that though DT-Net does not produce the simplest explanations, it still shows admissible inter-

pretability in that its complexity is within the same magnitude of other approaches. In particular,

we note that DT-Net always outperforms the traditional decision tree on all datasets and thus in

real-world applications, DT-Net can generally substitute decision trees with both higher accuracy

and lower complexity.

2.5.2 Effects of Sparsity-Inducing Regularization

In our experiments, the networks are composed of a large number of threshold functions,

e.g. 100 neurons in the hidden layer, to ensure enough capacity. Simplifying the neural network

using the regularization and pruning methods mentioned earlier helps reduce both the complexity

and the computation time of the explanations. We show in Table 2.2 that our neural network

achieves very high sparsity, which partially explains why our explanation generation procedure

has relatively low computational cost.

As can be observed from Table 2.2, most threshold functions are disabled after pruning,

which verifies the effectiveness of our regularization method in excluding the redundant capacity.

Further, the remaining neurons generally achieve an average sparsity over 50%. This means

that more than half of the literals are directly removed before applying our algorithms, which

explains how we remove most literals and generate explanations with reasonable complexity in

our experiments. In addition, individual positive instances in general are only produced by about

2 or 3 neurons for all datasets. The fact that each instance only activates a few neurons explains
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Table 2.2. Statistics of DT-Net after pruning. # pruned: the number of neurons pruned in the
hidden layer. Sparsity: the percentage of the zero weights in each neuron. # activated: the number
of activated neurons for each test instance. The average over 5 partitions is reported for every
dataset (standard deviation in parentheses).

dataset # pruned Sparsity # activated

adult 96.2 81.21% 1.49 (0.68)
magic 87.8 82.81% 2.84 (1.63)
house 90.2 70.95% 3.63 (1.78)

recidivism 95.0 76.00% 1.12 (0.36)
chess 62.2 58.50% 2.75 (1.82)

retention 67.8 80.27% 3.91 (2.77)
churn 96.8 70.90% 1.34 (0.51)
airline 87.2 87.92% 4.48 (2.03)

why our explanation generation algorithm generally produces explanations that are minimal for

the network.

2.6 Concluding Remarks

We proposed in this work a neural network architecture called DT-Net for tabular data

classification that provides both high accuracy performance and interpretability. An important

feature of the proposed solution is that only a simple greedy algorithm is required to pro-

vide an explanation with the prediction that is human-understandable. We further employ a

sparsity-inducing regularization approach to sparsify the threshold functions so that the derived

explanations are simple. In comparison with other explainable decision models, our evaluation

shows that our proposed approach can achieve superior predictive performance on a broad set of

tabular data classification datasets.
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Chapter 3

Tabular machine learning using conjunc-
tive threshold neural networks

3.1 Introduction

In machine learning applications like healthcare and criminal justice where human lives

may be deeply impacted, creating decision models that can provide human understandable

explanations is critically important [77]. In these applications, the datasets are often provided as

tabular data with samples as rows in a table and a common set of naturally meaningful features

as columns. A toy example of a tabular dataset is shown in Table 3.1.

Table 3.1. A toy example of a tabular dataset. The first seven columns are input features, and the
last column is the classification.

Gender Age BP Cholesterol Glucose Smoker Drinker Disease
Male 34 Normal Normal Normal No Yes No

Female 62 High Normal High Yes No Yes
Male 55 High High Normal No No Yes

...
...

...
...

...
...

...
...

Female 25 High Normal Normal Yes No No

Due to their inherent explainability, decision rule sets [20, 47, 91, 25] are often a popular

model class in these tabular learning problems. Decision rule sets not only provide accurate pre-

dictions, but the corresponding matching rules also provide explanations that humans can easily

understand. In particular, the explanations are expressed directly in terms of meaningful categori-
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cal (e.g., Cholesterol equal to Normal or High) or numerical (e.g., age) input attributes, where the

binary encoding of categorical and numerical attributes is well-studied[91, 25]. However, they

are not the winning model class in these domains in terms of prediction accuracy. For example,

gradient boosted and ensemble decision trees [15, 44, 10] and neural network models [43, 2] are

generally superior in prediction performance. However, these models are generally considered to

be black-box models [77] where the predictions are difficult or impossible to interpret. This is

in sharp contrast to the interpretability of rule-based sentences that decision rule sets provide,

which can be easily understood by humans.

In this paper, we propose a new neural network architecture for tabular data called a

Conjunctive Threshold Neural Network, or CT-Net for short. The proposed structure comprises

a hidden layer of threshold logic functions, which are just conventional neurons with a step

activation function that are trainable with arbitrary (positive or negative) full-precision weights

and biases. This neural network architecture can be trained to achieve high prediction accuracy,

but unlike conventional neural network models, gradient boosting decision trees, and random

decision forests, human understandable explanations in terms of meaningful input features

similar to decision rules can be easily derived from CT-Net. Also, unlike existing interpretable

rule-learning methods [91, 25, 71] that provide human understandable explanations, we do

not ever explicitly generate a decision rule set from CT-Net. This means that our network of

threshold functions can implicitly encode potentially complicated rules to achieve high prediction

accuracy, but yet the explanations generated can nonetheless be understandable. In particular, the

explanation derived is provably minimal in the number of features in the conjunction. Therefore,

we believe CT-Net can be widely used as an replacement for tree ensemble methods (random

forest and gradient boosting trees) in the area where both accuracy and interpretability are

required.

The outline of the paper is as follows: Section 3.2 summarizes related work. Section 3.3

describes our proposed CT-Net architecture. Section 3.4 describes how provably minimal expla-

nations can be easily derived from a CT-Net inference. Section 3.5 describes a sparsity-promoting
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regularization approach for training CT-Nets. Section 3.6 provides extensive evaluation of our

proposed approach. Section 3.7 concludes the paper.

3.2 Related Work

Besides decision rule sets [20, 47, 91, 25], decision lists [74, 48] and decision trees

[9] are also interpretable rule-based models. Decision lists are ordered rules in an if-then-else

sequence, and decision trees have paths that can be interpreted as rules. In addition to providing

prediction, these methods also provide human understandable explanations that can be derived

from the matching rule.

Gradient boosting decision trees [15, 44] and random forests [10] have also been used

to provide better predictions in tabular data classification problems. Although these methods

provide superior prediction performance in comparison to rule-based methods, they are generally

not interpretable. In certain application areas, their lack of interpretability may make it difficult

to gain public trust for their use, which may hinder their widespread adoption in these domains.

Building on the notable success that deep neural networks have shown on perceptual

learning tasks, like image classification [32], researchers have recently turned to neural network

models for tabular data learning as well [71, 43, 2]. The work in [43, 2] aim to capture aspects

of gradient boosting decision trees and random forests that have made these models successful,

and they are able to achieve comparable performance as these approaches with neural models.

However, like gradient boosting decision trees and random decision forests,these models remain

uninterpretable in the sense that they do not provide explanations that are easily understandable

by humans.

In contrast, [71] recently proposed a neural network architecture that directly maps to a

decision rule set in disjunctive normal form. In this architecture, the neurons in the hidden layer

are restricted in a way so that they map directly to a conjunction (AND) of input features that

correspond to interpretable decision rules, followed by an output neuron that maps to a disjunction
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(OR) operation that aggregates a collection of decision rules into a set. This approach achieves

better performance than traditional rule-based and decision tree methods [20, 47, 91, 25, 9] while

retaining the ability to provide human understandable explanations. However, the restrictions

imposed on the hidden layer neurons to have direct one-to-one mappings to conjunctive rules

unnecessarily limits the search space during neural net training.

Another body of work aims to develop post-hoc explainers that can explain predictions

from black-box models. Heuristic algorithms are employed in [73, 72] to generate explanations

without the knowledge of the entire model. Although a primary objective of these algorithms is

to achieve high fidelity of the explanations to the original model, the derived explanations cannot

be guaranteed to be completely consistent with the underlying model distribution.

Finally, the works in [82, 81, 18, 36, 40, 4] are on the compilation of models into tractable

forms. In these approaches, explanations consistent with the original model can be queried from

the model’s equivalent tractable form. Our work is complementary in that we aim for an approach

in which a simple and fast algorithm can be applied to directly derive human understandable

explanations from our proposed model.

3.3 Conjunctive Threshold Neural Networks

In this section, we introduce the architecture of the proposed Conjunctive Threshold

Neural Network, or CT-Net for short. The network is designed for tabular classification problems

where besides making accurate predictions, the explanation of decisions is also essential. In

particular, CT-Net is a simple three layer neural network architecture, comprising an input layer

of n input units, a hidden layer of k units, and an output layer with a single output unit. A toy

example is shown in Figure 3.1 for predicting heart disease risk, which we use to illustrate several

key ideas in this section.

Input layer: The input layer consists of n input units, each passing its corresponding assigned

binarized value to each neuron in the hidden layer. Tabular datasets often comprises binarized,
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Figure 3.1. A toy example of the CT-Net architecture with hidden layer neurons as threshold
logic functions and the output neuron implementing a conjunction.

categorical and numerical attributes. To handle categorical and numerical attributes, well-studied

pre-processing procedures in the machine learning literature can be used to encode them into

binarized input vectors1: standard one-hot encoding can be used for categorical attributes, and

standard quantile discretization can be used for numerical attributes.

Hidden layer of threshold functions: The hidden layer comprises k neurons that are trainable

with arbitrary (positive or negative) full-precision weights and biases. They implement threshold

functions by means of a binary step activation function. In Figure 3.1, the blue dashed lines at

the inputs of a hidden neuron indicate that the corresponding features have zero weights, which

means they do not appear in the corresponding threshold function. As discussed in the next

section, each threshold function implicitly implements an underlying Boolean logic function that

encodes logical conditions on the inputs that will lead to a positive prediction.

1Interpretable rule-learning methods [91, 25, 71] widely studied to model tabular classification problems also
commonly assume this input binarization pre-processing step.
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Output conjunction layer: The output unit implements a conjunction of a subset of the k

threshold functions in the hidden layer, which is also implemented as a single threshold function

with trainable binarized weights (more details are discussed in Section 3.5), where a weight

of 1 or 0 indicates if the corresponding threshold function in the hidden layer is included in

or excluded from the conjunction, respectively (a 0 weight is shown as a blue dashed line at

the input of the output neuron in Figure 3.1). Further, a dynamic bias based on the weights is

employed as follows:

b =−
k

∑
i=1

wi + ε. (3.1)

where ε is a small number between 0 and 1 (e.g., ε = 0.5), and wi is the binary weight (i.e., 1 or

0) as just discussed. This output threshold unit implements a logical-AND operation since the

output unit can make a positive prediction (with the logits of ε) only if all threshold functions

(that are not excluded with a zero weight) in the hidden layer are activated, whereas by default, it

makes a negative prediction due to the negative summation of the weights. Since each threshold

function implicitly implements an underlying Boolean logic function, the logical-AND of these

threshold functions also implicitly implements a Boolean logic function for the network. This

conjunction of threshold functions can be trained to implement any Boolean logic function at the

output, which can model any prediction problem that can be encoded into a binary classifier.

Straight-through estimator: As discussed earlier, the proposed neural network incorporates

the binary step activation function, which is almost non-differentiable everywhere. Therefore,

we adopt the straight-through estimator [5] to address this issue. In particular, it was originally

proposed in [5] to use the identity function as the derivative of a step function, while [21] further

incorporates the gradient clipping technique to cancel the gradients when the activation is too

large, i.e., the backward function is similar to ReLU, which also introduces non-linearity into

the network. In our approach, we empirically found it is better to clip the gradients when the

full-precision activation (pre-step activation) is either too large or too small, which is analogous

to the backward function of the clipped ReLU activation. This approach in practice effectively
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prevents the weights from getting infinitely large or small. Mathematically, the straight-through

estimator with the gradient clipping technique that we use to address this problem is as follows:

gẑi =

{
0, if zi <−1 or zi > 0

gzi, otherwise
(3.2)

where z and ẑi are the full-precision activation and the binarized activation after our step function,

respectively. L is the classification loss. gẑi =
∂L
∂ ẑi

and gzi =
∂L
∂ zi

, which are the gradients of

classification loss w.r.t. ẑi and zi, respectively.

Similar to the clipped ReLU activation function with a clipping boundary of 1, the outputs

produced by the step function always fall into the range between 0 and 1. Therefore, our step

activation function can be essentially viewed as a low-precision clipped ReLU function. However,

we note that a floating-point 0 will be directly binarized to 1 in our approach, which corresponds

to a shift introduced by the binarization, which should be addressed in backward propagation.

As a result, we propose to clip the gradient at −1 and 0 rather than 0 and 1 as in the clipped

ReLU activation, and experimental results show this straight-through estimator work very well

in practice.

An example: Consider again the toy example shown in Figure 3.1 for predicting heart disease

risk. The input variables x1,x2, . . . ,x5 correspond to whether or not the individual is a smoker,

overweight, or older than 50, or has high cholesterol or blood pressure, respectively. The instance

shown (in red) is the input assignment ⟨x1,x2,x3,x4,x5⟩= [10110]. With this instance, threshold

functions f1 and f3 evaluate to true (i.e., evaluate to 1), whereas threshold function f2 is directly

turned off by the output layer. For f1, the threshold function evaluates to true if either the

individual is a smoker or overweight as the weights of x1 and x2 are both individually greater

than 0.8. For f3, the threshold function evaluates to true if any two out of the three conditions

(older than 50, high cholesterol, or high blood pressure) are true, since the sum of the weights of

any two conditions will be sufficient to exceed 1.9. Indeed, the classifier will make a positive
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prediction that this individual is at a high risk of heart diseases since both f1 and f3 are activated.

To guarantee CT-Net makes a positive prediction, both f1 and f3 need to evaluate to

true at the same time (because the output neuron implements a conjunction of inputs with 1

weights), where the individual being a smoker suffices the first threshold function, and what

sufficiently activates f3 is that the individual is older than 50 and has high cholesterol. Therefore,

the explanation for why this individual is predicted to have a high heart disease risk is smoker,

older than 50 and high cholesterol. While the explanation for this prediction is unique, it is

possible that there exist multiple explanations for certain positive predictions in some scenarios.

As detailed later in the paper, provably minimal explanations can be readily derived for any given

positive prediction.

Unlike existing rule-learning methods methods [91, 25, 71], we do not ever explicitly

generate a decision rule set from the conjunction threshold network. This means that our

network of threshold functions can implicitly encode potentially complicated rules to achieve

high prediction accuracy. State-of-the-art stochastic gradient descent training methods can be

used to achieve high prediction accuracy. Also, well-developed sparsity-promoting techniques

can be invoked to simplify the network in a way that leads to succinct threshold functions, as

discussed later in the paper. In the next section, we describe more formally how provably minimal

explanations can be readily derived for positive predictions made using CT-Net.

3.4 Deriving Explanations

In this section, we describe how provably minimal human understandable explanations

can be readily derived from a CT-Net prediction.
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3.4.1 Threshold Functions and Slack

It should be clear from the previous section that a neuron in the hidden layer of the

CT-Net corresponds to a threshold function of the form

z(x) = wT x+b, (3.3)

f (x) =

 1 if z(x)≥ 0

0 otherwise.
(3.4)

When the n inputs are binary features, a threshold function f implements an underlying Boolean

logic function f : {0,1}n→{0,1}. As discussed, a CT-Net is a conjunction (logical-AND) of

k threshold functions, F = { f1, f2, . . . , fk}. As such, a CT-Net also implements an underlying

Boolean logic function F : {0,1}n → {0,1}. Therefore, Boolean algebra terminologies and

properties are applicable to both individual threshold functions as well as the overall CT-Net,

which we summarize here.

An instance α ∈ {0,1}n is a specific assignment to the input features. With respect to the

CT-Net F , a positive instance is one such that F(α) = 1, and a negative instance is one such that

F(α) = 0. A literal ℓi is a feature (positive literal) or its negation (negative literal), denoted as

ℓi = xi and ℓi = x̄i, respectively. A term π is a consistent conjunction of literals, e.g., x1∧ x̄2∧ x3,

or simply x1x̄2x3
2. The length of π , denoted as |π|, is the number of literals that it includes.

We say that a term πi covers or contains another term π j, written as π j⇒ πi, if and only if π j

includes all the literals in πi (e.g., x1x̄2 covers x1x̄2x3).

An implicant π of a Boolean function F is a term that satisfies F , written as π ⇒ F ,

meaning all instances covered by π are positive instances. A prime implicant (or simply a prime)

is an implicant that is not covered by any other implicant3.

2We will use [101] as a shorthand for the term x1x̄2x3. As another example, we will use [10−] as a shorthand for
the term x1x̄2, with “−” to mean that a literal for the corresponding feature is not included in the term.

3The terminologies term, implicant, and primes apply to any Boolean logic function, including both the individual
threshold functions fi and the overall logic function F induced by the CT-Net.
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We next describe several concepts that we will use in the algorithm for generating

explanations for positive predictions of the CT-Net.

Definition 8 (Slack). For an instance α , the slack of α with respect to a threshold function f

corresponds to z(α) in Equation 3.3. Therefore, f (α) = 1 if the slack is non-negative, and 0

otherwise. For a term π , the slack of π is defined as the minimum slack achieved by the instances

that π covers:

z(π) = min
α

z(α), s.t. α ⇒ π. (3.5)

The slack of π can be directly computed by setting every feature xi to its worst-case value if it

does not appear in the term π: i.e., set xi = 0 if wi > 0 and xi = 1 otherwise. As such, z(π) is

minimized.

Definition 9 (Group Slack). Let F be the Boolean logic function defined by the conjunction of

k threshold logic functions, { f1, f2, . . . , fk}. For an instance α , let zi(α) be the slack of α with

respect to the corresponding threshold function fi. Then the group slack of α with respect to F

corresponds to the minimum among the slacks of the threshold functions:

zF(α) = min
i

zi(α). (3.6)

Therefore, F(α) = 1 if the group slack is non-negative, which implies the slacks of all individual

threshold functions to be non-negative, and 0 otherwise. For a term π , the group slack of π is

defined as the minimum slack achieved by the instances that π covers:

zF(π) = min
α

zF(α), s.t. α ⇒ π. (3.7)

Here also, the group slack of π can be directly computed by setting every feature xi to its

worst-case value if it does not appear in the term π: i.e., set xi = 0 if wi > 0 and xi = 1 otherwise.

As such, zF(π) is minimized. Note that for zF(π) to be non-negative, the slacks of all individual
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zi(π) must also be non-negative.

3.4.2 Generating Explanations

As discussed, a CT-Net F is equivalent to an underlying Boolean logic function, which

can be viewed as a binary classifier, where F(α) = 1 means the decision is positive, and negative

otherwise. Intuitively, an explanation for a positive instance is some subset of its literals.

Referring to the example depicted in Figure 3.1, an explanation for the overall CT-Net

requires it to be an explanation for both f1 and f3, as the CT-Net output is a conjunction of both

threshold functions. In this example, being a smoker suffices to activate f1, and being older

than 50 with high cholesterol suffices to activate f3. Therefore, an explanation as to why this

individual is predicted to have a high heart disease risk is because the individual is a smoker and

older than 50, and has high cholesterol. We formalize below what explanations are and how they

can be readily derived from a CT-Net prediction.

Definition 10 (Explanation). An explanation for a positive decision on an instance α is an

implicant that contains the instance.

Definition 11 (Minimal Explanation). A minimal explanation is a prime that contains the

instance.

There can be different explanations that are consistent with the prediction that a CT-Net

makes for a particular instance. From a user’s perspective, simpler explanations are better, i.e. its

length should be short, so that it can be easily comprehended. Also, shorter explanations usually

cover more feature space, and thus provide users with more insights into the behavior of the

CT-Net.

We now describe our algorithm for finding a minimal explanation for a positive prediction

of a CT-Net. The pseudo code is outlined in Algorithm 3. In this algorithm, we start by treating

the instance α itself as the current explanation π , and we then iteratively remove one feature at a

54



time from the current explanation as long as a candidate feature can be identified such that the

slack z j(π) remains non-negative for all threshold functions or until there are no more features.

Algorithm 3. Derive Minimal Explanation
Input: A set of threshold functions F = { f1, f2, . . . , fk}, positive instance α

Output: A minimal explanation π

1: π ← α

2: while π ̸= /0 do
3: L = /0
4: for ℓi ∈ π do
5: if zF(π \{ℓi})≥ 0 then
6: L = L ∪{ℓi}
7: end if
8: end for
9: if L = /0 then

10: return π

11: else
12: ℓi← select candidate(L )
13: π ← π \{ℓi}
14: end if
15: end while
16: return π

There are two key parts to Algorithm 3. The first key part is in Lines 3-8, in which a list

L of features are identified as candidates for removal. A feature ℓi is a candidate for removal if

its removal does not cause the slack of any threshold function to become non-negative. That is

z j(π \{ℓi})≥ 0,∀ j.

If no such candidate exists or if there are no more features, then we have arrived at a minimal

explanation.

The second key part is in Line 12, in which the select candidate function is called to

select a candidate feature from the set L . One approach is to select the feature ℓi from L that

maximizes the average slack among the threshold functions. That is, let z j(π \{ℓi}) be the slack
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for threshold function f j by removing ℓi, and let

zavg = average{z j(π \{ℓi})}. (3.8)

We then select the ℓi that maximizes zavg.

Alternatively, we can select the feature ℓi from L that maximizes the minimum slack

among the threshold functions. That is, let

zmin = zF(π \{ℓi}) = min{z j(π \{ℓi})}. (3.9)

In this alternative approach, the ℓi that maximizes zmin would be selected.

Experimentally, we found that maximizing the average slack (i.e., Equation 3.8) to be

more effective, and thus this is the approach that we adopted in our evaluation section (cf.

Section 3.6).

Theorem 8. The explanation derived using Algorithm 3 is minimal.

Proof. We prove this theorem by contradiction. Assume the explanation π1 generated with

Algorithm 3 is not minimal. Then there must exists another prime π2 such that π1⇒ π2 (π2

covers π1). This implies there exists a literal ℓi such that ℓi ∈ π1 and ℓi /∈ π2. Since π2 is a

prime, it must guarantee that all threshold functions in the hidden layer evaluate to true, i.e.,

zF(π2)≥ 0. This would mean further removing ℓi from π1 would still produce a positive group

slack. However, this is contradictory to Algorithm 3 since removing any additional feature from

π1 would lead to a negative group slack (i.e., L = /0).

3.5 Sparsity-Promoting Training of CT-Net

We leverage the stochastic gradient descent (SGD) algorithm to efficiently train CT-Net.

In particular, a binary cross-entropy function is used as the loss function to measure the error

between the predicted output and the real labels. We recognize that the step functions have
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zero-gradients everywhere except 0, and we tackle this problem by employing a straight-through

estimator approach [5] with a gradient clipping technique to back-propagate gradient updates

through the activations of threshold functions in the hidden layer.

It should be clear from the previous section that zero weights in a threshold function mean

that the corresponding inputs will not have any effect on the logic of that threshold function, and

the corresponding threshold formula becomes simpler. Intuitively, maximizing the sparsity of the

threshold functions in the hidden layer encourages simpler explanations. Further, our algorithms

for deriving explanations can also benefit from having weights that have small absolute values.

This is because they will less impact on the available slack of the corresponding threshold

function when removed.

To incorporate the idea proposed above in the training process, we propose to add a

sparsity-promoting regularizer to encourage both zero weights and weights with small absolute

values. In particular, we employ an improved version of L1 regularization called reweighted L1

regularization [13], which drives the weights with smaller absolute values down to zero faster by

giving those weights relative larger gradients. Mathematically, the reweighted L1 minimization

can be achieved by employing a log-sum penalty term as the regularization loss

LR(W ) = log(∥W∥1 + ε), (3.10)

where ε > 0 is a small value added to ensure numerical stability (e.g., ε = 0.1). To even encourage

more zero weights in the threshold functions, we further prune the weights with absolute values

below a certain threshold by setting them directly to zero [31].

As discussed in the previous section, zero weights in the output layer are also helpful

in excluding the unnecessary threshold functions of the hidden layer from the conjunction.

Therefore, the reweighted L1 minimization is applied again to the output layer to promote

sparsity. However, since the binarized weights are required for the output layer, along with

pruning the weights below a certain threshold as in the hidden layer, during the feed-forward
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phase, we also set the weights above the threshold directly to one, while we maintain and keep

updating the full-precision values of the weights through back-propagation. Note that negative

weights are not expected in the output layer, so we initialize the full-precision weights to be

all one and always prune the weights below the positive threshold (whereas weights are also

compared with a negative threshold in the hidden layer).

With the regularizer applied to the hidden layer and output layer, the overall loss function

we optimize for becomes as follows: we add a regularization term into the loss function of the

form

L = LBCE +λ1LR1 +λ2LR2, (3.11)

where LBCE is the binary cross-entropy loss, LR1 and LR2 are the regularization loss as explained

in Equation 3.10 for the hidden layer and output layer, respectively, and λ1 and λ2 are their

corresponding regularization coefficients.

3.6 Experimental Evaluation

Datasets. In this section, we evaluated the proposed CT-Net along with a set of baseline ap-

proaches on 11 publicly available tabular classification datasets. Three datasets are from UCI

Machine Learning Repository [27]: Adult Census (adult), MAGIC Gamma Telescope (magic),

and Chess: King-Rook vs. King (chess). Four datasets are from Kaggle: Telco Customer Churn

(churn), Churn Modelling (churn2), Dataset Surgical binary classification (surgical), and Airline

Passenger Satisfaction (airline). The other four datasets are: House 16H (house) [89], TED

Dataset (retention) [3], Predicting Recidivism in North Carolina, 1978 and 1980 (recidivism)

[79] and Home Equity Line of Credit Dataset (heloc) [14]. Most of these datasets consist of more

than 10,000 instances that originally include binary, categorical, and numerical attributes. More

details of the datasets are shown in Table 3.2 As we can see from the “imbalance ratio” column

of Table 3.2, the datasets selected vary from nearly balanced (1.09) to considerably imbalanced

(3.91). Although other evaluation metrics such as F1-score might be better suited for imbalanced
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datasets, we choose to use the test accuracy that is much easier to interpret and widely used in

the experiments of papers[25, 91] on the similar topic.

Table 3.2. Details of the datasets used in the experiment. The imbalance ratio is calculated as the
number of negative instances divided by the number of positive instance.

dataset # instances # features imbalance ratio

adult 30162 14 3.02
magic 19020 10 1.84
house 22784 16 0.42
recidivism 8680 16 1.72
chess 28056 6 1.48
retention 10000 8 1.96
churn 7032 19 2.76
airline 25893 22 1.28
heloc 10459 23 1.09
churn2 10000 10 3.91
surgical 14635 24 2.97

Baselines and Pre-processing. The baseline approaches evaluated as comparisons consist of

four rule learners, including Decision Rule Net (DR-Net) [71], the Column-Generation-Based

algorithm (CG) [25], RIPPER [20], and Bayesian Rule Sets (BRS) [91]; and three traditional

machine learning classifiers, including decision trees (CART), random forests (RF), and gradient

boosting trees (XGB). In particular, RIPPER is an old variant of the Sequential Covering

algorithm for greedily mining rule set from the dataset, whereas DR-Net, BRS and CG are

more recent rule-set-generation classifiers that optimize interpretability and accuracy at the

same time. We use the CART [9] algorithm for learning decision trees, whereas random forest

(RF) [10] and XGBoost (XGB) [15] serve as uninterpretable baselines to illustrate the typical

performances that black-box models can achieve on the evaluated datasets. We used scikit-

learn [69] implementations for CART and RF. The implementations of all baseline models are

publicly available on GitHub 4. For all datasets, we encoded the categorical and numerical

attributes into binarized features according to the scheme described in [71]. Moreover, for BRS
4DR-Net (https://github.com/Joeyonng/decision-rules-network); CG (https://github.com/Trusted-AI/AIX360);

RIPPER (https://github.com/imoscovitz/wittgenstein); BRS (https://github.com/wangtongada/BOA); scikit-learn
(https://github.com/scikit-learn/scikit-learn); xgboost (https://github.com/dmlc/xgboost).
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and CG, negations of the binarized features are appended along with their positive counterparts,

e.g., non-smoker vs. smoker, according to the steps described in their experimental sections so

that negative literals can be considered in their rule sets, which is required in their papers.

Table 3.3. Average test accuracy based on the nested 5-fold cross-validation. Standard deviations
are in parentheses.

dataset CT-Net DR-Net CG RIPPER BRS CART RF XGB

adult
84.08 82.55 82.60 82.25 78.78 82.44 84.03 84.41
(0.46) (0.61) (0.62) (0.85) (0.58) (0.35) (0.55) (0.19)

magic
84.91 83.91 83.33 82.86 81.37 83.18 86.71 87.16
(0.56) (0.53) (0.59) (0.52) (0.73) (0.44) (0.48) (0.36)

house
88.47 86.07 83.80 81.43 83.26 85.10 88.49 88.92
(0.40) (0.41) (0.78) (3.19) (0.55) (0.60) (0.19) (0.35)

recidivism
66.24 64.09 64.57 64.84 61.98 62.85 66.77 64.33
(1.00) (0.46) (0.67) (0.36) (0.75) (0.87) (0.66) (1.25)

chess
91.47 84.47 81.93 85.46 74.66 85.36 92.63 94.98
(0.42) (0.51) (0.50) (1.04) (2.15) (0.40) (0.42) (0.36)

retention
93.85 87.78 90.77 88.92 89.37 90.11 93.43 94.29
(0.46) (0.37) (0.57) (0.58) (1.60) (0.65) (0.42) (0.28)

churn
80.36 78.85 79.21 78.27 76.74 79.00 80.35 77.45
(1.30) (0.61) (1.07) (0.39) (1.28) (0.57) (0.93) (0.96)

airline
95.03 93.32 90.10 93.08 90.71 90.21 94.79 95.94
(0.41) (0.30) (0.31) (1.27) (0.46) (0.43) (0.42) (0.23)

heloc
71.69 71.36 70.05 68.85 70.82 70.00 71.95 70.39
(0.80) (0.75) (0.43) (1.19) (0.74) (1.19) (0.67) (0.56)

churn2
85.35 85.97 85.68 85.07 85.89 84.33 86.05 85.26
(0.34) (0.07) (0.59) (0.39) (0.55) (0.08) (0.54) (0.68)

surgical
83.64 84.78 80.38 83.35 80.25 79.40 82.90 85.26
(0.75) (0.58) (0.58) (1.05) (0.49) (0.59) (0.31) (0.33)

CT-Net Configurations and Parameter Tuning. We used the Adam optimizer with a fixed learn-

ing rate of 10−3 when evaluating CT-Net. In addition, we incorporated the sparsity-promoting

regularization discussed before, so we did not further apply L2 regularization (weight decay) to

the experiments. The neural networks were constructed with 100 neurons in the hidden layer

and we let our regularization technique prune the unnecessary neurons. For simplicity, we used
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a mini-batch size of 2,000 and all networks were trained for 2,000 epochs to guarantee com-

plete convergence. We employed the nested 5-fold cross-validation to select the parameters that

maximize the training accuracy. In particular, each dataset was shuffled (with a fixed seed to

ensure the consistency for all approaches) and split into 5 training-testing pairs, for each of

which we derived a set of parameters that maximize the accuracy on the training subset. The

parameters were then adopted to evaluate the corresponding training-testing pair and the final

results were produced by averaging the performance over the 5 pairs. To be specific, we tune the

regularization coefficients λ1 and λ2 for CT-Net, the minimum number of samples per leaf for

CART and RF, the regularization term for XGBoost, and the same parameters for DR-Net, CG,

RIPPER, and BRS as discussed in [71].

Classification Performance. The classification performances of CT-Net and other baseline

approaches were evaluated based on accuracy. In particular, the accuracy is the test accuracy

computed based on the nested 5-fold cross-validation as previously explained. The accuracies

for all models are summarized in Table 3.3. As can be observed in Table 3.3, CT-Net achieves

the best test accuracy among all interpretable models across all datasets except for churn2 and

surgical, which is close to or even higher than the black-box classifiers on some of the datasets

(e.g., adult, recidivism, and retention). This reflects the significant advantage of CT-Net on its

generalization capability.

We further analyzed the results in Table 3.3 using a two-step procedure recommended

in [26], which consists of a Friedman test to check whether all classifiers perform similarly

and a follow-up Nemenyi test to compare pairs of the classifiers. Applying the Friedman test,

we derived Friedman statistic to be 40.39, which is larger than the critical value of the chi-

squared distribution with 7 degrees of freedom χ2
7 = 14.07 for α = 0.05. Thus we can reject the

null hypothesis that all classifiers tested have the equal performance. Then we continue to use

Nemenyi test to compare whether there is significant difference between all pairs of the classifiers

and the results are shown in Figure 3.2. As we can see from the figure, CT-Net has the second
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Figure 3.2. Results of Nemenyi test for all classifiers. Groups of classifiers that are not signifi-
cantly different at α = 0.1 are connected.

highest average rank that is positioned between Random Forest and XGBoost, proving that CT-

Net can achieve the state-of-the-art predictive performances similar to other black-box models.

Compared with the interpretable models, CT-Net has shown to be statistically significantly better

than RIPPER, CART, and BRS in terms of the testing accuracy, which demonstrates that CT-Net

can be considered as a great alternative to other interpretable models.

Table 3.4. Statistics of CT-Net after pruning, where # pruned is the average number of neurons
pruned in the hidden layer and sparsity represents the average percentage of the zero weights in
the remaining neurons.

dataset # pruned sparsity

adult 97.0 63.28%
magic 96.8 47.00%
house 97.2 54.21%

recidivism 79.2 44.75%
chess 45.4 72.57%

retention 72.8 71.83%
churn 97.2 71.20%
airline 89.6 65.30%
heloc 98.2 43.05%

churn2 77.2 79.59%
surgical 96.8 67.93%

Effects of Sparsity-Promoting Regularization. In our evaluation, the number of threshold

functions, i.e., the number of effective neurons in the hidden layer, can be up to 100 depending

on the parameter tuning, which at the same time guarantees enough generalization capacity

and increases the complexity. As discussed in Section 3.5, we employed the sparsity-promoting
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regularization technique in our training procedure to attenuate overfitting and simplify the

threshold functions. In particular, our regularization approach can not only sparsify the hidden

layer, but also directly turn off the entire threshold function by pruning its corresponding weight

in the output layer. We evaluated the performance of our regularization technique in both ways

and the results are summarized in Table 3.4. As can be observed, the number of pruned neurons

varies significantly from 45% (chess) to 98% (heloc), which validates the effectiveness of our

regularization approach in removing redundant capacity while preserving the necessary neurons

based on the complexity of the dataset. Further, the average sparsity of the remaining neurons is

generally greater than 50% except for the magic, recidivism, and heloc datasets, indicating the

training procedure effectively excludes any literals that have little contribution to the prediction.

In particular, it can be seen that while a relatively small number of neurons are pruned for chess,

the remaining sparsity is higher than other datasets. This suggests that regularization can capture

the underlying logic of the datasets and find a correct direction to simplify the neural network

without severely hurting the generalization.

3.7 Conclusion

In this paper, we proposed a three-layer neural network architecture called CT-Net that

can be trained for classifying tabular data to achieve high prediction accuracy. In particular,

the trainable hidden layer neurons with step activation function logically correspond to a set

of threshold logic functions, while the output layer further constructs a conjunction of these

threshold functions. In addition, once the network is trained, for any positive prediction, a

provably minimal explanation can be readily derived from the model. We further adopt a sparsity-

promoting regularization technique to sparsify the network and simplify the threshold functions.

Experimental results demonstrate that our approach has significant advantages on producing

accuracy predictions over other state-of-the-art interpretable decision models.

Several potential improvements can be developed in the future work. First, while our
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proposed output layer essentially performs a logical conjunction (AND), other logic operations

can also be used in place of the conjunctive operation, including OR, XOR, or simply a standard

fully-connected layer. Second, multiple proposed layers that encode a logical operation can be

stacked together to provide higher network capacities. Third, the current work is focused on

binary classification with a single output neuron. Future work may extend the network to be a

multi-class classifier by increasing the number of output neurons with additional modifications.
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Chapter 4

Alternative Formulations of Decision Rule
Learning from Neural Networks

4.1 Introduction

Deploying inherently interpretable decision models that can provide human understand-

able explanations is critically important in machine learning domains like healthcare and criminal

justice where human lives are often deeply impacted [77]. In these domains, the datasets are

typically provided as tabular data with naturally meaningful features. One popular approach to

tabular learning is the use of decision rule sets [20, 86, 47, 91, 25]. In decision rule sets, the

model is represented in disjunctive normal form (DNF) as an independent set of logical rules.

Decision rules are inherently interpretable: the rules are expressed in terms of logical

combinations of input conditions that must be satisfied for a positive prediction. In addition to

providing a prediction, the corresponding matching rule in the model also serves as an explanation

that humans can easily understand. In particular, the explanations are stated directly in terms of

meaningful input features, which can be categorical (e.g., color equal to red, blue, or green) or

numerical (e.g., score ≥ 100) attributes, where the binary encoding of categorical and numerical

attributes is well-studied [91, 25]. Although decision rules can provide explainable predictions,

they often produce inferior results in terms of accuracy when compared to models like gradient

boosted and ensemble decision trees [15, 10]. However, these black-box models are difficult or

impossible for humans to understand. Their lack of interpretability makes them difficult to gain
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public trust for their use in high-stakes applications like medical-diagnosis and criminal justice,

where decisions can have serious consequences on human lives [77].

Recently, [71] proposed a new paradigm for decision rule learning as a neural net training

problem in which the proposed DR-Net neural network architecture maps directly to an AND-

OR logic network in disjunctive normal form (DNF), which can be readily translated into an

explainable decision rule set for binary classification. In particular, DR-Net is a three layer

architecture in which the first layer comprises the inputs, the hidden layer comprises neurons

that implement trainable logic-AND operators, and the output neuron implements a trainable

logical-OR operation. The trainable logical-AND neurons form rules as a conjunction of input

features, and the trainable logical-OR neuron forms a rule set as a disjunction of rules. As detailed

in [71], this approach can leverage a large body of sophisticated neural net training techniques to

achieve state-of-the-art predictive performance while retaining the interpretability of decision

rules.

Despite the advances made in the DR-Net work, there are several issues that deserve

further attention, which we aim to address in this paper. One issue is that the AND neurons and

the OR neurons in [71] are formulated differently: the trainable AND neurons have continuous

weights, whereas the trainable OR neurons require the binarization of weights to 0 or 1. The

different treatments of the two logic operators make it more difficult to compose them together

in future multi-level neural net architectures. In addition, their different treatments also make it

more difficult to employ certain sparsity-promoting neural net training techniques like reweighted

L1 regularization, which are important for achieving sparse networks that translate to simpler

decision rules for tabular learning.

In this paper, we have substantially extended the work in [71] in the following ways:

• We propose a new formulation of a trainable OR neuron based on continuously trainable

weights without the need to binarize the weights, in the same way that the AND neuron

is formulated. Moreover, our new formulation of the OR neuron is generalized in the
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same way as our AND neuron formulation in that inputs can now be negated by means of

negative weights. This creates more flexibility in the training process.

• We further added a new trainable “NAND neuron” (Not AND), which is also based on the

same model of trainable continuous weights.

• By De Morgan’s Law, we know that an AND-OR logic network is logically equivalent to a

NAND-NAND logic network. Therefore, given our formulation of a trainable NAND neu-

ron, we propose a new neural net architecture called NN-Net (short for NAND-NAND Net)

for decision rule learning as an alternative to DR-Net. We also modified the formulation of

DR-Net with our new formulations of the AND and OR neurons.

• Further, given our new formulations of Boolean logic operators as trainable neurons

with continuous weights, existing sparsity-promoting neural net training techniques like

reweighted L1 regularization can be directly applied to derive simpler decision rule sets, in

addition to a stochastic L0 regularization approach that was previously used in [71].

• In addition, we added many new experiments in our experimental evaluation section. In

particular, we evaluated our new formulations of DR-Net and NN-Net, together with

two sparsity-promoting regularization approaches. We also added new experiments to

analyze the training process and show the effects of the proposed sparsity-promoting

mechanisms, including the analysis of training convergence and the effects of using

different combinations of regularization coefficients, which affect the model complexities.

The rest of the paper is outlined as follows: Section 4.2 provides some background.

Section 4.3 systematically defines different logic operators as fundamental building blocks of

networks. Section 4.4 introduces a new version of DR-Net and proposes NAND-NAND net as

an alternative network structure that can also be mapped to a set of decision rules. Section 4.5

describes sparsity-promoting regularization approaches for training the proposed networks.
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Section 4.6 provides extensive evaluations of our proposed approaches. Section 4.7 summarizes

related work. Section 4.8 concludes the paper.

4.2 Background

4.2.1 Binarization of tabular data

Although binary features commonly appear in tabular datasets, these datasets also gen-

erally include categorical and numerical features, which are naturally used when the data is

collected. In this work, we assume all data are binary encoded and thus categorical and numerical

features need to be first binarized using well established preprocessing steps in the machine

learning literature. In particular, we follow exactly the same binarization approach used in some

decision ruler learners [91, 25], where we simply one-hot encode all categorical features into bi-

nary vectors. For numerical features, we adopt quantile discretization based on the distribution of

numerical values in the training data to get a set of thresholds for each feature, where the original

numerical value is one-hot-encoded into a binary vector by comparing with the thresholds (e.g.,

age ≤ 25, age ≤ 50, age ≤ 75) and encoded as 1 if less than the threshold or 0 otherwise. This

binarization approach for numerical features has been widely used by decision rule learners and

shown to achieve better performance than directly discretizing numerical values into intervals

[91].

4.2.2 The decision rule learning problem

Once a tabular dataset has been binarized, as explained above, the goal of decision rule

learning is to train a classifier in the form of a Boolean logic function in disjunctive normal

form (OR-of-ANDs). Each logical-AND operation serves as a decision rule by forming the

conjunction of a subset of input features or their negations. An instance satisfies a rule if all the

conditions captured in the rule are satisfied for the instance. The logical-OR operation serves to

form a decision rule set by forming the disjunction of the rules. The logical-OR operation means
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the final prediction will be positive if at least one rule is satisfied (i.e., the AND operation is true).

Otherwise, the final prediction will be negative.

In particular, a training set can be represented mathematically as a set of N data samples

(xn,yn), n = 1, ...,N, where xn is a vector of D binarized features xn,i ∈ {0,1}, i = 1, ...,D, and

yn ∈ {0,1}. The decision rule set learned can be denoted as a set of m terms: C = {c1,c2, ...,cm}.

We define a term c to be a conjunction of k features (e.g., an input feature xi) or their negations

(e.g., xi), where 1≤ k ≤ D. If an input feature xi or its negation xi are both excluded from the

term c, we say xi is a “don’t care,” meaning whether xi is 0 or 1 has no effect on the outcome of

term c. Under this definition, an instance xn satisfies a term if only if all conditions in the terms

are satisfied in the instance: i.e. xn,i = 1 for xi and xn,i = 0 for xi.

4.3 Boolean Logic Operators as Trainable Neurons

In this section, we present the formulation of several Boolean logic operators as trainable

neurons. In particular, we describe the formulation of three trainable logic operators, AND,

OR, and NAND (Not AND) that will be used as building blocks in the neural net architectures

described in the next section. Unlike the earlier work in [71] that treated the AND and OR neurons

differently, we formulate all three logic operators in the same way in this paper as trainable

neurons with continuous weights and dynamic biases. We believe this uniform formulation of all

three logical neurons is cleaner and enables a more consistent training of the neural nets that use

them.

4.3.1 AND Neuron

As discussed in Section 4.2.1, categorical and numerical attributes are first binarized into

Boolean vectors. Therefore, decision rules become simply a conjunction (or a logical-AND) of

the corresponding binary variables. We would like to define a neuron that is trainable in the

following sense: Given x ∈ {0,1}D as a vector of D binary variables, we want to define a neuron

that can be trained to implement the conjunction of a subset of these D variables, depending if the
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corresponding weights are non-zero or not. Zero weights would be interpreted as the exclusion

of the corresponding binary variables in the conjunction subset. Further, for the binary variables

included in the conjunction subset, we would like to generalize the AND operator to include the

conjunction of a binary variable xi or its negation xi, depending if the corresponding weight wi

is positive or negative. This is achieved by defining a soft formula, followed by a binary step

activation function.

Specifically, given the binarized inputs as x ∈ {0,1}D and the output as y, a neuron that

performs a soft AND operation is defined as follows:

yAND =
D

∑
i=0

wixi− ∑
wi>0

wi. (4.1)

In Equation 4.1, the dot product of the weights and inputs (∑D
i=0 wixi) is added with a dynamic

bias term (−∑wi>0 wi), whose value depends on all the positive weights of the neuron. With the

dynamic bias and binarized inputs, the range of the output of a soft AND neuron is within (−∞,0].

The output y = 0 can only be achieved when all inputs match the sign of the corresponding

weights: all positive weights should have the inputs of 1 and all negative weights should have the

inputs of 0. Thus, a soft AND neuron can be seen as a logic AND gate if we map the neuron

output of 0 as TRUE and other negative neuron outputs as FALSE. Just like the behavior of

weights in regular neurons, the zero weights in a soft AND neuron mean that the corresponding

inputs will not have any effect on the output.

However, the outputs of the soft AND neurons cannot be directly passed as inputs to

other soft AND neurons because they are not binary numbers, and thus multiple layers of soft

neurons alone cannot be concatenated to form a neural network that performs logical operations.

Thus, in order for soft AND neurons to function as proper logical gates in the neural network

forward process, binary step functions are applied as the activation functions.
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The binary step activation function for the soft AND neurons is defined as

f (x) =


1 if x = 0

0 otherwise,
(4.2)

which simply maps the value 0 to value 1 and negative values to value 0. The activation function

defined in Equation 4.2 turns a soft AND neuron into a hard AND neuron that exactly performs

a logical AND gate operation, since the output is 1 only when all of the input operands are

TRUE (all inputs match the sign of the corresponding weights) and 0 otherwise. However, as

can be observed, the binary step function defined in Equation 4.2 discretizes continuous inputs

into binary integers, which is not naturally differentiable and the classic gradient computation

approach doesn’t apply here. Therefore, we utilize the straight-through estimator discussed in

[5] with the gradient clipping technique. Denoted by ŷi the binarized activation based on yi, we

compute the gradient as follows:

gŷi =

{
0 if yi <−1

gyi otherwise,
(4.3)

where gŷi =
∂L
∂ ŷi

and gyi =
∂L
∂yi

are the gradients of classification loss L w.r.t. ŷi and yi, respectively.

The condition yi <−1 is motivated by the ReLU1 function, which clips the gradient w.r.t. the

outputs that are more than 1 away from the maximum value and introduces non-linearity into the

training process and empirically improves the performance.

4.3.2 OR Neuron

Like the trainable AND neuron described in the previous section, we would like to define

an OR neuron that can be trained to implement the disjunction (or the logical-OR) of a subset of

the input variables, with zero weights interpreted as the exclusion of the corresponding binary

variables. Also, like our formulation of the AND neuron, we generalize the OR neuron to include
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the disjunction of a binary variable xi or its negation xi, depending if the corresponding weight

wi is positive or negative.

In particular, similar to the soft AND neuron, we define a soft OR neuron as follows1:

yOR =
D

∑
i=0

wixi− ∑
wi<0

wi. (4.4)

A soft OR neuron is similar to a soft AND neuron in that it also consists of the dot product

and a dynamic bias, but the dynamic bias now depends on all negative weights of the neuron,

as opposed to the positive weights in the soft AND neuron. Because of the flipping sign of

the dynamic bias in the soft AND neuron, the range of the output is also flipped to be [0,∞),

where 0 means FALSE and can only be produced when all inputs do not match the sign of the

corresponding weights. Although 0 values can appear in the outputs of both soft AND neuron

and soft OR neuron, the interpretations are quite contrasting: it represents TRUE for soft AND

neurons but FALSE for soft OR neurons.

One of the benefits of using the formulations mentioned above to define soft AND and

OR neurons is that the neurons are interchangeable with conjunctions and disjunctions while

at the same time being fully differentiable. The dynamic bias provides logical meanings to the

signs of trainable weights and values of the outputs. In particular, the operands of soft AND and

OR operations are TRUE when the inputs to the neurons match the signs of the corresponding

weights, and soft AND and OR neurons output 0 (considered TRUE for AND neuron and FALSE

for OR neuron) only when all the operands are TRUE and FALSE respectively. Also, dynamic

bias only involves linear operations such as multiplications and deductions and thus is fully

differentiable, which helps the gradients flow smoothly in the backward propagation process.

1In [71], the OR neuron is formulated differently. The soft OR operation in that earlier work is defined as
yOR = ∑

D
j=1 ŵixi− ε , where 0 < ε < 1 is a small value (e.g., ε = 0.5), and where ŵi is the binarized version of the

full-precision weight wi such that ŵi = 0 if wi ≤ 0 and 1 otherwise. This required binarization of weights is different
from the formulation of the AND neuron that uses continuous weights. The different treatments of the two logic
operators make it more difficult to compose them together in future multi-level neural net architectures, and their
different treatments also make it more difficult to employ certain sparsity-promoting neural net training techniques
like reweighted L1 regularization that we use in this work.
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The soft OR neuron can be extended to be a hard OR neuron by applying a similar binary

step activation function

f (x) =


1 if x ̸= 0

0 otherwise,
(4.5)

where the gradients are computed as

gŷi =

{
0 if yi > 1

gyi otherwise.
(4.6)

As can be seen later, the hard logic neurons are necessary building blocks of Decision

Rules Network, ensuring that the inferences of the network and the derived decision rules are

identical.

4.3.3 NAND Neuron

Apart from the AND and OR operations, the NAND operator can also be used as a

building block for the decision rule set. As discussed in the next section, the concatenation of two

NAND operations is equivalent and can be easily transformed to the OR-of-AND form. Since

the NAND operation is defined as an AND operation with the output negated, we can define the

soft NAND neuron by appending a negation function to the output of the soft AND neuron:

yNAND =−yAND = ∑
wi>0

wi−
D

∑
i=0

wixi. (4.7)

Remember that the soft AND neuron defined in Equation 4.1 will output a continuous value

between (−∞,0], where the output 0 can only be attained when all inputs match the sign of the

corresponding weights. The negation function in Equation 4.7 simply inverted the soft AND

neuron to output a value within the range [0,∞). Since the output of the soft NAND neuron can

be interpreted in the same way as the output of the soft OR neuron, the binary step activation

function for the soft OR neuron defined in Equation 4.5 can be used to turn the soft NAND
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neuron to the hard NAND neuron. Therefore, the soft NAND operation, which consists of a soft

AND operation and a negation function, together with the binary step activation function defined

in Equation 4.5 forms a logical NAND gate that outputs 0 when all inputs match the sign of the

corresponding weights and 1 otherwise. To summarize, a soft NAND neuron is implemented

using a soft AND neuron with a negation function and a hard NAND neuron is achieved by

applying a step binary activation function afterward.

4.4 Design Rule Learning as Trainable Neural Networks

In this section, we first review the DR-Net architecture proposed in [71]. However, in

this work, we replace the AND and OR operators with our new formulations in Section 4.3. In

addition, we introduce an alternative neural network structure called a NAND-NAND net by

leveraging the NAND neuron formulation, which also maps correspondingly to a set of decision

rules in disjunctive normal form (DNF) in accordance to De Morgan’s Law.

4.4.1 Decision Rules Network

As described in [71], the Decision Rules Network (DR-Net for short) is a simple-three

layer neural network architecture, comprising an input layer of n input units, a hidden layer of k

neurons, and an output layer with a single output neuron. A toy example is shown in Figure 4.1(a)

for predicting college admissions, which we use to illustrate several key ideas regarding the

DR-Net architecture. In this example, the first input “GPA ≥ 3.0” indicates that the student has

at least a high school grade point average (GPA) of 3.0. The second input “SAT ≥ 1000 indicates

that the student has scored at least 1000 on the SAT college entrance exam. The last two inputs

indicate whether or not the student has work experience and strong letters of recommendation,

respectively.

Each of the n units at the input layer passes its corresponding assigned binarized value

to each neuron in the hidden layer. Denoted as Rules Layer, the hidden layer contains k AND

neurons to implement k logical-AND operations. The output unit, denoted as Label Layer,
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IF   GPA ≥ 3.0 OR 
SAT ≥ 1000 OR
Work-Experience AND Strong-Recommendations

THEN Admit-Student

Strong-
Recommendations

Work-
ExperienceGPA ≥ 3.0 SAT ≥ 1000 

(a)

La
be

l L
ay

er
R

ul
es

 L
ay

er

(b)

Work-Experience AND 
Strong-Recommendations

GPA < 3.0
AND 

SAT < 1000
GPA ≥ 3.0 SAT ≥ 1000 

Figure 4.1. (a) An example of the DR-Net architecture with 4 AND neurons. The blue lines to the
AND neurons represent positive weights while red lines represent negative weights. A dashed line
indicates the exclusion of the corresponding input feature. Please note that we represent “NOT
(GPA ≥ 3.0)” as “GPA < 3.0” in the third rule. Similarly, “NOT (SAT ≥ 1000)” is represented
as “SAT < 1000.” For the output OR neuron, a blue line indicates that the corresponding rule is
included in the rule set, and a dashed line indicates the corresponding rule is excluded. (b) The
network maps directly to the corresponding decision rule set shown in the box on the right.
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implements a disjunction (logical OR) of the k AND neurons in the hidden layer.

In the Rules Layer shown in Figure 4.1(a), the blue lines indicate positive weights, the

red lines indicate negative weights, and the dashed lines indicate zero weights, which means

the corresponding inputs are excluded from the rule formed. For example, the first hidden layer

neuron is interpreted as the rule “GPA ≥ 3.0.” For the third hidden layer neuron, the red lines

indicate “NOT (GPA ≥ 3.0) AND NOT (SAT ≥ 1000),” which is equivalently represented as the

rule “GPA < 3.0 AND SAT < 1000.” The last neuron is interpreted as the rule “Work-Experience

AND Strong-Recommendations.” Similarly, in the Layer Layer, the blue lines again indicate

positive weights, which means the corresponding rule is included in the rule set, and the dashed

lines indicate zero weights, which means the corresponding rule is excluded from the rule set.

Together with the hidden layer of AND neurons, the overall DR-Net architecture implements a

trainable AND-OR network as a Boolean formula in DNF. which directly maps to an unordered

set of IF-THEN rules, as shown for example on the right-hand side of Figure 4.1(b).

The key difference between this work and our earlier work in [71] is in the definitions of

the AND and OR neurons, as described in Section 4.3, in that both AND and OR neurons are

uniformly formulated the same way with continuous weights, which enables them to be trainable

with different regularization methods, for example the sparsity-based regularization methods

described in Section 4.5. In addition, our OR neuron formulation is generalized to allow for the

negation of inputs. As explained in Section 4.3, the OR neuron is generally defined so that it can

include the disjunction of a binary variable xi or its negation xi, depending if the corresponding

weight wi is positive or negative.

A variant of Figure 4.1 is shown in Figure 4.2. As shown in Figure 4.2(a), a negative

weight is indicated by a red line in the Label Layer, which corresponds to the negation of the

corresponding rule. In Figure 4.2(a), the AND rule for the third hidden layer neuron is “GPA <

3.0 AND SAT < 1000.” The corresponding red line to the OR output neuron means the negation

of this rule. By De Morgan’s Law, this negation simply rewrites the AND rule by negating

each binarized feature and OR-ing them together, which means the result logic will again be
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IF   GPA ≥ 3.0 OR 
SAT ≥ 1000 OR
Work-Experience AND Strong-Recommendations

THEN Admit-Student

Strong-
Recommendations

Work-
ExperienceGPA ≥ 3.0 SAT ≥ 1000 
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(b)

Work-Experience AND 
Strong-Recommendations

GPA < 3.0
AND 

SAT < 1000
GPA ≥ 3.0 SAT ≥ 1000 

Figure 4.2. (a) A variation of the example in Figure 4.1 in which the red line to the output OR
neuron indicates the negation of the corresponding rule “GPA < 3.0 AND SAT < 1000.” By De
Morgan’s Law, the negation of “GPA < 3.0 AND SAT < 1000” becomes “GPA ≥ 3.0 OR SAT
≥ 1000,” which results in the same decision rule set. (b) The corresponding decision rule set is
shown on the right.
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in disjunctive normal form. In particular, the negation of “GPA < 3.0” is “GPA ≥ 3.0” and the

negation of “SAT < 1000” is simply “SAT ≥ 1000.” Therefore, the negation of “‘GPA < 3.0

AND SAT < 1000” is simply “GPA ≥ 3.0 OR SAT ≥ 1000,” which results in the same set of

IF-THEN rules, as shown in Figure 4.2(b). The corresponding rule to the red line is also shown

in red in the IF-THEN rules shown in Figure 4.2(b).

4.4.2 NAND-NAND Network

Besides modifying the DR-Net architecture with our formulations of AND and OR

neurons, we also propose an alternative architecture of the Decision Rules Network called a

NAND-NAND Network (NN-Net), which is also a three layer fully-connected neural network

that translates to a decision rule set in the disjunctive normal form with the categorical and

numerical attributes binarized based on the same strategy with DR-Net. In particular, the main

difference between NN-Net and DR-Net is that while the Rules Layer and the Label Layer

of DR-Net encode a set of logical AND operators and an OR operator, respectively, NN-Net

implements two levels of NAND operators cascading together with its Rules and Label layers.

As previously discussed, the set of decision rules in disjunctive normal form derived

from DR-Net can be viewed as OR-of-ANDs, which are naturally implemented with a set of

AND operators connecting to an OR operator. Mathematically, denote by pk,i ∈ {xi,xi} the i-th

predicate in the k-th rule, a decision rule set is expressed as follows:

y =
∨
k

∧
i

pk,i. (4.8)

where
∨

and
∧

represent an AND operation and an OR operation, respectively. According to De

Morgan’s Laws, the negation of a disjunction is the conjunction of the negations:
∨

p =
∧

p. As

a result, the DNF in Equation 4.8 can be converted to two levels of conjunctions as follows:

∨
k

∧
i

pk,i =
∨
k

∧
i

pk,i =
∧
k

∧
i

pk,i, (4.9)
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where
∧

p corresponds to a logical-NAND (NOT-AND) operation. In other words, NAND-of-

NANDs is logically equivalent to OR-of-ANDs. Therefore, NN-Net has the exact same structure

as DR-Net where the hidden layer contains n hard NAND neurons and the output layer only has

1 soft NAND neuron.

Although formulated differently, NN-Net can be interpreted in the same way as DR-Net.

That is, the hard NAND neurons in the Rules Layer of NN-Net encode rules in the same ways as

the hard AND neurons in the Rules Layer of DR-Net, which will then be selected by the soft

NAND neuron in the Label layer. The equivalence of translation to the decision rule set between

NN-Net and DR-Net can be explained by the following two observations: 1) negations of the

outputs from the Rules Layer NAND neurons can be separated out and folded into the Label

Layer and 2) the negations of the inputs to the NAND neuron in the Label layer is essentially

performing an OR operation according to De Morgan’s Laws. The first observation shows that a

set of conjunction rules can be readily translated from the weights of the Rules layer in NN-Net

just like how they are from DR-Net, while the second one reveals that the way of interpreting the

disjunction of the conjunction rules derived from the Rules layer is also through looking at the

weights of the output neuron of NN-Net. More specifically, in light of the extra negation of the

inputs borrowed from the hidden layer, the NOT-NAND neuron in the Label Layer of NN-Net

will output true if one of the neurons in the Label Layer has the output that matches the sign of

the corresponding weight. Thus, the neuron in the Label Layer combines the rules encoded in

the Rules layer disjunctively, where the positive and negative weights require the positive and

negative associations of the corresponding rules respectively, while the zero weights discard the

rules completely.

4.5 Simplifying Rules through Sparsity

The neural network structures proposed above outline a way to derive a set of decision

rules using stochastic gradient descent. As discussed above, for both DR-Net and NN-Net, a zero
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weight in a Rules layer neuron corresponds to the exclusion of the corresponding input feature,

and a zero weight for the Label Layer neuron corresponds to the exclusion of the corresponding

rule from the rule set. Thus, maximizing the sparsity of the Rules Layer corresponds to reducing

the number of conditions in the rule set, and maximizing the sparsity of the Label Layer

corresponds to eliminating more rules in the rule set. However, to eliminate an input feature from

a logical rule or a logical rule from the complete rule set, the corresponding weight has to be

exactly zero, which is difficult to achieve in the typical network training process.

To explicitly reduce the complexity of the derived rule set, the earlier work [71] only

proposed one sparsity-promoting mechanism that leverages the recently proposed L0 regulariza-

tion. In this work, the new uniform definitions of AND, OR, and NAND neurons enable more

versatile punning methods to be applied in our networks without any special adaption. To achieve

a high degree of sparsity with exact zero weights, we have experimented with incorporating two

sparsity-based mechanisms into the training process: 1) the recently proposed L0 regularization

that introduces trainable mask variables that are attached to all weights, and 2) the reweighted

L1 regularization [13] approach that drives the weights with small absolute values to zero by

employing a log-sum penalty term.

In particular, the sparsity-promoting regularization is applied to both the Rules Layer and

the Label Layer as follows:

LR = λ1LR1 +λ2LR2, (4.10)

where LR1 and LR2 are the regularization penalty terms w.r.t. the Rules Layer and the Label

Layer, respectively, and λ1 and λ2 are the corresponding regularization coefficients that balance

the classification accuracy and the rule set complexity. Intuitively, larger λ1 and λ2 will result

in fewer number of conditions per rule and fewer number of rules, respectively. With the

regularization techniques formulated by Equation 4.10 incorporated, the overall loss function we
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optimize for can be expressed as follows:

L = LBCE +LR, (4.11)

where LBCE is the binary cross-entropy loss.

4.5.1 Sparsification with L0 regularization

As discussed in [58], to achieve network sparsity through L0 regularization, a binary

random variable zi ∈ {0,1} is attached to each weight of the model to indicate whether the

corresponding weight is kept or removed. Therefore, each weight wi can be represented by the

product of a weight w̃i and the corresponding binary random variable zi:

wi = w̃izi. (4.12)

Assuming each zi is subject to a Bernoulli distribution with parameter πi, i.e., q(zi|πi) = Bern(πi),

the probability that zi is 1 is just πi. In [58], L0 regularization is implemented by summing all πi

parameters as the regularization term in the loss function, which penalizes the probabilities of

masks being 1 and thus increases the sparsity of the network. Applying the above regularization

method to both DR-Net and NN-Net is straightforward: all weight parameters are replaced by

their product with the corresponding mask variables.

We denote by π1,i, j and π2, j the penalty of the non-zero mask variables of the neurons in

Rules Layer and the output neuron in the Label Layer, respectively, where i = 1,2, . . . ,D is the

feature index, and j = 1,2, . . . ,m is the index to the j-th neuron. Then the regularization loss LR
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in Equations 4.10 and 4.11 can be specified as follows:

LR = λ1LR1 +λ2LR2

= λ1

m

∑
j=1

D

∑
i=1

π1,i, j +λ2

m

∑
j=1

π2, j.
(4.13)

4.5.2 Sparsification with reweighted L1 regularization

Alternatively, the reweighted L1 regularization approach proposed in [13] encourages

both zero weights and weights with small absolute values. In particular, this regularization

technique penalizes smaller absolute value weights so that they are driven towards zero faster,

resulting in more weights at or near zero. We also incorporate a pruning method [31] to prune

weights with absolute values below a certain threshold. Weights near this threshold that remain

tend to be small so that they are more likely to be eliminated from the logic operations. In

particular, reweighted L1 minimization can be achieved by employing a log-sum penalty term

log(∥W∥1 + ε) in both layers. Therefore, the reweighted L1 regularization loss LR is formulated

as follows:
LR = λ1LR1 +λ2LR2

= λ1

m

∑
j=1

D

∑
i=1

log(|w1,i, j|+β )+λ2

m

∑
j=1

log(|w2, j|+β ),
(4.14)

where w1,i, j and w2, j are the weights of the Rules layer neurons and the Label Layer output

neuron, respectively, and β > 0 is a small value added to ensure numerical stability (e.g.,

β = 0.01).

4.6 Experimental Evaluation

In this section, we evaluate DR-Net and NN-Net with both sparsity-promoting mech-

anisms proposed in Section 4.5: DR-Net with L0 regularization (DR-Net-L0), DR-Net with

reweighted L1 regularization (DR-Net-RE), NN-Net with L0 regularization (NN-Net-L0), and

NN-Net with reweighted L1 regularization (NN-Net-RE). Specifically, for all four variations,
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we show the convergence of networks in the training process, analyze the effectiveness of the

sparsity-promoting mechanisms in reducing the rule set complexity, demonstrate the high predic-

tive performances of the proposed DRNet and NNNet, and compare with other state-of-the-art

rule learning methods in terms of the accuracy-complexity trade-off.

The numerical experiments were evaluated on four publicly available tabular learning

datasets, all of which contain more than 10,000 training instances. The first two datasets are

from the UCI Machine Learning Repository [27]: Adult Census (adult) and MAGIC Gamma

Telescope (magic). These datasets have also been used in recent works on decision rule learning

[24, 91, 25]. The remaining two datasets are the FICO HELOC dataset (heloc) [14] and the home

price prediction dataset (house) [89]. As with prior works [91, 25] compared in our evaluation,

categorical and numerical attributes are first binarized using well-known encodings, as explained

in Section 4.2.1.

The results of the experiments typically include test accuracies and complexities of the

derived decision rule sets. Three types of complexities of the decision rule sets are considered

in the experiments: number of rules, rule complexity, and model complexity, which capture

different aspects of the decision rule models. We define model complexity to be the number of

rules plus the total number of conditions in the rule set and rule complexity to be the average

number of conditions in each rule of the model.

Unless specified otherwise, both DR-Net and NN-Net were trained for 2000 epochs

using the Adam optimizer with a fixed learning rate of 10−2 and no weight decay across all

experiments. For simplicity, the batch size was fixed at 400, the weights of Rules Layer neurons

were uniformly initialized within the range between 0 and 1, and the weights of the Label Layer

output neuron were initialized to be all 1. For L0 regularization, we used the same parameters as

proposed in [58]. For reweighted L1 regularization, the pruning threshold was set to be one tenth

of the layer’s standard deviation and β was selected to be 0.01.
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4.6.1 Training Analysis

We first analyze different behaviors of all four methods (DR-Net-L0, DR-Net-RE, NN-

Net-L0, and NN-Net-RE) in the training process and then explored the possible influences that

different hyper-parameters can have over the derived decision rules. The results in this subsection

were obtained by training all four methods on the adult dataset and each network was initialized

with 1000 neurons in the Rules layer to allow sufficient modeling capability.

Training Convergence and Complexity Reduction. In this experiment, we empirically demon-

strate that the ideas of dynamic bias and the binary step activation function with the modified

straight-through estimator can work together to ensure a smooth training procedure. Figure 4.3

shows four statistics (training loss, training accuracy, number of rules, and rule complexity)

recorded in the training processes of all four methods as functions of the training epochs, which

were all trained with λ1 = 10−1 and λ2 = 10−5 on the entire adult dataset. Note that only the

first half of the training procedure (first 1000 epochs) is shown in the figure while the second half

was omitted from the figures to save space, as we noticed that the four statistics for all networks

were very stable after 1000 epochs.

First, we notice that DR-Net (DR-Net-L0 and DR-Net-RE) and NN-Net (NN-Net-L0

and NN-Net-RE) have very similar curves for all metrics, which experimentally prove that their

architectures are interchangeable and that our neuron designs truly mimic the operations of

the Boolean logic gates. The overall trends for all plots match our expectations. In particular,

the training losses, the number of rules, and the rule complexities decrease with the increasing

number of epochs until convergences at around epoch 400 for all methods. Furthermore, the

training accuracies increase from 0.75 (all predictions are 0) to around 0.84 as the number of

epochs increases.

However, there are many hard dips in the training process of the networks with L0

regularization where the training accuracies suddenly drop to around 0.25 and resume back in
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the next epoch. Some minor spikes and dips are also noted in the plots of the number of rules and

the plots of the rule complexity respectively, which exactly correspond to the hard dips found in

the plots of training accuracy. These spikes and dips happened in the training process because a

weight in the Label Layer was trained to be negative and thus the corresponding rule in the Rules

Layer was automatically converted to a set of rules with a single negated feature in each rule

according to De Morgan’s Laws as discussed in Section 4.3. The conversion from the negation

of a rule to a set of rules with a single feature in each rule explains the spikes in the number of

rules and dips in the rule complexities. Since every instance has a very high probability to be

covered by at least one of the converted rules that have the single negated feature, the networks

will predict all instances to be the positive class, which results in the hard dips in the training

accuracies. However, as we can see from the plots, continuing training with only one more epoch

can conveniently fix the error and thus normally there won’t be any negative weights in the Label

Layer in practice if all Label Layer weights were initialized with positive weights.

Lastly, we note that the number of rules decreased dramatically in the first few epochs of

the training for DR-Net-L0 and NN-Net-L0, as most of the rules were obviously redundant and

pruned simultaneously. The behavior of a significant decrease in the number of rules can also

be observed for the networks trained using reweighted L1 regularization at around epoch 200,

which explains the disturbances found in the rest of the plots in Figure 4.3 (c) and Figure 4.3 (d).

Effects of sparsity-promoting mechanisms. As discussed in Section 4.5, the rule set com-

plexities can be adjusted by setting different combinations of regularization coefficients λ1 and

λ2. In theory, the regularization coefficient for the Rules Layer λ1 should affect the number of

conditions per rule, which is captured by rule complexity, and the regularization coefficient for

the Label Layer λ2 should influence the total number of rules. We explore in this experiment

how effective the two proposed sparsity-promoting mechanisms are by changing the regulariza-

tion coefficients and see how the rule complexity and number of rules change, respectively. In

particular, we trained all four methods with 5 different λ1 and 5 different λ2 for each method on
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(a) DR-Net-L0

(b) NN-Net-L0

(c) DR-Net-RE

(d) NN-Net-RE

Figure 4.3. Training statistics (training loss, training accuracy, number of rules, and rule com-
plexity) as functions of the number of epochs in the training process.
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the adult dataset using 5-fold cross validation. The average complexity values (rule complexity

and number of rules) and their standard deviations for different regularization parameters (λ1

and λ2) are shown in Figure 4.4.

In the left column of Figure 4.4, each line in the plots shows the changes of the rule

complexity as λ1 increases for a fixed value of λ2. For all four methods, the rule complexities

monotonically decrease as λ1 increases from 10−4 to 1 (note that the values in x-axes are all in

log scales), showing the high effectiveness of the regularization term for the Rules Layer among

all four methods. The good correlation between the rule complexity and λ1 for all methods

provides our methods a foundation for the excellent accuracy-complexity trade-off capabilities.

Similarly, the lines in the right column of Figure 4.4 indicate how the number of rules of the

derived decision rule set is changed with respect to λ2 given that the λ1 is fixed for each line. The

number of rules also decreases monotonically as λ2 increases from 10−7 to 10−3 for the networks

with the L0 regularization, while there is no clear relation between the number of rules and λ2 for

networks trained with reweighted L1 regularization. Thus, compared to networks with reweighted

L1 regularization, networks trained using L0 regularization demonstrate better potentials of

reducing number of rules, as larger λ2 will consistently result in fewer rules. However, training

networks with reweighted L1 regularization should still be considered as a valid approach, since

even the maximum value of the number of rules for DR-Net-RE and NN-Net-RE shown in

Figure 4.4 has been pruned to be less than 125, which is a substantial reduction compared to the

starting point of 1000 rules.

4.6.2 Classification performance and Interpretability

Next, we demonstrate the advantages of our proposed methods in terms of both predictive

performance and rule set interpretability by comparing them with three other state-of-the-art rule

learning algorithms: the RIPPER algorithm (RIPPER) [20], Bayesian Rule Sets (BRS) [91], and

the Column Generation algorithm (CG) [25]. On the other hand, BRS and CG are examples of

recent works in rule learning literature that explicitly consider the interpretability in the training
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(a) DR-Net-L0

(b) NN-Net-L0

(c) DR-Net-RE

(d) NN-Net-RE

Figure 4.4. The relations between complexities (rule complexity and number of rules) and
regularization parameters (λ1 and λ2). All x-axes are in log10 scales. All complexity values were
averaged over 5 cross-validation partitions and the vertical bars represent standard deviations.
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process. We used open-source implementations on GitHub for all three algorithms, where the

CG implementation [3] is slightly modified from the original paper.

In running the experiments of comparing our methods with the decision rule set learn-

ing algorithms mentioned above, we only tuned the hyper-parameters that directly affect the

interpretability of the rule sets. In particular, we varied the maximum number of conditions

and the maximum number of rules, as they are provided by the implementation of RIPPER to

constrain the overall complexity of the final model. For BRS, we modified the prior multiplier

κ that affects the probability of selecting rules with different lengths, which was also used in

[25]. The official implementation [3] of the column generation algorithm (CG) [25] provides

two hyper-parameters to set the costs of adding a rule and a condition and thus they instead of

the complexity bound parameter C as described in the paper were turned in the experiments.

Lastly, for DR-Net-L0, NN-Net-L0, DR-Net-RE, and NN-Net-RE, combinations of λ1 and λ2

were varied.

Maximizing Accuracy. To show the upper limits of the predictive performances of our proposed

methods, we also included three traditional machine learning methods: Classification and Re-

gression Trees (CART) [9], Random Forests (RF) [10], and a deep neural network (DNN). We

used in the experiment scikit-learn [69] implementations for both CART and RF, for which the

maximum depth of trees was fixed to be 100 to achieve better generalization. DNN consists of 6

fully connected layers with the ReLU function as the activation function between the layers and

each hidden layer of DNN has a fixed number of 50 neurons to ensure enough learning capacity,

which was trained with 10000 epochs, a batch size of 2000, a learning rate of 10−2, and a weight

decay of 10−2. Note that RF and DNN are typically considered as uninterpretable models, which

serve as baselines and benchmarks of what black-box models can achieve on the datasets.

To ensure a fair comparison among all rule learners, we leveraged 5-fold nested cross

validation to select the best set of hyper-parameters for each rule learner on each dataset that

maximized the validation accuracy. Also, the ranges of the hyper-parameters to be varied for each
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method were purposely constrained so that the learned decision rule sets are fairly interpretable

to the users. Thus, for DR-Net-L0, DR-Net-RE, NN-Net-L0, and NN-Net-RE, the number of

neurons in the Rules Layer was chosen to be only 50. The test accuracy results of all models

on all datasets are shown in Table 4.1. Note that all results in Table 4.1 for CG, BRS, RIPPER,

CART, RF, and DNN are copied from [71].

It can be seen in Table 4.1 that across all datasets, all variants of DR-Net and NN-Net

outperform other interpretable models in terms of the testing accuracy in most cases with few

exceptions. The method with the overall best testing accuracy (NN-Net-L0) can achieve a very

similar predictive performance compared to uninterpretable models (RF and DNN) with only a

3% discrepancy. As expected, there is no noticeable difference between the variants of DR-Net

and NN-Net in terms of the accuracies, since their architectures are essentially established

based on the same logic operations. The CART decision tree algorithm turns out to be the

worst performing model in our experiments, which might result from overfitting. The results in

Table 4.1 suggest that our proposed methods are very competitive as a machine learning model

for interpretable classification.

Accuracy-complexity trade-off. Finally the accuracy-complexity trade-offs abilities were evalu-

ated among all decision rule learning methods that include DR-Net-L0, DR-Net-RE, NN-Net-L0,

NN-Net-RE, RIPPER, BRS, and CG. Different sets of accuracy-complexity pairs were generated

for each method on each dataset by running the algorithm with a wide range of hyper-parameter

values. We ran the experiments on all datasets and the results with the average of the 5-fold

cross validation are shown in Figure 4.5 and Figure 4.6. For each method compared, the dots

connected by the line segments shown correspond to Pareto efficient models where all other

points below the Pareto frontier have either lower accuracies or higher complexities. Again, all

results in Figure 4.5 and Figure 4.6 for CG, BRS, and RIPPER are from [71].

The characteristic of being able to attain a high test accuracy with an acceptable model

complexity for DR-Net and NN-Net in Table 4.1 is carried over to Figure 4.5 and Figure 4.6.
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Table 4.1. Test accuracy based on the nested 5-fold cross validation (%, standard error in
parentheses).

dataset magic adult heloc house

interpretable

NN-Net-RE
84.14 82.59 70.76 84.89
(0.69) (0.23) (0.66) (0.46)

NN-Net-L0
84.45 83.13 70.71 86.17
(0.51) (0.59) (0.67) (0.50)

DR-Net-RE
84.63 82.50 71.05 84.84
(0.53) (0.68) (0.57) (0.66)

DR-Net-L0
84.10 83.09 70.07 85.90
(0.82) (0.51) (0.89) (0.50)

DR-Net
84.42 82.97 69.71 85.71
(0.53) (0.51) (1.05) (0.40)

CG
83.68 82.67 68.65 83.90
(0.87) (0.48) (3.48) (0.18)

BRS
81.44 79.35 69.42 83.04
(0.61) (1.78) (3.72) (0.11)

RIPPER
82.22 81.67 69.67 82.47
(0.51) (1.05) (2.09) (1.84)

CART
80.56 78.87 60.61 82.37
(0.86) (0.12) (2.83) (0.29)

uninterpretable

RF
86.47 82.64 70.30 88.70
(0.54) (0.49) (3.70) (0.28)

DNN
87.07 84.33 70.64 88.84
(0.71) (0.42) (3.37) (0.26)
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For both the heloc and house datasets, all variants of DR-Net and NN-Net dominate other rule

learners on all 3 complexity metrics, as their Pareto efficient points are always on top. For the

magic and adult datasets, all variants of DR-Net and NN-Net can still outperform other rule

learners in terms of the accuracy by a substantial margin when the model complexity, the rule

complexity or the number of rules exceeds a certain threshold. BRS does not demonstrate a

clear accuracy-complexity trade-off as its results all group in a very narrow range, which is also

noted and explained in [25]. This experiment shows that DR-Net and NN-Net can be preferred

over other rule learners because of its potential for achieving a much higher test accuracy with a

relatively moderate complexity sacrifice.

4.7 Related Work

Decision rule learning has been extensively studied in the literature, most of which

employs heuristic algorithms, but earlier methods optimize for criteria that are not necessarily

directly related to classification accuracy or model simplicity. Examples include association rule

mining and classification [19, 54], logical analysis methods [23, 8], and greedy set covering

approaches [20].

Recently, researchers have improved on decision rule learning algorithms by explicitly

considering the interpretability of rules in designing algorithms. In particular, one solution of

incorporating interpretability is to add model complexity to the optimization objective so that

simplicity can be jointly optimized together with prediction accuracy. Some methods in this

category select rules from a set of candidate rules and thus a rule-mining algorithm is employed

in the preprocessing step for these methods. Examples include a Bayesian framework that is

approximately solved using simulated annealing [91] and an optimization problem solved by a

local search algorithm [47]. However, the requirement of starting with pre-mined rules limits the

overall search space and their ability to find a globally optimized solution.

There are other methods based on Integer-programming (IP) formulations that do not
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(a) magic

(b) adult

(c) heloc

(d) house

Figure 4.5. Accuracy-Complexity trade-offs on all datasets for DR-Net and NN-Net trained
using L0 regularization. Pareto efficient points are connected by line segments.
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(a) magic

(b) adult

(c) heloc

(d) house

Figure 4.6. Accuracy-Complexity trade-offs on all datasets for DR-Net and NN-Net trained
using reweighted L1 regularization. Pareto efficient points are connected by line segments.

94



require the pre-mining of the rules, but only approximate solutions can be found for large datasets

due to the inherent complex nature of the problems. For example, in [25], the IP problem is

approximately solved by relaxing it into a linear programming problem and applying the column

generation algorithm. In [86], various optimization approaches are utilized, including block

coordinate descent and alternating minimization algorithm.

Besides decision rule sets, decision lists [74, 6, 48] and decision trees [9, 75] are also

explainable rule-based models. Decision lists capture rules in an ordered IF-THEN-ELSE

sequence. However, the cascading of rules in an IF-THEN-ELSE sequence means that the

interpretation of an activated rule will unfortunately require an understanding of all preceding

rules, which makes the explanation more difficult for humans to understand. Decision trees

implicitly organize rules into a tree structure, corresponding to paths in the tree. However, these

rules are typically more complex, and thus decision trees are often prone to overfitting.

Building on the notable success that deep neural networks have had on perceptual learning

tasks like image classification, researchers have also recently turned to neural network models

for tabular data learning [43, 2]. The works in [43, 2] aim to capture aspects of gradient boosting

decision trees and random forests that have made these models successful, and they are able to

achieve comparable performance as these approaches with neural models. However, like gradient

boosting decision trees and random decision forests, these models are also uninterpretable in the

sense that they do not provide explanations that are easily understandable by humans.

4.8 Conclusion

In this paper, we extended recent work on decision rule learning based on neural net archi-

tectures that can be accurately trained for tabular data classification. In particular, we presented

alternative formulations to trainable Boolean logic operators as neurons with continuous weights,

including trainable NAND neurons. These alternative formulations provide uniform treatments

to different trainable logic neurons so that they can be trained the same way. This enables for
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example the direct application of existing sparsity-promoting neural net training techniques

like reweighted L1 regularization to derive sparse networks that translate to simpler decision

rule sets, in addition to a stochastic L0 regularization approach that was previously used in [71].

Further, we presented an alternative network architecture based on trainable NAND neurons

by applying De Morgan’s Law to realize a NAND-NAND network instead of an AND-OR

network. Our experimental results show that these alternative formulations can also generate

accurate decision rule sets that achieve state-of-the-art performance in terms of accuracy in

tabular learning applications.

Furthermore, since all our proposed AND, OR, and NAND neurons are now uniformly

defined, layers of different neurons can be freely concatenated using a different order than

the ones proposed in this paper. For example, a neural network that directly translates to a

Conjunctive Normal Form classifier can be easily formulated by concatenating a layer of OR

neurons with an output AND neuron. It would be an interesting direction of future research to

see if different layers of logical neurons can be combined in more complicated ways to achieve

better predictive performances while maintaining good interpretability.
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Chapter 5

Trained Biased Number Representation
for ReRAM-Based Neural Network Accel-
erators

5.1 Introduction

Convolutional neural networks (CNNs) have achieved breakthrough performance on a

variety of artificial intelligence applications, including image classification, video object tracking,

natural language processing, two-player games, and autonomous-driving vehicles. However, to

continue breakthrough performance on increasingly complex artificial intelligence problems,

CNNs have steadily increased in complexity, with recent CNNs requiring over 16 billion floating

point operations for a single inference across a deep network with nearly 140 million parameters

[32, 84].

Although conventional processor architectures provide plenty of processing power for

training deep CNNs, they are often not well-suited for deployment in mobile and wearable appli-

cations where energy-efficiency is paramount. In particular, conventional processor architectures

typically require frequent data movements between the processor and off-chip memory, which

consume enormous amounts of energy. Moreover, although not as significant as the energy cost

for data movements, the tens of billions of full-precision floating point operations per inference

are also often cost prohibitive in terms of energy consumption.

97



Recently, there has been considerable excitement surrounding the use of emerging non-

volatile memory technologies for the implementation of neural network accelerators. In particular,

recent efforts have demonstrated that metal-oxide resistive random access memory (ReRAM)

[92] can be used to efficiently implement crossbar structures that provide both storage and

computation capabilities. For neural network computations, ReRAM crossbars can be used to

both store synaptic weights as well as perform matrix-vector multiplications directly in the

analog domain [34, 33, 49, 70, 45, 16, 11, 55, 87, 93]. A number of promising dataflow-like

ReRAM-based neural network accelerator architectures (e.g., ISAAC [80], PRIME [17], and

PipeLayer [85]) have been proposed that show a substantial advantage in energy-efficiency over

conventional processor architectures.

Although an ReRAM crossbar can directly perform matrix-vector multiplication, several

critical challenges are presented to ReRAM-based neural network acceleration:

• The precision of weights that can be stored in the crossbar is limited by the resolution of the

ReRAM cells, and the precision of inputs to the crossbar is limited by the resolutions of the

Digital-to-Analog Converters (DACs) and Analog-to-Digital Converters (ADCs) that are

used at the crossbar interface. In particular, practical implementations of ReRAM crossbars

are limited to some m-bit weight precision and some p-bit input precision. For example,

in ISAAC [80], the weight precision is m = 2 bits, and the input precision is just p = 1

bit. In PRIME [17], the weight precision is m = 4 bits, and the input precision is p = 3

bits. In PipeLayer [85], a spike-based scheme is used in which the inputs are provided

as spikes, which eliminates the need for DACs. This effectively corresponds to an input

precision of just p = 1 bit, while ADCs are replaced with integrate and fire units. PipeLayer

supports a weight precision of m = 4 bits. Higher precision inputs can be achieved by

evaluating the ReRAM crossbar multiple times with successive p-bit inputs. For example,

both ISAAC [80] and PipeLayer [85] support 16-bit inputs by evaluating the ReRAM

crossbar one bit at a time successively sixteen times. However, this way of achieving
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higher precision inputs increases the processing time. To increase the precision of weights,

a group of multiple crossbars can be used, where the jth column of each crossbar in the

group logically implements a portion of the weights for the same kernel. However, both

means of increasing input and weight precisions cost proportional increases in energy

consumption. Moreover, the use of multiple crossbars to increase weight precision limits

the size of CNNs that can be implemented as weights are persistent in ReRAM-based

neural network implementations.

• Ideally, we would like to use native ReRAM cell precisions of m = 2 to 4 bits. However, as

observed in [85], the accuracies of ReRAM-based neural network accelerators are sensitive

to weight precisions. For deep CNNs on complex datasets, accuracies drop sharply when

weight and activation precisions are decreased to low bit-widths. In particular, the full-

precision VGG-19 network achieves about 6.7% test error on CIFAR-10 dataset, while

this error dramatically increases to 90% if we simply “truncate” it into 4-bit weights

and activations. Alternatively, CNNs can be trained with low precision weights and

activations [61, 35, 96, 22, 30, 42, 12, 90, 98]. In particular, in [17], a low precision

number representation called dynamic fixed point [22, 42] is used for ReRAM-based

accelerators, in which an m-bit number is viewed as a 2’s complement number that is

scaled by a power-of-2 fractional scaling factor M: {−M ·2m−1, . . . ,0, . . . ,M · (2m−1−1)}.

This means the representation is symmetric in the range of positive and negative numbers.

However, when examining actual weights that these number representations are suppose to

approximate, we find that the set of weights on a given CNN layer is often not symmetric.

Consider the VGG-11 CNN architecture [84] trained on the CIFAR-10 dataset. The

distribution of weights on the Conv5-2 layer, which contains about 2.36 million weights,

spans the range [−0.075,0.128], with the positive range 71% larger than the negative

range. This leads to poor approximations when using low precision numbers in dynamic

fixed point to represent the weights.
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• ReRAM crossbar cells can only represent “positive” conductance values. However, neural

networks generally require both positive and negative weights. To implement both positive

and negative weights in ReRAM-based neural network accelerators, previous approaches

[17, 85] have implemented kernels with positive and negative weights as two separate

crossbar arrays. This “sign-splitting” approach significantly increases the hardware cost.

In this paper, we propose to use a trained biased number representation to approximate

low precision weights. In particular, we view an m-bit number as an unsigned integer that is

scaled by a fractional scaling factor M and offset by a biasing term K. Each m-bit integer

therefore represents a number from the set {0−K,M−K, . . . ,M · (2m− 1)−K}, where the

range of positive and negative numbers can be arbitrarily shifted by the biasing term K, and the

step size M can be any fractional scaling factor. The parameters M and K can be independently

trained on a per-layer basis to best approximate the distribution of weights on a given layer.

To illustrate the benefits of our proposed trained biased number representation, let us

consider again the weights on the Conv5-2 layer of VGG-11 that have been trained on the

CIFAR-10 dataset. For a precision of m = 2 bits, we computed the optimal parameters for these

weights for dynamic fixed point and our proposed trained biased number representation, and we

computed the mean square error of each representation relative to full-precision weights. Figure

5.1 shows the normalized mean square errors, which shows that dynamic fixed point has 49.3%

higher mean square errors vs. our proposed trained biased number representation.

The main contributions of this paper are as follows:

• We propose a new low precision quantization approach for CNNs based on a novel

trained biased number representation of weights. Our representation can represent both

positive and negative numbers for ReRAM-based implementations without the need for

separate crossbar arrays. Moreover, the trained biasing term in our approach enables our

representation to approximate well sets of weights that have asymmetric ranges of positive

and negative numbers.
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Figure 5.1. The distribution of full-precision weights on the Conv5-2 layer (left) and the com-
parison of the normalized mean square error between our trained biased number representation
(TBN) and dynamic fixed point (DFP) representation for m = 2 bits (right).

• Our number representation is well-suited to the inherent matrix-vector multiplication capa-

bilities of ReRAM-based crossbar structures. In particular, our low precision quantization

approach can match the resolution limitations of digital/analog converters and memory

cells in ReRAM-based crossbars.

• To take full advantage of ReRAM-based analog computational capabilities, the amount of

computations that must be performed in the digital domain should be minimized. To this

end, we propose a novel activation-side coalescing approach that coalesces the steps of

batch normalization, non-linear activation, and quantization into a single stage that simply

performs a clipped-rounding operation.

• We explore the configuration space of different combinations of weight precisions and

activation precisions by training different versions of the popular VGG deep convolutional

neural network architecture [84] on the CIFAR datasets. Experimental results show that

our approach substantially outperforms previous low precision number representations

and can achieve near full-precision model accuracy with as little as 2-bit weights and 2-bit

activations.

The remainder of the paper is organized as follows: Section 5.2 introduces some back-
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ground on CNNs and ReRAM-based acceleration. Section 5.3 describes our training algo-

rithm for training CNNs with trained biased number representations. Section 5.4 describes our

activation-side coalescing approach that combines batch normalization, non-linear activation,

and quantization into a single efficient stage. Sections 5.5 and 5.6 present our evaluation results.

Section 5.7 concludes the paper.

5.2 Background

5.2.1 Convolutional neural networks

A CNN is a class of deep, feed-forward artificial neural networks that has successfully

been applied to multi-channel image classification. A typical CNN comprises a pipeline of

connected layers, each performing transformations from a set of input feature maps to a new set

of output feature maps. The inputs to the first layer correspond to the channels of an input image,

and the outputs of the last layer correspond to the probabilities of classes that best describe that

image. Each layer of the CNN is associated with a set of parameters, usually called weights, that

are typically trained offline with a labeled dataset. The goal of supervised learning of CNNs is to

train these parameters so that the CNN can accurately classify new data points.

In a standard CNN structure, the layers are typically convolutional layers, pooling

layers, or fully connected layers. Each convolutional (Conv) layer consists of a number of

h×w×Cin kernels, each of which is convolved with an Hin×Win×Cin multi-channel input feature

map to produce the corresponding Hout ×Wout output channel. Together, a three-dimensional

Hout×Wout×Cout output feature map is produced from Cout kernels. The convolution operation

for the zth kernel can be expressed as follows:

zout(x,y,z) =
h−1

∑
i=0

w−1

∑
j=0

Cin−1

∑
k=0

wz(i, j,k) ·xin(x+ i,y+ j,k) (5.1)

The elements of a h×w×Cin kernel are weights to be trained, and a bias term is usually added

to zout(x,y,z), which is also trained.
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A pooling layer maps each input feature map to an output feature map, where each output

feature is the maximum or average of an h×w window of input features. A pooling layer reduces

the height and width dimensions of the output feature map by a factor of h and w, respectively.

Pooling layers are inserted throughout a CNN to gradually reduce the size of the intermediate

feature maps.

A fully-connected (FC) layer takes an input vector and performs a dot product with a

weight vector, which can be expressed as follows:

zout =
Cin−1

∑
i=0

w(i) ·xin(i) (5.2)

A bias term is also usually added to this output, and this bias term together with the weights is

also trained.

For Conv and FC layers, the result of Equation 5.1 or 5.2 is usually passed through a

batch normalization (BN) layer [37], which solves the problem of internal covariate shift. The

BN operation can be expressed as

y = γ

(
zout−µ√

σ2 + ε

)
+β (5.3)

where µ and σ are statistics collected over the training set, γ and β are trained parameters, ε is

used to avoid round-off errors.

Finally, the output of batch normalization is usually passed through a non-linear activation

function like ReLU or Sigmoid. In this work, we will assume ReLU activation, which performs

max(0,y).

5.2.2 ReRAM-based crossbar structure

Figure 5.2 depicts an N×N ReRAM crossbar structure where each ReRAM cell can be

programmed with one of multiple possible resistance states. The corresponding conductance of
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Figure 5.2. The ReRAM-based crossbar structure.

an ReRAM cell at the ith row and jth column of the crossbar is represented by gi, j. These ReRAM

cells can be used to encode the synaptic weights of a neural net. In the case of a convolutional

(Conv) layer in a CNN, each column of the ReRAM crossbar, j = 0,1, . . . ,N−1, can be used to

implement a different Conv kernel. The input voltage of each row is represented by vi, which

can be used to encode an input feature of a neural net. Each column j of the ReRAM crossbar

can then perform an analog dot product of the input voltage vector {v0,v1, . . . ,vN−1} with the

corresponding conductivity vector {g0, j,g1, j, . . . ,g1,N−1} as follows:

I j
out =

N−1

∑
i=0

gi, j · vi (5.4)

These dot product operations across the columns are performed simultaneously as a single

matrix-vector multiplication operation. A Digital-to-Analog Converter (DAC) is used to convert

a digital input into an analog voltage vi, and an Analog-to-Digital Converter (ADC) is used to

convert an output voltage derived from I j
out into a digital output. In the case of a fully connected

(FC) layer, the entire crossbar can be used to implement the corresponding weight matrix.
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5.3 Learning the biased number representations and weight
approximations

5.3.1 Gradient calculations

In our training algorithm, we begin with a pre-trained model with full-precision weights,

with each latent full-precision weight denoted as w̃i. The goal of our training procedure is to

assign an m-bit integer gi = 0,1, . . . ,2m−1 to each w̃i so that the latent full-precision weight can

be approximated with the following biased number representation:

ŵi = Mgi−K (5.5)

Here, M is the scaling factor, and K is the biasing term that gets subtracted from the scaled

term Mgi. Note that in this biased number representation, both positive and negative numbers

are represented using the same m-bit integers gi = 0,1, . . . ,2m−1. However, unlike signed fixed

point representations that represent a symmetric range of positive and negative numbers, our

utilization of a biasing term K allows us to asymmetrically partition the range of positive and

negative numbers. Further, the scaling factor M allows us to provide the appropriate resolution

for approximating full-precision weights. For example, for m = 2 bits, M = 0.541, and K =

1.182, gi = 0,1,2,3 correspond to the approximate weights ŵi =−1.182,−0.641,−0.1,0.441,

respectively.

The key idea in our training procedure is that M and K are independent parameters that

are trained together with other parameters, including the latent full-precision weights. These

independent parameters M and K are defined on a per-layer basis, meaning that a different pair

of parameters is used for each layer to approximate the latent full-precision weights.

During each feed-forward pass, we assign gi to w̃i as follows:

gi = clip
(

round
(

w̃i +K
M

)
,0,2m−1

)
(5.6)
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where

clip(x,xmin,xmax) = max(xmin,min(x,xmax)) (5.7)

During backpropagation, we calculate the gradient for the scaling factor M as follows:

∂L
∂M

= ∑
i,gi ̸=0

1
gi

∂L
∂ ŵi

(5.8)

where L is the loss to be optimized.

For the biasing term K, we calculate its gradient as follows:

∂L
∂K

=−

(
∑

i

∂L
∂ ŵi

)
(5.9)

Finally, the gradient that we use to update each latent full-precision weight is simply the

gradient of the corresponding approximate weight:

∂L
∂ w̃i

=
∂L
∂ ŵi

(5.10)

Since the latent full-precision weights w̃i are updated together with the independent

parameters M and K during backpropagation, a different gi may get assigned to approximate w̃i

in the next feed-forward pass. In turn, the new weight approximations ŵi would be used to derive

gradients to update the latent full-precision weights w̃i and the independent parameters M and

K in the next backpropagation phase. This way, the biased number representations are trained

together with the weights and other parameters of the neural network to minimize classification

loss.

The benefits of using a trained biased number representation is that the trained scaling

factor provides the appropriate resolution to represent the weights and the trained biasing term

provides an asymmetric partitioning of the number range between positive and negative weights.

Together, these trained parameters enable our biased number representation to provide more
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model capacity to the neural network.

5.3.2 The initialization of M and K

As discussed above, M and K are independent parameters that are defined and trained

on a per-layer basis. Before we start on the training procedure described in Section 5.3.1, we

must first initialize M and K for each layer based on the latent full-precision weights from the

pre-trained model. The main idea is that each gi = 0,1, . . . ,2m−1 defines a separate centroid

ŵi = Mgi−K, and we want to initialize M and K so that the corresponding centroids are linearly

spaced across the range of pre-trained full-precision weights in a layer. Let [rmin,rmax] denote

this range. Then, we initialize M and K as follows:

M =
rmax− rmin

2m−1
(5.11)

K =−rmin (5.12)

Experimentally, we have found that limiting the range of weights to those within two

standard deviations from the mean weight of a layer, which covers 95.4% of the weights, leads to

a better initialization of M and K. In particular, let µw̃ and σw̃ be the mean and standard deviation

of the latent full-precision weights in a layer. Then, we define rmin and rmax as follows:

rmin = µw̃−2σw̃ (5.13)

rmax = µw̃ +2σw̃ (5.14)

Then, M and K are defined accordingly. We have found that, if the number range needs to be

increased to minimize loss, then gradient descent can quickly update M and K accordingly to

increase the range.
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5.4 Activation-Side Coalescing

In the previous section, we described how latent full-precision weights can be accurately

approximated using an m-bit integer that matches the weight precision of an ReRAM cell. For

example, in ISAAC [80], PRIME [17], and PipeLayer [85], the ReRAM cell precisions are 2

bits, 4 bits, and 4 bits, respectively. Besides overcoming the precision challenge of ReRAM cells,

we also have to overcome the precision challenge of input precision to the ReRAM crossbar. In

ISAAC [80] and PipeLayer [85], a 1-bit input precision is used, whereas a 3-bit input precision

is used in PRIME [17]. In general, a p-bit input precision can be used, which means that we

are limited to a p-bit activation and intermediate features are store using p-bits. Unfortunately,

when p is small, for example p = 2 bits, the results for deep CNNs on complex datasets can

be prohibitively inaccurate. Higher effective input precision p can be achieved by evaluating

the ReRAM crossbar multiple times. For example, an effective input precision of p = 4 can be

achieved by evaluating the input 2 bits at a time using an ReRAM crossbar with a 2-bit input

precision. However, this incurs proportionally more energy and more processing time, both

of which are undesirable. Thus, in general, it is important to minimize the number of bits p

for representing the activations as long as high accuracy can be maintained. This problem is

discussed in this section.

In particular, we first describe in Section 5.4.1 how activations are quantized based

on a Gaussian distribution. Then, in Section 5.4.2, we describe an activation-side coalescing

technique that combines the steps of batch normalization, activation, and quantization into a

single stage that simply performs a clipped-rounding operation. We describe in Section 5.4.2 how

our trained biased number representation of weights described in Section 5.3 can be combined

with activation-side coalescing.
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5.4.1 Gaussian-based quantization

To achieve accuracy when using low-bitwidth quantized activations, we use the half-

wave Gaussian quantization (HWGQ) approach proposed in [12]. The HWGQ idea is based

on the observation that state-of-the-art neural network architectures generally employ batch

normalization [37], which forces the responses of each network layer to be a Gaussian distribution

with zero mean and unit variance. Moreover, ReLU is widely used as the activation function in

state-of-the-art neural network architectures, which acts as an half-wave rectifier that produces

linear outputs for non-negative responses. Therefore, the p-bits used to encode the activations

only needs to quantized the non-negative range of responses. For example, an activation xi can

be quantized and encoded with an p-bit integer qi = 0,1, . . . ,2p−1 so that the activation xi can

be approximated with a uniform quantizer as follows:

Q(xi) = x̂i = Sqi (5.15)

where x̂i = 0,S,2S, . . .(2p−1)S are the corresponding quantization levels, which in general can

be floating point values since the quantization step S can in general be a floating point number.

For a uniform quantizer, we can derive qi from xi as follows:

qi = clip
(

round
(xi

S

)
,0,2p−1

)
(5.16)

In [12], an optimal uniform quantizer is derived from a Gaussian distribution with zero

mean and unit variance. This is based on the observation that batch normalized network layers

generally produce response distributions that are approximately Gaussian with zero mean and

unit variance across all units and layers. Therefore, the same uniform quantizer can be used for

all activations. There is no need to train a number representation for activations. The activations

are indirectly trained by training the batch normalization parameters. In particular, the optimal

uniform quantization step S can be derived from a Gaussian distribution with zero mean and unit
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variance by minimizing the following mean square error

argmin
Q

∫
ϕ(x)(Q(x)− x)2dx (5.17)

where ϕ(x) is the corresponding probability density function. The optimal step S can be derived

by solving Equation 5.17 by adding the constraint that Q(x) is a uniform quantizer with step S

[12].

5.4.2 Combining trained biased weights with activation-side coalescing

In this section, we discuss how our trained biased number representation of weights

described in Section 5.3 can be combined with the Gaussian-based quantized activation approach

described above in Section 5.4.1. In particular, we wish to store each weight as an m-bit integer

gi and each activation as a p-bit integer qi, which can be interpreted by the corresponding

parameter S for activation and the corresponding per-layer parameters M and K for the weights.

For inference, a naı̈ve implementation would operate as follows:

A1. x̂i = Sqi;

A2. ŵi = Mgi−K;

A3. z = ∑i ŵix̂i +b;

A4. y = BatchNorm(z) = γ

(
z−µ√
σ2+ε

)
+β ;

A5. r = ReLU(y);

A6. qout = clip(r/S,0,2p−1);

In Step A6, 2p−1 is the maximum integer for a p-bit integer encoding of the activations.

As can be readily observed in the above inference algorithm, the steps do not match the

hardware capabilities of a ReRAM crossbar since the steps involve floating point operations.

In particular, a ReRAM crossbar is capable of efficiently computing in the analog domain an

integer dot product operation of the form

∑
i

giqi (5.18)
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where each gi is an m-bit integer that corresponds to the ReRAM cell precision, and each qi is a

p-bit integer that corresponds to the input precision of the ReRAM crossbar. Ideally, we would

like to avoid expanding the integers gi and qi into floating point numbers in Steps A1 and A2

and performing the dot product in the floating point domain in Step A3. Instead, we would like

to perform the dot product in the integer domain to match the hardware capabilities of a ReRAM

crossbar. This can be achieved by rewriting Steps A1-A3 as follows:

∑
i

ŵix̂i +b = ∑
i
(Mgi−K)(Sqi)+b (5.19)

= S∑
i
(Mgiqi−Kqi)+b (5.20)

= S

(
M

(
∑

i
giqi

)
−K

(
∑

i
qi

))
+b (5.21)

= S(Mp1−K p2)+b (5.22)

where

p1 = ∑
i

giqi (5.23)

p2 = ∑
i

qi (5.24)

As can be readily observed, p1 can be directly implemented as an integer dot product

using a column in a ReRAM crossbar. In particular, each column in a ReRAM crossbar can be

used to implement this p1 computation for a different kernel, as depicted in Figure 5.2.

The computation for p2 can also readily be implemented directly as an integer dot product

using a column in a ReRAM crossbar by programming the corresponding ReRAM cells with unit

weights. However, since the computation of p2 is kernel independent, the p2 computation can

be shared by all the kernels that are implemented on the same ReRAM crossbar. For example,

if we have a baseline 128× 128 ReRAM crossbar, we can add one more column to create a

128×129 array and use the last column to implement p2, which can be shared by all 128 kernels
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implemented in the array. Thus, the amortized cost of p2 is negligible.

Besides performing integer dot products directly using gi and qi, we propose to further

optimize batch normalization, ReLU activation, and quantization steps (Steps A4-A6) by com-

bining them into a single step. In particular, we wish to eliminate the floating point operations in

batch normalization and absorb the batch normalization parameters as well as the quantization

step parameter S in Equation 5.22 directly into a simple clipped-rounding operation.

The optimized algorithm is as follows:

B1. p1 = ∑i giqi;

B2. p2 = ∑i qi;

B3. qout = activation side coalescing(p1, p2);

In particular, given Equation 5.22, we have z = S(Mp1−K p2) + b. Then the batch

normalization operation can be stated as follows:

y = γ

(
z−µ√
σ2 + ε

)
+β (5.25)

= γ

(
SMp1−SK p2 +b−µ√

σ2 + ε

)
+β (5.26)

=
γS(Mp1−K p2)√

σ2 + ε
+

γ(b−µ)√
σ2 + ε

+β (5.27)

Then we can compute

q̂ = round(y/S) (5.28)

= round
[

γ(Mp1−K p2)√
σ2 + ε

+
γ(b−µ)

S
√

σ2 + ε
+

β

S

]
(5.29)

Given that γ , µ , σ , ε , β , and S are all constants after training, we can pre-compute these
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constants for all activations:

A =
γM√

σ2 + ε
(5.30)

B =
γK√

σ2 + ε
(5.31)

C =
γ(b−µ)

S
√

σ2 + ε
+

β

S
(5.32)

Then we have

q̂ = round(Ap1−Bp2 +C) (5.33)

qout = clip(q̂,0,2p−1) (5.34)

We can directly implement Equations 5.33 and 5.34 in a single clipped-rounding operation

in activation side coalescing(p1, p2). Note that the clip operation effectively performs a clipped

ReLU activation. The operations in Equations 5.33 and 5.34 can be easily implemented in the

digital domain1.

5.5 Evaluation

5.5.1 Evaluation setup

We have implemented our proposed training algorithm based on a trained biased number

representation described in Section 5.3 and our proposed activation-side coalescing technique

described in Section 5.4 in the PyTorch framework [68]. We use the CIFAR-10 and CIFAR-100

datasets to evaluate our solutions on three versions of the popular VGG deep convolutional

neural network architecture [84]: VGG-11, VGG-13 and VGG-19. Since VGG networks were

originally proposed for the ImageNet dataset whose input size is 224× 224× 3, whereas the

1Given the clipped-rounding operations to just a few bits, the operands in Equation 5.33 do not need to be
full-precision. Experimentally, we found that an 8-bit fixed point representation of the operands is more than enough
for small values of p.
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CIFAR images are 32×32×3, we reduce the size of the fully-connected layers to match the

input features. The configurations of networks are summarized in Table 5.1. All convolutional

and fully-connected layers except the last layer are followed by a batch normalization layer

and ReLU non-linearity in sequence. The Adam optimizer is used to update the scaling and

shifting factors, with the learning rate initialized to be 1e-6. The other parameters of the network

are optimized by stochastic gradient descent (SGD) with a learning rate starting at 0.01. The

momentum and weight decay factor that we use for SGD are 0.9 and 1e-4, respectively. We

use a mini-batch size of 128 and divide the learning rates for both optimizers by 10 every 75

epochs. The minimal learning rates for SGD and Adam are 1e-7 and 1e-8, respectively. The

results are computed by taking the average of the last 7 test accuracy numbers with the maximal

and minimal values removed.

5.5.2 Evaluation results

As discussed in Section 5.1, weights can be quantized into low precision representations

using dynamic fixed point (DFP) [22, 42] implementations. To evaluate the performance of our

trained biased number (TBN) representation, we apply these two methods to compress weights

into the resolutions from 2 to 8 bits with features remaining in full precision. The scaling factors

of DFP are derived by minimizing the quadratic error from a pre-trained model, while the scaling

and shifting factors of TBN are trained according to (5.8) and (5.9) from the same pre-trained

model. The results are shown in Table 5.2 together with the full-precision (FP) accuracies added

as a baseline.

It can be seen that, compared with DFP, TBN achieves a significantly higher accuracy.

On CIFAR-10 dataset, TBN keeps the loss within 1% with 2-bit weights while the performance

of DFP drops below 30%, in comparison with full-precision weights. In particular, since there

are only 10 classes in total in CIFAR-10, an accuracy of 10% implies that the model is seriously

damaged and fails to produce any reasonable classification. When evaluated using CIFAR-100

dataset, 2-bit TBN results in a more significant accuracy drop on VGG-11, which is 2% worse
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Table 5.1. CNN configurations. Fully-connected layers have been adjusted to fit the size of
CIFAR dataset.

Layer VGG-11 VGG-13 VGG-19

Conv1 3×3×3, 64
3×3×3, 64 3×3×3, 64

3×3×64, 64 3×3×64, 64
Max-pool 2×2

Conv2 3×3×64, 128
3×3×64, 128 3×3×64, 128
3×3×128, 128 3×3×128, 128

Max-pool 2×2

Conv3
3×3×128, 256 3×3×128, 256

3×3×128, 256
3×3×256, 256

3×3×256, 256 3×3×256, 256
3×3×256, 256
3×3×256, 256

Max-pool 2×2

Conv4
3×3×256, 512 3×3×256, 512

3×3×256, 512
3×3×512, 512

3×3×512, 512 3×3×512, 512
3×3×512, 512
3×3×512, 512

Max-pool 2×2

Conv5
3×3×512, 512 3×3×512, 512

3×3×512, 512
3×3×512, 512

3×3×512, 512 3×3×512, 512
3×3×512, 512
3×3×512, 512

Max-pool 2×2
FC1 512×512
FC2 512×512
FC3 512×10 (100)

Figure 5.3. Classification performances of VGG-11 (left), VGG-13 (middle) and VGG-19 (right)
on CIFAR-10 with different weight and activation precisions.
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Table 5.2. Classification accuracy in percentage (%) on CIFAR-10.

Weight bits 2 3 4 5 6 7 8 FP

CIFAR-10

VGG-11
DFP 10.0 71.6 86.9 88.1 90.0 90.0 90.0

91.6
TBN 91.1 91.2 91.3 91.3 91.4 91.4 91.5

VGG-13
DFP 10.0 35.2 87.6 91.6 93.1 93.4 93.3

93.7
TBN 93.4 93.3 93.5 93.4 93.3 93.4 93.5

VGG-19
DFP 10.0 10.0 71.5 90.0 92.7 93.1 93.1

93.3
TBN 93.0 93.2 93.2 93.0 93.1 93.2 93.1

CIFAR-100

VGG-11
DFP 1.0 5.0 61.6 67.7 69.0 70.2 70.1

70.2
TBN 68.2 69.4 69.7 70.1 70.1 70.2 70.2

VGG-13
DFP 1.0 4.7 61.3 69.0 72.4 72.7 72.8

73.3
TBN 72.9 73.2 73.2 73.0 73.1 73.2 73.5

VGG-19
DFP 1.0 1.0 36.5 61.7 69.0 70.4 71.2

72.2
TBN 71.6 72.3 72.2 72.2 72.3 72.3 72.2

Figure 5.4. Classification performances of VGG-11 (left), VGG-13 (middle) and VGG-19 (right)
on CIFAR-100 with different weight and activation precisions.
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than the full-precision model, while this loss shrinks sharply with the increase of bitwidth and

reduces to 0.5% with 4-bit weights. On the other side, DFP turns to have an extremely poor

performance with 2-bit weights and the 4-bit degradation is still larger than 5%, compared with

the full-precision models. Moreover, on VGG-11 network and CIFAR-10 dataset, even when

using 8-bit representations, DFP still results in an obvious loss in accuracy, due to the fact that

the quantization errors from the pre-trained model remain substantial, which determines an upper

bound on the accuracy. Here, we note that M and K for TBN are updated according to gradients

that are derived to directly minimize classification loss, and that the latent full-precision weights

are also trained to compensate for errors caused by low precision.

Next, we compare our trained biased number representation approach with activation-side

coalescing on different combinations of precisions for weights and activations on the same VGG

network configurations (VGG-11, VGG-13, and VGG-19). In particular, for both weights and

activations, we vary the precision from 2 to 8 bits, and we compare each configuration with

full-precision accuracy. The results of CIFAR-10 and CIFAR-100 are illustrated in Figure 5.3 and

Figure 5.4, respectively, as a function of weight precision with multiple lines to show different

activation precisions.

In all cases, the bottom blue line corresponding to 2-bit activations shows the lowest

accuracy. However, even with 2-bit activations, our approach achieves accuracies within about 1%

of full-precision activations on average under different weight precisions. With 3-bit activations,

our approach achieves accuracies within just 0.5% of full-precision activations on average,

which is negligible consider the substantial energy savings in ReRAM-based implementations.

The slopes of the lines reflect the accuracy loss due to decreasing weight precisions. There

exists some ripples in the curves due to the inherent randomness of SGD-based training in the

experiments, but it can be identified that, as expected, the accuracy tends to decrease as the

precision of weights is reduced. It can be seen that the drops corresponding to CIFAR-100 are

sharper than those of CIFAR-10, potentially because of the less redundancy in networks for more

complicated datasets. On CIFAR-10, the largest degradation from 2-bit to full precision is only
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about 0.5%, and when using 4-bit weights and activations, we achieve virtually no loss relative

to full-precision models on both CIFAR-10 and CIFAR-100 datasets.

In particular, with 2-bit weights and 2-bit activations, our proposed approach on the

CIFAR-10 dataset achieves accuracies of 90.2%, 91.9% and 92.1% on VGG-11, VGG-13 and

VGG-19, respectively. Comparing with full-precision model accuracy, which are 91.6%, 93.7%

and 93.3%, the accuracy loss is about 1.5%. Moreover, the difference in accuracies vs. full-

precision accuracies on both the CIFAR-10 and CIFAR-100 datasets can be further reduced

to < 1% with 3-bit weights and activations and to virtually no loss with 4-bit weights and

activations.

5.6 Energy and Area Estimation

In this section, we evaluate the energy and area consumption of our approach based on

a recent ReRAM-based hardware accelerator architecture [80]. The analyses are performed on

the VGG-11 network trained on the CIFAR datasets2. As shown in [80], at 32nm, the optimal

design point is achieved by using 128×128 ReRAM crossbar arrays with a cell precision of

2 bits, which are considered as the basic unit in our evaluation. To increase the precision of

weights, a group of multiple crossbars can be used, which spatially increases both energy and

area consumption. Also as proposed in [80], we use an input precision of 1 bit, which effectively

replaces the DACs with trivial inverters, and 128 such 1-bit DACs are used for the 128 rows of

every crossbar array. Higher precision inputs can be achieved by evaluating the ReRAM crossbar

multiple times with successive 1-bit inputs, which temporally increases energy consumption.

At the output side of a crossbar array, an 8-bit ADC is shared by all 128 columns. As shown in

[80], the cycle time is bounded by the large latency of crossbar arrays, which is on the order of

100ns, whereas a frequency on the level of giga-samples-per-second (GSps) can be achieved

for an 8-bit ADC. Thus, an 8-bit ADC can be time-multiplexed by the columns of the crossbar
2In particular, the energy and area estimations are based on the CIFAR-10 dataset, noting that the difference in

overhead between CIFAR-10 and CIFAR-100 is negligibly close to 0 due to the fact that their architectures only
differ in the last fully-connected layer.
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without performance degradation. Moreover, an additional column per crossbar is also added in

[80], and the extra cost has already been accounted for, so there is no need to further re-scale the

overhead. For the storage of intermediate features, the architecture proposed in [80] uses on-chip

eDRAM buffers. In Table 5.3, we summarize the power and area costs of crossbar arrays and

eDRAM buffers, as derived from [80].

We evaluate our trained biased number representation approach (labeled as “TBN”) in

comparison with a dynamic fixed point approach (labeled as “DFP”) using 2-bit weights and

activations (namely 2-bit precision for both weights and activations). For the DFP approach,

“sign splitting” is required since an ReRAM crossbar cannot directly implement both positive

and negative weights when the DFP representation is used, as explained in [17] and Section

5.1. Therefore, two separate crossbars are required to represent positive and negative weights,

respectively, and the final results can be obtained by subtracting the outputs of two arrays. The

costs of two separate crossbars are reflected in the DFP results. In addition, we include the

estimations of a 16-bit fixed point implementation (labeled as “16-bit”) to provide a baseline for

comparison.

In Table 5.4, we summarize the energy and area results for the three models. In particular,

the table reports the number of ReRAM crossbar arrays and the size of the eDRAM buffers for

each of the three implementations. As explained in [80, 85], with the data flows fully pipelined,

the energy consumption is proportional to the processing time of dot-product operations, whose

bottleneck is the layer with the largest latency, which can be up to thousands of cycles. To

optimize the critical layers, we adopt the parallelism granularity scheme described in [85]. In

particular, for the 16-bit fixed point implementation, the number of ReRAM crossbar arrays

reported in Table 5.4 has the Conv1 and Conv2 layers duplicated 16 and 4 times, respectively, to

match the speed of other layers. As the input images of the Conv1 layer have a precision of 16

bits, the Conv1 layer for the 2-bit TBN and DFP implementations has to be further duplicated

by another factor of 16/2 = 8 times to match the processing times of the other layers with

2-bit input features. In addition to reporting the absolute energy and area results for the three
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Table 5.3. Unit cost of ReRAM array and eDRAM buffer.

ReRAM properties
Component Parameter Spec Power (mW ) Area (mm2)

ReRAM array
resolution 2 bits

0.3 0.000025
size 128×128

ADC
resolution 8 bits

2 0.0012
number 1

DAC
resolution 1 bit

0.5 0.000021
number 128

Interfacea 0.319375 0.000787
Total 3.119375 0.002033

eDRAM properties
eDRAMb size 1 KB 0.432813 0.002703

a The interface component comprises the amortized cost of input/output registers and routers to interface with
eDRAM buffers and other ReRAM arrays as well as the sample-and-hold and shift-and-add units for data
accumulation.
b The unit cost of the eDRAM component is provided on a per-page (1 KB) basis, and this unit cost includes the
amortized cost of the memory bus for interfacing with ReRAM arrays.

implementations, we also provide in Table 5.4 the normalized results with respect to the 2-bit

TBN cost to illustrate our overhead reduction.

As shown in Table 5.4, our TBN approach has lower energy and area costs than both the

DFP and 16-bit models. In particular, in comparison to the 16-bit results, 2-bit TBN achieves

6.7× area reduction since it uses fewer crossbar arrays to encode synaptic weights and smaller

buffers to store intermediate features. Moreover, the 16-bit model consumes 53.4 times as much

Table 5.4. Area and energy estimations.

Parameter 16-bit 2-bit DFP 2-bit TBN
Number of ReRAM arrays 4948 1352 742

eDRAM size (KB) 298 40 40
Area (mm2) 10.87 2.86 1.62

Normalized area 6.72 1.77 1
Energy (µJ/img) 1593.72 54.20 29.85

Normalized energy 53.39 1.82 1
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energy as TBN does to process an image, due to the quadratic decrease in energy caused by lower

power and faster speed of the low precision models. When compared with 2-bit DFP results,

TBN achieves 1.8× reduction in both area and energy costs because of the double crossbar arrays

introduced in DFP to represent positive and negative weights.

5.7 Conclusions

In this paper, we consider the problem of training convolutional neural networks with

low precision weights and activations in a manner that is compatible with an implementation on

ReRAM-based neural network accelerators. Low precision weights and activations are needed to

match the low resolutions of memory cells and input voltages in ReRAM-based structures. In

particular, non-uniform quantization approaches are not amenable to ReRAM-based crossbar

implementations, and previous uniform quantization approaches have poor accuracies when

applied to deep CNNs on complex datasets. We propose a trained biased number representation

with trainable scaling and shifting factors that can approximate well asymmetric number ranges,

which can achieve near full-precision model accuracy with as little as 2-bit weights and 2-bit

activations on difficult datasets. Moreover, we propose an activation-side coalescing technique

that combines the steps of batch normalization, non-linear activation, and quantization into a

single stage that simply performs a clipped-rounding operation. Evaluation results show that our

trained biased number representation significantly outperforms previous quantization approach

in terms of both classification errors and the costs of energy and area. In particular, our models

achieve accuracies within about of 1.5% of full-precision model accuracy with 2-bit weights and

activations on CIFAR-10 dataset, and about 0.1% of accuracy degradation with 4-bit weights

and activations on both CIFAR-10 and CIFAR-100 datasets. Moreover, when using 2-bit weights

and activations, our proposed approach yields about 6.7× and 53.4× reduction in terms of area

and energy consumption, respectively.
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Chapter 6

Optimizing 3D U-Net based Brain Tumor
Segmentation with Integer-Arithmetic
Deep Learning Accelerators

6.1 Introduction

In the past few years, brain tumors have become one of the most deadly cancers in

the world, especially for relatively young patients. Brain tumors can generally be divided

into two types: 1) primary brain tumors that originate in the brain, and 2) secondary brain

tumors metastasized from other organs. In particular, gliomas are the most common malignant

tumors that account for about 75% of all the brain cancers. Based on the growth potential and

aggressiveness of the tumor, gliomas are categorized into four grades – grades I and II are often

referred to as “low-grade gliomas (LGG)” while grades III and IV are referred to as “high-grade

gliomas (HGG).”

Currently, Magnetic Resonance Imaging (MRI) modalities are the most commonly

utilized technique for the brain tumor diagnosis. Various MRI modalities highlight different

tissue properties and brain tumors can be further categorized and segmented into multiple sub-

regions. However, radiation therapists manually labeling the scans is burdensome, inefficient,

and requires high technical expertise. In this context, there has been an emerging need for

automatic brain tumor segmentation and deep learning techniques are introduced due to their
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recent considerable success in image processing applications.

Multimodal Brain Tumor Segmentation Challenge 2018 (BraTS 2018) is a public bench-

mark that provides a set of 3D MRI scans with ground truths labeled by human experts and the

task is to develop machine learning algorithms to produce the segmentation labels of different

glioma sub-regions. In particular, the training dataset of the challenge comprises 210 HGG

and 75 LGG MRI cases. Each case consists of four MRI modalities of shape 240×240×155,

including 1) native (T1), 2) post-contrast T1-weighted (T1Gd), 3) T2-weighted (T2), and 4)

T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes. The ground truth segmentation is

also 240×240×155 volumetric images, which are manually delineated by one to four raters

according to the same annotation protocol. Three labels are provided along with an additional

background label, i.e., 1) the necrotic and non-enhancing tumor core (NCR & NET, label 1), 2)

the peritumoral edema (ED, label 2), 3) and the GD-enhancing tumor (ET, label 4). Furthermore,

the challenge participants are expected to segment the images into three sub-regions: 1) the ET

region, 2) the tumor core (TC) that is the combination of NCR, NET and ET, and 3) the whole

tumor (WT) that includes all the three tumor labels. In addition, the benchmark provides 66

unlabeled validation cases and 161 unlabeled testing cases, based on which the participating

algorithms are evaluated and the final ranking is computed. The number of LGG and HGG

subjects are not specified in the validation and testing datasets.

While a number of convolutional neural networks (CNNs) and fully-convolutional net-

works (FCNs) have been proposed with the growing demand and interest in automatic brain

tumor segmentation, a major bottleneck of this application is the volumetric multi-channel modal-

ity images that take up significant memory and computational power, which can be expensive

even for the latest and most powerful GPUs. For example, a whole multi-modal MRI image of

the BraTS 2018 challenge [59] cannot fit into one single GPU and it needs to be cut into patches

during training and inference. Furthermore, lighter platforms, e.g., medical devices, generally

have more limited on-device memory and computational power. On the other hand, massively

parallel deep learning accelerators have been developed to exploit low-bit-width arithmetic. For
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instance, NVIDIA has provided a NVIDIA Deep Learning Accelerator (NVDLA) framework

[64] to address the computational demands of inference, which allows using multiple data types

across its various functional units to save area and computational power, including as little as

binary integers. Deep neural networks that are available to operate in a low-precision manner

can be deployed using deep learning accelerators to improve the chip design by allowing more

cores on the chip with limited area. Therefore, the model optimization and acceleration play a

critical role for practical deployment.

Basically, storage cost can be reduced by using low-precision parameters whereas cheap

computational cost can be achieved by performing low-bit-width arithmetic, which takes ad-

vantages from both low-precision weights and activations. However, the performance of a

full-precision network can be vulnerable when converting the model into fewer bits. In general, a

model gets prohibitively ruined by inferring with directly “truncated” low-bit-width arithmetic.

In this work, we propose a quantization technique along with a training strategy that supports the

volumetric segmentation with the dot-product operations in an integer-arithmetic manner. The

floating-point decoding and encoding phases are deferred until the end of layers.

The rest of this paper is organized as follows: Section 6.2 introduces some neural network

architectures for image segmentation and some others’ works to compress and accelerate deep

neural networks. Section 6.3 describes the formulation and training algorithm of our quantization

approach, as well as a procedure to perform integer-arithmetic operations for post-training

inference. Section 6.4 evaluates our approach in comparison with the full-precision model.

Section 6.5 concludes the paper.

6.2 Related work

6.2.1 Automatic volumetric segmentation

State-of-the-art works employ full-convolutional networks (FCNs) [57] for automatic

brain tumor segmentation. Different from other common convolution neural networks that use
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a fully-connected layer at the end, FCNs also employ a convolutional layer as the last layer

to produce a pixel-wise prediction. In particular, a fundamental FCN architecture, namely U-

Net [76], consists of a contracting encoder (a.k.a. analysis path) and a successive expanding

decoder (a.k.a. synthesis path). The encoding part analyzes the input image and interprets it as

a feature map, which is then fed into the decoder. Moreover, high-resolution activations in the

analysis path are concatenated with up-sampled outputs in the synthesis path through shortcut

connections to achieve better localization performance. Due to the symmetric fully-convolutional

architecture, the decoding part constructs a label map with the same size of the input image, each

of whose channels corresponds to a segmentation label. Within a channel, every pixel indicates

the probability of the corresponding label being positive.

Though U-Nets have achieved an accuracy close to human performance in segmenting

2D images, when it is applied to volumetric medical images, 3D images have to be processed as

multiple 2D slices and hence it fails to capture the relationship of adjacent slices. Therefore, some

later works further propose volumetric extensions of the U-Net to produce smoother volumetric

segmentation.

In particular, the authors of U-Net also propose their feasible solution to the volumetric

segmentation problem, namely, 3D U-Net [99], by replacing the 2D convolutions in U-Net their

3D counterparts. An overview of the 3D U-Net is illustrated in Figure 6.1. As can be seen in

Figure 6.1, like U-Net, 3D U-Net comprises the left analasis path and the right synthesis path.

In particular, each stage of the encoder consists of two 3D convolutional layers with a kernel

size of 3×3×3 and a 3D max pooling layer to down-sample the feature map. On the other side,

there are also two 3×3×3 convolutions at each stage and the up-sampling is performed with an

up-convolutional layer (while some later works replace it with a nearest-neighbor up-sampling

layer). The last layer of the network performs a 1×1×1 convolution that resizes the number of

output channels to match the number of labels. However, while a couple of 2D images easily

fit into a single GPU, a whole 3D images can be too big for the GPU memory, especially for

training the network since large memory footprint has to be stored for back-propagation. As one
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Figure 6.1. The 3D U-Net architecture. Activations are shown as blue cuboids whereas layers
and other operations are displayed as arrows. The numbers above cuboids denote the channels of
activations.

of the main bottleneck of 3D U-Net, the whole volume sometimes has to be divided into several

patches and fed sequentially into the network.

3D U-Net has been serving as a prototype for automatic volumetric segmentation and

many later approaches are developed based on the 3D U-Net architecture and modules.

For example, [95] proposes multi-level deep supervision based on the 3D U-Net archi-

tecture, in which the three stages in the synthesis path are referred to as three different levels:

lower layers, middle layers and upper layers. Besides connecting to the next level, the lower

and middle levels (note the upper level is the final stage) are also followed by up-convolutional

blocks that upscale their reconstructions to match the input resolution. Therefore, each of the

three levels separately produces a segmentation output with the same resolution. It is discussed

that the back-propagation performance is improved by calculating losses for the three different

outputs, due to the fact that direct supervision on the hidden layers is more effective for the

gradient computation.
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V-Net [60], which is another volumetric derivation of U-Nets, replaces the pooling layers

of the contracting path with 3D convolutions. It is discussed in their paper that convolutions can

be applied to reduce the activation resolution by appropriately selecting kernel size and stride,

i.e., a kernel size of 2×2×2 and a stride of 2 halve the resolution of activations. The volumetric

convolutional layers increase the receptive field and save the memory footprint during training

since they do not need to record the switches that associate the output and input of pooling layers

for back-propagation. In addition, each stage (in both the encoder and the decoder) is a residual

block in which the input is, after processed by the ReLU non-linearity, added directly to the

output of the last convolutional layer. Compared with the non-residual U-Net architecture, the

residual modules in V-Net help the network to better converge and achieve higher performance.

The very last convolutional layer is similar to that of 3D U-Net, which has a kernel size of

1×1×1 and it produces a probabilistic segmentation map by applying a voxel-wise softmax

function to its output.

In addition, Attention U-Net proposes to highlight the more relevant activations with soft

attention modules. To be specific, the authors argue that activations in the synthesis path are

relatively imprecise since they are constructed by the up-sampling. Standard U-Nets address the

issue with the shortcut paths connecting the analysis path and synthesis path, which, nonetheless,

brings heavy redundancy and distracts the network. Therefore, Attention U-net introduces

additive soft attention implemented at the shortcut connections on a per-voxel basis, which

reduces the computational cost and improve the segmentation performance. Their experiments

show that as the number of training epochs increases, Attention U-Net learns to focus more on

the foreground areas and they achieve a clear improvement in dice score compared with the

standard 3D U-Net.

According to [39], it is commonly believed that more specialized architectures are

required for different segmentation tasks and there have been huge amounts of works designed

for few or even a single dataset in recent years, which results in troubles for researchers to identify

and select the architecture that fits the best in their scenarios. Moreover, those kinds of models
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generally suffer from overfitting and a lack of adaptation. In this context, [39] proposes nnU-Net

with adaptive architectures. In particular, three basic U-Net architectures are included in nnU-

Net: 2D-U-Net, 3D-U-Net, and 3D-UNet Cascade, which consists of two 3D-UNet cascaded

in sequence to address the memory constraints for large images. All the three architectures

are initialized with a specific patch size, batch size, and number of feature maps, which are

automatically adjusted according to the median plane size of the training data. A five-fold

cross-validation is utilized to choose an architecture (or ensemble) and its topology with the

best performance as the final model. Experimental evaluations show that nnU-Net achieves

state-of-the-art performance on several distinct datasets and even outperforms the specialized

models for some tasks.

While there have been proposing many works on variant specialized architectures for

different segmentation applications, they are in generally usually based on the standard 3D U-Net.

Therefore, in this paper, we adopt the basic 3D U-Net as our segmentation model with some

small modifications to better fit with our problem and approach, which will be explained in the

evaluation section.

6.2.2 Network compression and acceleration

On the other hand, as discussed in the previous section, the enormous size and compu-

tational cost are currently one of the bottlenecks for these models to be practically deployed.

Many methods have been proposed to overcome the efficiency challenge, including quantization

[67, 94, 35, 96] [30, 21, 50, 97, 41, 29], pruning, [30] and other encoding approaches [29, 30].

In particular, these works roughly fall into two categories.

The first type of works focus on the on-device storage optimization but gain no computa-

tional efficiency improvement to support real-time applications. Although network parameters

are compressed into tiny models, they need to be converted back into full-precision values and

the computation is carried out using floating-point representation. For example, [30] proposes

to “prune” network synapses by forcing some of the weights to zero. In addition, the non-zero
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weights are clustered into groups and encode the entries using Huffman coding to further re-

duce the storage per weight. The model can be decoded back into full precision with the code

book and they achieve significant compression rate with negligible accuracy loss. The same

authors also propose in [97] to quantize weights into ternary values (2-bit weights), which causes

very little accuracy degradation by training the quantization centroids. [67] considers the brain

segmentation problem and derives their “3DQ” approach based on [97], which also quantizes

the full-precision weights into 2 bits. They further incorporate an additional factor to scale the

quantization centroids and achieve near full-precision accuracy on two medical imaging 3D

segmentation datasets. However, the downside of such technologies is that they do not bring any

computational benefits and may even possibly worsen the speed due to the additional decoding

phase.

Alternatively, some works directly train the parameters to be integers. In addition to the

storage overhead reduction, such approaches also effectively reduce the number of floating-point

operation for inferences and improve the computational efficiency. For instance, it is proposed

in [94, 35] to operate the neural networks, including training and inferences, with 8-bit-integer

weights and activations, where the quantization centroids of [94] is uniformly distributed between

-1 and 1, while those of [35] are derived from the maximum absolute values of the weights and

activations. Further, DoReFa-Net [96] allows the weights and activations to be quantized into

arbitrary bits. They decide the quantization centroids such that the value range of weights is

limited to [-1, 1] while activations are bounded within [0, 1]. These works directly approximate

the full-precision model with low-bit-width values so that they are able to run with integer

arithmetic. On the other hand, some approaches use the low-precision integer to index the

quantization centroids. In [41], weights and activations are encoded as non-negative integers on a

per-layer basis and can be decoded into full-precision approximations with a pair of shifting and

scaling operations. The shifting and scaling factors are directly derived from the full-precision

model during the training phase such that all real-valued points fall within the range between

the smallest and the greatest quantization centroids, i.e., the clustering is simply performed
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by taking the full-precision range with a uniformly partition on it. Moreover, they propose a

“batch-normalization folding” technique that absorbs the parameters of batch normalization into

the previous convolutional or fully-connected layer to reduce the computational complexity.

However, clear accuracy drops are present in the above approaches. The reasons include:

• In [41], an exponential moving average with the smoothing parameter being close to 1 is

used to derive The factors for activations. Since the intermediate activations differ from

sample to sample, this makes the factors highly depend on the latest batch and relatively

volatile.

• Since the weights and activations of a well-trained model mostly follow the Gaussian

and half-wave Gaussian distributions [12], respectively, a significant amount of points are

concentrating around the mean value and 0. Therefore, for both weights and activations, it

is unnecessary and sub-optimal for [35, 41] to span a range covering all samples, especially

when using a large mini-batch size or there exist extreme outliers. On the other hand,

[94, 96] force the weights between -1 and 1, which as well reduces the performance

compared with networks with no such constraints.

• The centroids of weight approximations are not trained in these approaches, but directly

computed from the full-precision distributions such that the same ranges are spanned by

the quantization centers with the full-precision weights and activations, which makes the

accuracy of the full-precision model form an upper bound of the quantized performance.

However, due to the definite error introduced by representing continuous ranges using

discrete centroids, the drop on performance is inevitable.

The motivation of this work is to improve the previous approaches and address the issues

discussed above. In comparison with the first type of works, our approach grants an efficiency

improvement on volumetric segmentation with the integer-arithmetic dot-product operations.

Moreover, we allow using arbitrary bits for the quantization and aim to reduce the performance
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degradation by directly training the quantization factors together with other network parameters

to minimize the segmentation loss rather than deriving them from the full-precision model, which

grants the low-precision model a potential to even outperform the full-precision network.

6.3 Trained affine mapping approach

6.3.1 Learning the mapping of weights

In our approach, each full-precision synaptic weight w̃i is encoded as an m-bit integer

gi ∈ G , where G = {0,1, . . . ,2m−1} is an affine space. Through a 1D affine mapping, an integer

representation can be converted to the following full-precision approximation:

ŵi = Sw(gi−Z), (6.1)

where the linear transformation and the translation are conducted by the scaling factor Sw

and the translation factor Z 1, respectively, which are both floating-point numbers. Due to the

properties of affine mapping, the uniform codes in G are mapped to a uniform distribution over

the full-precision space, implying our affine mapping approach is essentially a uniform quantizer.

However, different from gi that is non-negative integers, the full-precision centroids span a range

over both positive and negative numbers with the utilization of translation operation. Moreover,

by appropriately adjusting the translation factor Z, our approach allows an asymmetric partition

over the range of positive and negative values. For example, using m = 2 bits, Sw = 0.5 and Z = 1,

gi = 0,1,2,3 correspond to the real-valued approximations ŵi =−0.5,0,0.5,1, respectively. This

provides us a substantial flexibility in determining and tuning the centroids of our quantizer.

Our training algorithm starts from a pre-trained model, where the full-precision weights

practically follow a Gaussian distribution. Figure 6.2 illustrates the weight distribution of a

hidden layer in the synthesis path of the pre-trained model, in which µ and σ stand for the

1We define Sw and Z on a per-layer basis, namely, different pairs of factors are used for different layers. Note
this can be easily extended to a per-kernel basis to achieve better performance with acceptable additional storage
overhead and negligible extra computational cost.
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Figure 6.2. The weight distribution of a hidden layer of the pre-trained full-precision model
where each band has a width of one standard deviation. The weights generally follow a Gaussian
distribution and the values less than one and two standard deviations away from the mean account
for 63.8% and 97.2% of the set, respectively.

mean and standard deviation of the distribution, respectively. Empirically, we find that the

weight approximation space initialized across the interval of [µ−2σ ,µ +2σ ] leads to a faster

convergence and a higher accuracy, compared with the initialization over [µ−σ ,µ +σ ]. This

is potentially due to the fact that only around 68% (64% in Figure 6.2) points of a Gaussian

distribution fall into the range of [µ−σ ,µ +σ ]. While the rest 32% (36% in Figure 6.2) have

relatively large magnitudes and are hence too critical to be clipped. On the other hand, more than

95% of the points are within the range of [µ−2σ ,µ +2σ ] with the rest points tending to be

outliers. Thus, clipping the weights beyond [µ−2σ ,µ +2σ ] does not impact the network a lot.

In particular, denote the range by [rmin,rmax]. We define rmin and rmax as follows:

rmin = µW̃ −2σW̃ , (6.2)

rmax = µW̃ +2σW̃ , (6.3)

where µW̃ and σW̃ are the per-layer mean and standard deviation of the full-precision weights W̃ .
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Then, Sw and Z are initialized as follows:

Sw =
rmax− rmin

2m−1
, (6.4)

Z =−rmin

Sw
. (6.5)

During training, unlike the weight quantization approach in [41] which simply derives

their quantization parameters such that the smallest and the greatest centroids equal to the

minimal and maximal real-valued weights, the key idea of our approach is re-training the latent

full-precision weights to compensate the error introduced by the low-bit-width representation,

while the scaling factor Sw and the translation factor Z are concurrently trained against the

classification loss independently from other parameters.

During feed-forward pass, each latent full-precision weight w̃i is quantized into the low

bit-depth code gi according to:

gi = clip
(

round
(

w̃i

Sw
+Z
)
,0,2m−1

)
, (6.6)

where

clip(x,xmin,xmax) = max(xmin,min(x,xmax)) . (6.7)

Then, we use the full-precision approximation expressed in Equation 6.1 to conduct the inference

and calculate the loss L.

In back-propagation phase, the latent full-precision weights are injected back in prepa-

ration for the update. We use the gradient w.r.t. the weight approximation ŵi to update the

full-precision weight w̃i:
∂L
∂ w̃i

=
∂L
∂ ŵi

. (6.8)

Additionally, the scaling factor Sw and the translation factor Z are updated concurrently.
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Based on chain rule [7], the gradient w.r.t. Sw can be computed from Equation 6.1 as follows:

∂L
∂Sw

= ∑
i

∂L
∂ ŵi

∂ ŵi

∂Sw
= ∑

i
(gi−Z)

∂L
∂ ŵi

. (6.9)

Similarly, we calculate the gradient w.r.t. Z as follows:

∂L
∂Z

= ∑
i

∂L
∂ ŵi

∂ ŵi

∂Z
=−Sw ∑

i

∂L
∂ ŵi

. (6.10)

Then, the latent full-precision weights w̃i, the scaling factor Sw and the translation factor Z are

updated together directly towards the classification loss. As a result, in the next iteration, the

full-precision weights w̃i and the affine factors have changed, hence the assignment gi and the

approximations ŵi also have a probability to be different from the previous iteration, which in

turn will apply an influence on the gradient w.r.t. Sw and Z in the next back-propagation stage.

Generally speaking, our training procedure works essentially in a close manner of relaxation

algorithms [56, 63], that repeatedly update both the centroids and the the assignments, while in

our problem, the points w̃i are moving as well.

6.3.2 Linear mapping of activations

In the previous section, we discussed how full-precision weights can be approximated

using m-bit non-negative integers along with an affine mapping operation. Nevertheless, practical

implementations also limit the activation precision due to the efficiency challenges. In addition

to the weight quantization, we also propose to reduce the activation bit-width based on the

half-wave Gaussian quantization (HWGQ) approach proposed in [12].

It is discussed in [12] that batch normalization [38] and relu [28] are widely employed in

state-of-the-art CNNs. In particular, the outputs of a convolutional layer are normalized by batch

normalization into a Gaussian distribution with zero mean and unit variance. Moreover, relu is a
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non-linearity that simply drops the negative samples as follows:

φ(x) = max(0,x), (6.11)

and it further trims activations into a half-wave Gaussian distribution.

Based on this observation, given a full-precision activation x̃i, we would like to encode

it with a p-bit unsigned integer hi ∈ {0,1, . . . ,2p−1}, which corresponds to the floating-point

approximation x̂i. Further, since the real-valued activations x̃i are half-wave Gaussian distributed

with zero mean and unit variance, an optimal quantizer Q(x̃i) = x̂i can be computed by sampling

from a standard distribution and applying an iterative relaxation algorithm until convergence.

In particular, since the lower bound is explicitly defined at 0, which is also the crest of the

distribution, we drop the translation term and approximate activations with the following linear

mapping function:

x̂i = Q(x̃i) = Sahi, (6.12)

where Sa is a linear scaling factor of floating-point value, and the assignment variable hi can be

derived from x̃i as follows:

hi = clip
(

round
(

x̃i

Sa

)
,0,2p−1

)
. (6.13)

For the scaling factor Sa, recall that batch normalization generally produces response activations

that are Gaussianly distributed with zero mean and unit variance across all layers. Therefore,

given the quantization precision p, there is no need to define or train different factors for different

layers, and a same linear quantizer can be used across the network. In particular, an optimal

quantizer defined on a distribution can be expressed in the sense of quadratic error minimization:

argmin
Q

∫
ϕ(x)(Q(x)− x)2dx. (6.14)
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Although Lloyd’s algorithm [56] can be generally applied to solve the clustering problems,

it breaks the linear constraints on centroids. Therefore, we propose a variation of Lloyd’s

algorithm to overcome this issue. During the step for center update, instead of computing the

new centroids by simply taking an average for each cluster, all points are first normalized on a

per-cluster basis such that they are on the magnitude of one scaling factor, and then the mean

value is derived from all normalized samples as the updated factor Sa. In other words, we update

Sa as follows:

Sa =
∑i forhi ̸=0

x̃i
hi

∑i forhi ̸=0 1
. (6.15)

A brief description of our clustering algorithm is summarized in Algorithm 4.

Algorithm 4. Computation of activation scaling factor Sa

Input: p, X̃ = {x̃i} sampled from a standard half-wave Gaussian distribution
Output: Sa

1: while H not converged do
2: step 1: update centroids {0,Sa, . . . ,(2p−1)Sa}
3: step 2: update H according to Equation 6.13
4: step 3: update Sa according to Equation 6.15
5: end while
6: return π̃

In feed-forward pass, the real-valued activations x̃i are quantized into the floating-point

approximations x̂i. However, another problem is introduced by the quantization of activations,

that during back-propagation phase, the stair-like rounding operation in Equation 6.13 makes

the function completely non-differentiable and breaks the gradient chain. To address this issue,

rather than propagating gradient back from the approximations x̂i to the full-precision outputs

x̃i, we explicitly define that the real-valued activations directly inherit the derivatives from their

approximations and skip computing the derivatives of the non-differentiable rounding operations.

Moreover, it is discussed in [12] that since the activations with extremely large values are

bounded to the greatest centroid by quantization, it causes a problem of gradient mismatch [52]

by deriving derivatives from the quantized results. Therefore, we adopt the gradient clipping
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scheme proposed in [66] and discard the derivatives of the real-valued activations that are beyond

the range of our quantization centroids. To be specific, the gradient w.r.t. the activations before

quantization is computed as follows:

∂L
∂ x̃i

=
∂L
∂ x̂i

∂ x̂i

∂ x̃i
, (6.16)

where ∂ x̂i
∂ x̃i

is illustrated in Figure 6.3.

Figure 6.3. The gradient of approximations w.r.t. the real-valued activations based on the gradient
clipping approach.

6.3.3 Optimizing 3D U-Net based Brain Tumor Segmentation

As discussed above, our proposed approach encodes weights and activations with m-bit

and p-bit unsigned integers, respectively. However, it can be seen in Equations 6.1 and 6.12 that,

the approximations after decoding are still carried out in a floating-point format, which do not

effectively reduce the computational power. In this section, we study that after training, how

inference can be operated in a more efficient manner. Specifically, the inference of a neuron

followed by batch normalization and relu can be straightforwardly implemented as follows:

1. Activation decoding: x̂i = Sahi;

2. Weight decoding: ŵi = Sw(gi−Z);
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3. Dot-product: ỹ = ∑i ŵix̂i +b;

4. Batch normalization & relu: z̃ = max
(

0, ỹ−µ√
σ2+ε

)
;

5. Activation encoding: hout = clip
(

round
(

z̃
Sa

)
,0,2p−1

)
;

where b is the bias of convolutional layers.

By combining steps 1, 2, and 3, the intermediate output ỹ can be simplified as follows:

ỹ = SwSa ∑
i

gihi−SwSaZ ∑
i

hi +b. (6.17)

As defined in the previous sections, gi and hi are non-negative integers of m and p bits, respec-

tively. Therefore, the dot-product operations can be essentially performed using integer-only

arithmetic with the floating-point multiplications deferred after that. Furthermore, parameters

in steps 4, 5 and Equation 6.17 become constants once the training is complete, hence can be

absorbed into a single 2D affine function along with the rounding and clipping non-linearity:

hout = clip(round(Av1 +Bv2 +C) ,0,2p−1) , (6.18)

where

v1 = ∑
i

gihi, (6.19)

v2 = ∑
i

hi, (6.20)

A =
Sw√

σ2 + ε
, (6.21)

B =− SwZ√
σ2 + ε

, (6.22)

C =
b−µ

Sa
√

σ2 + ε
. (6.23)

In conclusion, A, B and C can be pre-computed and the inference procedure reduces into
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two steps:

1. Compute v1 and v2 according to Equations 6.19 and 6.20 in the integer domain;

2. Compute hout according to Equation 6.18 in the floating-point domain.

Note that the floating-point operations in step 2 are conducted on a per-neuron basis,

which is not in domination of the computational complexity. In this way, our trained affine map-

ping approach efficiently produces an improvement in terms of both storage and computational

cost.

Moreover, some network architectures employ shortcut connections that concatenate

the outputs of two layers. For example, in regards of 3D U-Net, the output at each stage of the

encoder is directly concatenated with the input of the decoder at the same stage. However, since

the same activation scaling factor Sa is adopted throughout all layers, a full-precision activation

z̃ shall be encoded to the same unsigned integer hout regardless of which layer it belongs to.

Therefore, stacking the intermediate activation z̃ in step 4 is essentially equivalent to stacking

the encoded value hout in step 5, which leads to no additional operations besides independently

computing hout for the two layers according to Equation 6.18.

6.4 Evaluation

6.4.1 Experimental setup

We evaluate our approach on the BraTS 2018 challenge discussed in Section 6.1. In

particular, while the ground truth segmentation of the official BraTS 2018 validation dataset is

not publicly available, to perform hyper-parameter tuning and provide clear comparison between

the prediction and ground truth, in spite of the official validation dataset, we use 10% of the

training dataset as our validation dataset in our experiments and train the models with the rest

90% samples2. The N4ITK bias correction [88] approach is applied to all the MRI images to

2Note that our experiments aim to illustrate the difference in performance between the full-precision and our
quantized models. The full-precision model serves as a baseline and its absolute performance is not critical.
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reduce the bias caused by using different scanners. We then clip the greatest as well as the

smallest 2% voxels in each channel (modality) to remove outliers. Lastly, images are normalized

to zero mean and unit variance on a per-channel basis while the non-brain regions are set to 0.

We employ the minorly modified 3D U-Net [99] in our experiments. In particular, we set

the number of input channels to 4 to match the 4 modalities of the MRI scans. Moreover, we

follow the approach of the 1st-place winner of BraTS 2018 [62], where the output of the network

has 3 channels corresponding to the 3 tumor sub-region labels, i.e., the whole tumor (WT),

the tumor core (TC), and the enhancing tumor (ET), and they are then connected to a sigmoid

activation function that produces the predicted probabilities of each label. As described in [99],

batch-normalization is introduced before each ReLU non-linearity, which is also adopted in our

implementation so the architecture is compatible with our activation quantization scheme as

discussed in Section 6.3.2. The up-convolutional layers in the original architecture are replaced

with up-sampling layers (Note that while we choose to use up-sampling layers, it as well fits

with our approach if applying batch-normalization and ReLU after each up-convolutional layer).

We use the multi-class dice loss function based on the dice loss proposed in [60]. According to

[60], denote by pi and qi the voxels at the same location in the prediction and ground truth for a

class, respectively, the single-class dice loss is defined as follows:

Lclass =−
2∑i piqi

∑i p2
i +∑i q2

i
. (6.24)

Given the dice loss of three tumor sub-regions LWT, LTC, and LET, our loss function is simply

the summation of these three scores as follows:

L = LWT +LTC +LET. (6.25)

In other words, the three tumor sub-regions are assigned with identical weights.

We randomly sample patches of size 96× 96× 96 with a batch size of 2 to train the
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networks. All the low-precision models start from the pre-trained full-precision model and we

re-train them using our quantization algorithm. We adopt an Adam optimizer to update the

scaling and translation factors S and Z, with the learning rate initialized to be 1e-6 (While the

gradient w.r.t. these factors is accumulated by every weight and the amount of weights in a 3D

convolutional layer can be significant, it empirically works better with relatively small learning

rates). The other parameters (weights and biases, etc.) are tuned by another Adam optimizer with

a learning rate of 1e-4 and a weight decay of 1e-5. We divide the learning rates of both optimizer

by 10 every 1,000 batches and the models are trained for 4,000 batches.

The validation images are padded with 0 and partitioned into multiple 96× 96× 96

patches. We feed the network to produce predictions of the same shape and reconstruct the label

map. Different from the training procedure where we use probabilistic output to compute the

dice loss, in evaluation we binarize the output (before the sigmoid) with a threshold of 0 and

used the binarized reconstruction to compare with ground truth and compute dice scores.

6.4.2 Segmentation results

Table 6.1. Validation results (mean dice scores) on the BraTS 2018 dataset. W bits and A bits
represent the number of bits used to encode weights and activations. WT, TC, and ET stand
for the whole tumor, the tumor core, and the enhancing tumor, respectively. Experiments are
repeated three times and we report the average results for validation, while standard deviations
are shown in parenthesis.

W bits A bits WT TC ET
FP 0.888 (0.0006) 0.801 (0.0073) 0.762 (0.0029)

FPN
8 8 0.744 (0.0456) 0.361 (0.1542) 0.144 (0.1786)
4 4 0.666 (0.0921) 0.189 (0.1313) 0.074 (0.1039)
2 2 0 (0) 0 (0) 0 (0)

3DQ 2 float 0.885 (0.0026) 0.792 (0.0014) 0.747 (0.0029)

DoReFa
8 8 0.874 (0.0036) 0.796 (0.0047) 0.754 (0.0047)
4 4 0.873 (0.0017) 0.789 (0.0018) 0.750 (0.0022)
2 2 0.874 (0.0024) 0.787 (0.0032) 0.750 (0.0038)

Ours
8 8 0.887 (0.0019) 0.801 (0.0020) 0.767 (0.0021)
4 4 0.889 (0.0028) 0.797 (0.0016) 0.761 (0.0006)
2 2 0.884 (0.0014) 0.793 (0.0014) 0.760 (0.0006)
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Besides our trained affine mapping (TAM) approach, we also evaluate the full-precision

(FP) model along with three low-precision CNN training and inference techniques as our

baselines: 3DQ [67], DoReFa-Net [96], and the naı̈ve Fixed-Point Number (FPN) representation

[65]. The first two techniques are previously discussed in Section 6.2, and FPN is the simplest

quantization approach, which allows the valid bits to represent any continuous power-of-2

fractional values. For example, the 2-bit FPN 1.1, which consists of an integer bit and a fractional

bit, encodes the decimal value 1×20 +1×2−1 = 1.5. In our FPN experiments, the weights are

quantized using an additional bit as the sign bit, and we allow the represented bits (as long as they

are continuous) to be away from the radix point while skipping the other more significant digits,

e.g., using 3 unsigned bits 101 as in 0.0101 to encode 1× 2−2 + 0× 2−3 + 1× 2−4 = 0.3125.

In particular, all low-precision approaches except for FPN are re-trained from a pre-trained

full-precision model, which is also used to derive the quantized weights for FPN so that the

represented bits minimize the mean squared error. In addition, since the activations are dependant

on the input, it does not make sense for FPN to dynamically compute the best scales, thus we

simply truncate the activations with all bits being fractional bits. All models are trained on a

NVIDIA RTX 2080 Ti GPU and we compute the dice coefficients for the three tumor sub-regions.

All experiments are repeated three times and the average results are summarized in Table 6.1.

Among all low-precision techniques, FPN achives the worst performance. Even when

using 8-bit weights and activations, the average dice for WT drastically drops from 0.888 to

0.744, while the TC and ET dice scores fall below 0.4 and 0.2, respectively. The performance

further becomes worse with 4-bit weights and activations, and the model totally does not produce

any useful information with 2-bit precision, which gets the dice coefficients of 0 for all the three

sub-regions. The reason is that the error caused by such post-training compression approaches is

not compensated so the error accumulates throughout layers and critically hurts the model.

On the other hand, our trained affine mapping approach with 8-bit weights and activations

achieves 0.887, 0.801, and 0.767 average dice for WT, TC, and ET, respectively, which are close

to (or even better than) the full-precision model, while there is a dice loss of about 0.01 present in
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the 8-bit DoReFa-Net results. Moreover, TAM achieves negligibly small loss with 4-bit weights

and activations (within 0.005 of the full-precision model), and about 0.01 degradation when

using 2-bit precision, whereas DoReFa-Net shows a clearer performance drop in such cases.

3DQ achieves fairly good WT score, but it performs poorly for the TC and ET sub-regions. We

also note that 3DQ uses floating-point activations and it is a compression approach that does not

accelerate the inference, which is not as beneficial other baselines. The validation results, i.e.,

our approach outperforms other baselines and achieves a performance close to the full-precision

model, verify that our factor-training scheme effectively tunes the centroids and reduces the loss

introduced by the quantization.

Figure 6.4. A example of the predictions of the full-precision and our quantized models along
with the ground truth annotations overlaid over the FLAIR MRI scan. The necrotic and non-
enhancing tumor core (NCR & NET) are shown in red; the peritumoral edema (ED) is shown in
green; and the GD-enhancing tumor (ET) is in shown in blue. The prediction label WT is the
combination of all the three colored areas and TC is the union of red and blue.
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In addition, we reconstruct the different parts of tumors (NCR & NET, ED, and ET) from

our predicted labels to qualitatively illustrate our results. An axially sliced example from our

validation set with the FLAIR modality as background is presented in Figure 6.4. As can be

observed in the ground truth annotation, the red area (NCR & NET) has relatively more irregular

shape, which makes it the most difficult part to accurately predict, while the green (ED) and blue

(ET) regions also have some dotted details around their boundaries, i.e., some blue dots in the

green area and green dots outside the main tumor. However, while all models perform badly in

predicting the red region, the full-precision model additionally tries to capture the dotted feature

of the ground truth, potentially due to the over-fitting problem though regularization is already

applied during training. However, it is almost impossibly to perfectly predict these small dots and

hence this actually increases the error of the full-precision model. Nevertheless, our quantized

models produce relatively smoother annotations without these small dots. This might explain the

reason why our quantized models sometimes outperform the full-precision model.

6.5 Conclusion

In this paper, we consider the problem of optimizing the 3D U-Net with low-precision

parameters and integer-arithmetic inference for efficient volumetric segmentation. In particular,

we propose a trained affine mapping approach that encodes weights and activations as non-

negative integers of dedicated bit-widths, and recovers the floating-point approximations with

affine mapping functions. The key idea of our work is that the scaling and translation factors

for weights can be trained together with other parameters, whereas activations are generally

normalized by batch normalization and rectified linear units (ReLU), hence can be accurately

approximated using the same function across all layers, which is pre-computed based on the

standard half-wave Gaussian distribution. In addition, with weights and activaions encoded as

low-precision integers, we propose to defer the floating-point computation of the affine mapping

functions and combine it with the quantization procedure of the next layer. This technique
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simplifies the inference into two steps, in which the dot-product operations are carried out using

unsigned-integer arithmetic and the floating-point multiplications are reduced onto a per-neuron

basis. Evaluation results on the BraTS 2018 challenge show that the models quantized by our

trained affine mapping algorithm using 2-bit weights and activations achieve a mean dice score

within 0.01 relative to the full-precision model. Furthermore, our quantization achieves negligibly

small degradation with 4-bit and 8-bit precisions.
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