[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 7, 2022

Effect of optical pulse shaping and adaptive equalization on the performance of 100G DP-QPSK WDM system

  • Neeraj Sharma ORCID logo EMAIL logo

Abstract

Dual polarization quadrature phase shifting keying (DP-QPSK) modulation format along with coherent receiver helps in increasing the data carrying capability of existing optical networks without any major change in existing transmission infrastructure. The various linear and nonlinear fiber effects, frequency and phase errors are corrected in electrical domain at the receiver end with digital back propagation algorithms (DBP) instead of in-line compensation. In such a case the selection of optimum values of system parameters make the task easier for DBP algorithms. This paper highlights the importance of finding optimum operating point of continuous modulus algorithm (CMA) for better adaptive equalization (AE). The paper also discusses the optical pulse shaping using Gaussian optical band-pass filter to improve the spectral characteristics of DP-QPSK signal.


Corresponding author: Neeraj Sharma, Panjab University, U.I.E.T., Chandigarh, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. White paper: Cisco visual networking index: forecast and methodology, 2015-2020, 2016. Available from: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html [Accessed Mar 2018].Search in Google Scholar

2. Cisco ONS 15454 40Gbps CP-DQPSK full C-band tunable transponder card, 2013. Available from: http://www.cisco.com/c/en/us/products/collateral/optical-networking/ons-15454-series-multiservice-provisioning-platforms/data_sheet_c78-643796.html [Accessed Mar 2018].Search in Google Scholar

3. Sabapathi, T, Poovitha, R. Mitigation of nonlinearities in fiber optic DWDM system. Optik 2019;185:657–64. https://doi.org/10.1016/j.ijleo.2019.02.073.Search in Google Scholar

4. Sharma, N, Agrawal, S, Kapoor, V. Estimation of frequency offset prior to adaptive equalization for improved performance of DP-QPSK DWDM system. Opt Fiber Technol 2020;55:102132. https://doi.org/10.1016/j.yofte.2019.102132.Search in Google Scholar

5. Kikuchi, K. Fundamentals of coherent optical fiber communications. J Lightwave Technol 2016;34:157–79. https://doi.org/10.1109/JLT.2015.2463719.Search in Google Scholar

6. Chen, X, Paloma, HR, Alfredo, MM. A low-cost alternative scheme to detect a 100 Gbps PM-DQPSK signal. Photon Netw Commun 2014;28:203–13. https://doi.org/10.1007/s11107-014-0441-7.Search in Google Scholar

7. Torrengo, E, Makovejs, S, Millar, SD, Fatadin, I, Kiley, IR, Savory, JS, et al.. Influence of pulse shape in 112-Gb/s WDM PDM-QPSK transmission. IEEE Photon Technol Lett 2010;22:1714–6. https://doi.org/10.1109/LPT.2010.2082520.Search in Google Scholar

8. Sharma, N, Agrawal, S, Kapoor, V. Performance improvement for OADM based DP-QPSK WDM optical networks with 37.5 GHz channel spacing. IEEE Conference Proceedings, 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) Karagpur, India; 2020. p. 1–5.10.1109/ICCCNT49239.2020.9225484Search in Google Scholar

9. Fludger, SRC, Duthel, T, Borne, DVD, Schulien, C, Schmidt, DE, Wuth, T, et al.. Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission. J Lightwave Technol 2008;26:64–72. https://doi.org/10.1109/JLT.2007.912128.Search in Google Scholar

10. Sharma, N, Agrawal, S, Kapoor, V. Improved adaptive equalization with fixed step size CMA for DP-QPSK DWDM system. Opt Quant Electron 2020;52:236. https://doi.org/10.1007/s11082-020-02352-2.Search in Google Scholar

11. Renaudier, J, Pardo, BO, Charlet, G, Salsi, M, Bertolini, M, Tran, P, et al.. Investigation on WDM nonlinear impairments arising from the insertion of 100-Gb/s coherent PDM-QPSK over legacy optical networks. IEEE Photon Technol Lett 2009;21:1816–8. https://doi.org/10.1109/LPT.2009.2034127.Search in Google Scholar

12. Sharma, N, Agrawal, S, Kapoor, V. Performance optimization of OADM based DP-QPSK DWDM optical network with 37.5 GHz channel spacing. Opt Switch Netw 2021;40:100606. https://doi.org/10.1016/j.osn.2021.100606.Search in Google Scholar

13. Schmogrow, R, Winter, M, Meyer, M, Hillerkuss, D, Wolf, S, Baeuerle, B, et al.. Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM. Opt Express 2102;20:317–37. https://doi.org/10.1364/OE.20.000317.Search in Google Scholar PubMed

14. Schmogrow, R, Ezra-Ben, S, Schlinder, CP, Nebendahl, B, Koos, C, Fredue, W, et al.. Pulse-shaping with digital, electrical, and optical filters—a comparison. J Lightwave Technol 2013;31:2570–7. https://doi.org/10.1109/JLT.2013.2271513.Search in Google Scholar

15. Yao, S, Fu, S, Wang, H, Tang, M, Shum, P, Liu, D. Performance comparison for NRZ, RZ, and CSRZ modulation formats in RS-DBS Nyquist WDM system. IEEE/OSA J Opt Commun Netw 2014;6:355–61. https://doi.org/10.1364/JOCN.6.000355.Search in Google Scholar

16. Li, G, Li, J. A pulse shaping based optical transmission system of 128QAM for DWDM with N × 904 Gbps. Appl Sci 2019;9:988. https://doi.org/10.3390/app9050988.Search in Google Scholar

17. Li, G, Li, JQ, Chen, GJ, Huang, XG. SOA-based AOWC of 128QAM using Gaussian pulse shaping for transmission system with 227 Gbps. Microw Opt Technol Lett 2018;60:2204–16. https://doi.org/10.1002/mop.31323.Search in Google Scholar

18. Rameez, A, Lin, CY, Schmauss, B. Efficient compensation of chromatic dispersion and nonlinearities using logarithmic digital backward propagation in N-channel DWDM 1.12Tbit/s DP-QPSK transmission. J Mod Opt 2012;59:95–101. https://doi.org/10.1080/09500340.2011.631050.Search in Google Scholar

19. Laperle, C, Villeneuve, B, Zhang, Z, McGhan, D, Sun, H, O’Sullivan, M. WDM performance and PMD tolerance of a coherent 40-Gbit/s dual-polarization QPSK transceiver. J Lightwave Technol 2008;26:168–75. https://doi.org/10.1109/JLT.2007.913071.Search in Google Scholar

20. Agrell, E, Karlsson, M. Power-efficient modulation formats in coherent transmission systems. J Lightwave Technol 2099;27:5115–26. https://doi.org/10.1109/JLT.2009.2029064.Search in Google Scholar

21. Qin, J, Liu, C, Huang, Z, Su, S, Zhang, Y. An improved CMA for dispersion compensation in 100 Gb/s DP-QPSK optical signal transmission system. Elsevier Optik 2017;136:480–6. https://doi.org/10.1016/j.ijleo.2017.02.040.Search in Google Scholar

22. Birk, M, Skolnick, C, Curto, B, Marlieb, R, Schmidt, TJ, Saunders, R. Field trial of a 40 Gbit/s PSBT channel upgrade to an installed 1700 km 10 Gbit/s system. In: OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, California, United States; IEEE, 2005, 2:3 p.10.1109/OFC.2005.192638Search in Google Scholar

23. Birk, M, Gerard, P, Curto, R, Nelson, EL, Zhou, X, Magill, P, et al.. Coherent 100 Gb/s PM-QPSK field trial. In: IEEE Communications Magazine, vol 48; 2010. pp. 52–60. https://doi.org/10.1109/MCOM.2010.5496878.Search in Google Scholar

24. Agrawal, PG. Nonlinear fiber optics, 3rd ed. New York: Academic Press; 2001.Search in Google Scholar

25. Gagnon, DSL, Tsukamoto, S, Katoh, K, Kikuchi, K. Coherent detection of optical quadrature Phase-shift keying signals with carrier phase estimation. J Lightwave Technol 2006;24:12–21. https://doi.org/10.1109/JLT.2005.860477.Search in Google Scholar

26. Kikuchi, K. Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation. IEEE J Sel Top Quant Electron 2006;12:563–70. https://doi.org/10.1109/JSTQE.2006.876307.Search in Google Scholar

27. Tsukamoto, S, Ishikawa, Y, Kikuchi, K. Optical homodyne receiver comprising phase and polarization diversities with digital signal processing. In: European Conference on Optical Communications. Cannes, France; IEEE, 2006. p. 1–2.10.1109/ECOC.2006.4800894Search in Google Scholar

28. Haykin, S. Introduction to adaptive filters, 1st ed. New York, USA: Macmillan; 1984.Search in Google Scholar

29. Oerder, M, Meyr, H. Digital filter and square timing recovery. IEEE Trans Commun 1988;36:605–12. https://doi.org/10.1109/26.1476.Search in Google Scholar

30. Godard, D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans Commun 1980;28:1867–75. https://doi.org/10.1109/TCOM.1980.1094608.Search in Google Scholar

31. Morelli, M, Mengali, U. Feed forward frequency estimation for PSK: a tutorial review. IEEE Trans Commun 1988;9:103–16. https://doi.org/10.1002/ett.4460090203.Search in Google Scholar

32. Viterbi, JA, Viterbi, AM. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans Commun 1983;29:543–51. https://doi.org/10.1109/TIT.1983.1056713.Search in Google Scholar

33. Quality measures for complex modulated signals reaching for standardization, Application notes, http://literature.cdn.keysight.com/litweb/pdf/5991-1619EN.pdf. [Accessed Nov 2021].Search in Google Scholar

34. Schmogrow, R, Nebendahl, B, Marcus, W, Josten, A, Hillerkuss, D, Koenig, S, et al.. Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photon Technol Lett 2012;24:61–3. https://doi.org/10.1109/LPT.2011.2172405.Search in Google Scholar

35. Optisystem. Optical communication design software. Canada: Optiwave. Available from: https://optiwave.com/.Search in Google Scholar

36. Li, Y, Li, M, Han, J, Han, T. Investigation of a novel structure for 6PolSK-QPSK modulation. EURASIP J Wirel Commun Netw 2017;12:1–6. https://doi.org/10.1186/s13638-017-0860-0.Search in Google Scholar

37. Zhang, R, Ma, J, Wang, Z, Zhang, J, Li, Y, Zheng, G, et al.. Full-duplex fiber-wireless link with 40Gbit/s 16-QAM signals for alternative wired and wireless accesses based on homodyne/heterodyne coherent detection. Opt Fiber Technol 2014;20:261–7. https://doi.org/10.1016/j.yofte.2014.02.008.Search in Google Scholar

Received: 2021-10-07
Accepted: 2021-12-13
Published Online: 2022-01-07
Published in Print: 2024-07-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.1.2025 from https://www.degruyter.com/document/doi/10.1515/joc-2021-0238/html
Scroll to top button