Abstract
Natural materials exhibit unique properties from the molecular to the macro scale. Utilizing biological engineering approaches, they can act as a blueprint for novel and sustainable solutions in material science and technology. This paper focuses on spider silks, exemplifying a high-performance biopolymeric fibrous material with exceptional mechanical properties, high biocompatibility, slow biodegradation, low immunogenicity, and, in some cases, microbe-repellent features. In-depth understanding of the molecular structure-function relationship has facilitated the development of engineered recombinant silk proteins. In combination with biomimetic processing, they can be used for technical as well as biomedical applications.
Zusammenfassung
Natürliche Materialien weisen einzigartige Eigenschaften von der Molekülebene bis in die makroskopische Struktur auf. In Bioingenieur-Ansätzen können sie als Ideengeber für neue und nachhaltige Lösungen in der Materialwissenschaft und -technologie dienen. Dieser Beitrag fokussiert auf Spinnenseiden als Beispiel für ein biopolymeres Hochleistungs-Fasermaterial mit außergewöhnlichen mechanischen Eigenschaften, hoher Biokompatibilität, geringer Abbaurate, niedriger Immunogenität, und in manchen Fällen mit Mikroben-abweisenden Eigenschaften. Ein detailliertes Verständnis der molekularen Struktur-Funktions-Beziehungen ermöglicht die Entwicklung rekombinanter Seidenproteine. In Kombination mit biomimetischen Verarbeitungsmethoden können sie für Anwendungen in der Materialwissenschaft, Biomedizin und Nanobiotechnologie genutzt werden.
About the authors
Dr. rer nat. Hendrik Bargel received a diploma degree in biology from Rheinische Friedrich-Wilhelm University Bonn in 1998 and a respective Ph.D. from TU Dresden on plant biopolymers in 2005. Formerly the Managing Director at TU Darmstadt’s Biotechnology Centre (2006–2008), he’s been an Academic Counsellor at the University of Bayreuth since. His expertise spans biomimetics, biomaterials, and biopolymers with a focus on microscopy, being also the laboratory manager of the KeyLab Fiber Technologies.
Prof. Dr. rer. nat. Thomas Scheibel received a Diploma degree and a Ph.D. in biochemistry from the University of Regensburg in 1994 and 1998. Since 2007, he has been a Full Professor for Biomaterials at the University of Bayreuth, where he also serves as Vice President for Research and Junior Fellows since 2022. He received several awards, including the Karl Heinz Beckurts Prize, and Dechema Prize from the Max Buchner Foundation (2008, 2013).
-
Research ethics: Not applicable.
-
Author contributions: The manuscript was written by H.B. and edited by T.S.; the figures were illustrated by H.B. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Thomas Scheibel is founder and shareholder of AMSilk GmbH, Germany.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] C. Zollfrank, T. Scheibel, H. Seitz, and N. Travitzky, “Bioinspired materials engineering,” in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 7, Weinheim, John Wiley & Sons, Ltd., 2014, pp. 1–22.10.1002/14356007.s04_s01Search in Google Scholar
[2] P. Ball, “Life’s lesson in design,” Nature, vol. 409, pp. 413–416, 2001. https://doi.org/10.1038/35053198.Search in Google Scholar PubMed
[3] Y. Bar-Cohen, “Biomimetics—using nature to inspire human innovation,” Bioinspiration Biomimetics, vol. 1, no. 1, pp. 1–12, 2006. https://doi.org/10.1088/1748-3182/1/1/P01.Search in Google Scholar PubMed
[4] M. Abramovitz, Amazing Feats of Biological Engineering, Minnesota, Abdo Publishing, 2015.Search in Google Scholar
[5] P. Fratzl, K. Jacobs, M. Möller, T. Scheibel, and K. Sternberg, “Materials research: inspired by nature – innovation potential of biologically inspired materials,” in Acatech Discussion, München, 2020.Search in Google Scholar
[6] I. Grunwald, K. Rischka, S. M. Kast, T. Scheibel, and H. Bargel, “Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins,” Philos. Trans. R. Soc., A, vol. 367, no. 1894, pp. 1727–1747, 2009. https://doi.org/10.1098/rsta.2009.0012.Search in Google Scholar PubMed
[7] S. Kumari, et al.., “Engineered spider silk-based 2D and 3D materials prevent microbial infestation,” Mater. Today, vol. 41, pp. 21–33, 2020. https://doi.org/10.1016/j.mattod.2020.06.009.Search in Google Scholar
[8] C. Hopfe, et al.., “Impact of environmental factors on spider silk properties,” Curr. Biol., vol. 34, no. 1, pp. 56–67.e5, 2024. https://doi.org/10.1016/j.cub.2023.11.043.Search in Google Scholar PubMed
[9] A. A. Walker, C. Holland, and T. D. Sutherland, “More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk,” Proc. R. Soc. B, vol. 282, no. 1809, 2015, Art. no. 20150259. https://doi.org/10.1098/rspb.2015.0259.Search in Google Scholar PubMed PubMed Central
[10] M. Saric, L. Eisoldt, V. Döring, and T. Scheibel, “Interplay of different major ampullate spidroins during assembly and implications for fiber mechanics,” Adv. Mater., vol. 33, no. 9, 2021, Art. no. 2006499. https://doi.org/10.1002/adma.202006499.Search in Google Scholar PubMed
[11] A. Heidebrecht, et al.., “Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk,” Adv. Mater., vol. 27, no. 13, pp. 2189–2194, 2015. https://doi.org/10.1002/adma.201404234.Search in Google Scholar PubMed
[12] F. Hagn, et al.., “A conserved spider silk domain acts as a molecular switch that controls fibre assembly,” Nature, vol. 465, pp. 239–242, 2010. https://doi.org/10.1038/nature08936.Search in Google Scholar PubMed
[13] T. A. Blackledge, M. Kuntner, M. Marhabaie, T. C. Leeper, and I. Agnarsson, “Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs,” Sci. Rep., vol. 2, 2012, Art. no. 833. https://doi.org/10.1038/srep00833.Search in Google Scholar PubMed PubMed Central
[14] D. Huemmerich, C. W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, and T. Scheibel, “Primary structure elements of spider dragline silks and their contribution to protein solubility,” Biochemistry, vol. 43, no. 42, pp. 13604–13612, 2004. https://doi.org/10.1021/bi048983q.Search in Google Scholar PubMed
[15] A. Greiner and J. H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers,” Angew. Chem., Int. Ed., vol. 46, no. 30, pp. 5670–5703, 2007. https://doi.org/10.1002/anie.200604646.Search in Google Scholar PubMed
[16] S. Jokisch, M. Neuenfeldt, and T. Scheibel, “Silk-based fine dust filters for air filtration,” Adv. Sustainable Syst., vol. 1, no. 10, 2017, Art. no. 1700079. https://doi.org/10.1002/adsu.201700079.Search in Google Scholar
[17] K. Pawar, G. Welzel, C. Haynl, S. Schuster, and T. Scheibel, “Recombinant spider silk and collagen-based nerve guidance conduits support neuronal cell differentiation and functionality in-vitro,” ACS Appl. Bio Mater., vol. 2, no. 11, pp. 4872–4880, 2019. https://doi.org/10.1021/acsabm.9b00628.Search in Google Scholar PubMed
[18] P. H. Zeplin, et al.., “Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation,” Adv. Funct. Mater., vol. 24, no. 18, pp. 2658–2666, 2014. https://doi.org/10.1002/adfm.201302813.Search in Google Scholar
[19] A. Lechner, V. T. Trossmann, and T. Scheibel, “Impact of cell loading of recombinant spider silk based bioinks on gelation and printability,” Macromol. Biosci., vol. 22, p. e2100390, 2021. https://doi.org/10.1002/mabi.202100390.Search in Google Scholar PubMed
[20] H. Bargel, V. T. Trossmann, C. Sommer, and T. Scheibel, “Bioselectivity of silk protein-based materials and their bio-inspired applications,” Beilstein J. Nanotechnol., vol. 13, pp. 902–921, 2022. https://doi.org/10.3762/bjnano.13.81.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston