Abstract
The phase-out of nuclear and coal-based electricity production and their replacement by power-electronics based renewable energy sources, especially in Germany, leads to more and faster power system dynamics. Anyway, not all European countries plan to abandon bulk power generation, so there will still be a mix of inverter-based sources and synchronous machines in the future, justifying the necessity of rotor angle stability analysis. This task grows with the number of assets. It requires to numerically solve a large set of ordinary differential equations which gets more and more challenging to do in real-time during contingency analysis in power system operation. Therefore, this paper introduces a new approach to quickly estimate the transient stability of rotor angles without the need of solving differential equations. It is based on a linearized system description, some assumptions on the rotor angle displacement and uses the fault location and duration as parameters. It is proven, that this approach can be used to reduce the number of contingencies which need to be analyzed in detail during system operation and therefore helps transmission system operators to keep the power system stable and secure.
Zusammenfassung
Der Ausstieg aus der Kernenergie und der Kohleverstromung in Verbindung mit dem Ausbau überwiegend leistungselektronisch an das Energieversorgungsnetz angeschlossener erneuerbarer Energiequellen, insbesondere in Deutschland, führt zu starken Veränderungen in der Netzdynamik. Dennoch halten zahlreiche andere europäische Länder an ihren Großkraftwerken fest, so dass auch zukünftig mit einem Mix aus Leistungselektronik und Synchrongeneratoren gerechnet werden muss. Damit bleibt auch die Frage nach der Rotorwinkelstabilität akut, erschwert sich jedoch durch die steigende Anzahl an Kleinerzeugern, da sie das numerische Lösen eines größer werdenden, nichtlinearen Differentialgleichungssystems erfordert. Dies kann in der Sphäre der Systemführung nicht mehr in Echtzeit erfolgen. Daher wird in diesem Beitrag ein neuer Ansatz vorgestellt, der die Rotorwinkelstabilität schnell abschätzen kann und das Lösen der Differentialgleichungen umgeht. Er basiert auf einer linearisierten Systembeschreibung sowie einigen Annahmen über die Rotorbewegung und nutzt die Fehlerdauer als Parameter. Es kann gezeigt werden, dass durch diesen Ansatz eine verlässliche Abschätzung der Stabilität vorgenommen werden kann und sich die Rechenzeit erheblich verkürzt. Er eignet sich daher insbesondere dazu, im Rahmen der Systemführung die Anzahl der detailliert zu analysierenden Fehlervarianten zu reduzieren und unterstützt Übertragungsnetzbetreiber somit in der Wahrung der Systemsicherheit und -stabilität.
About the authors
Martin Wolter received his diploma in electrical engineering in 2006, his Dr.-Ing degree in 2008 and his venia legendi in 2012 all from Leibniz University Hannover. From 2011 to 2015 he worked at 50Hertz Transmission GmbH in system operation concept development. Since 2015, he has been head of the chair of Electric Networks and Renewable Energy at Otto-von-Guericke University Magdeburg. His research topics are power system modelling and simulation, system security and system operation as well as power system dynamics. Currently, he chairs the IEEE PES working group on Dynamic Security Assessment.
Eric Glende received his B.Sc. from Ernst-Abbe-Hochschule Jena in 2013 and his M.Sc. in electrical engineering from Otto-von-Guericke University Magdeburg in 2015. Since 2016 he has been research assistant at the Institute of Electric Power Systems at Otto-von-Guericke University Magdeburg and leader of the Grid planning and system operation team. His research topics are HVDC and power system dynamics.
-
Research ethics: Not applicable.
-
Author contributions: The author(s) have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author(s) state(s) no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] Bundesamt für die Sicherheit der nuklearen Entsorgung, Der Atomausstieg in Deutschland, 2023 [online], Available at: https://www.base.bund.de/DE/themen/kt/ausstieg-atomkraft/ausstieg_node.html.Search in Google Scholar
[2] Bundesministerium für Wirtschaft und Klimaschutz, Gesetz zur Reduzierung und zur Beendigung der Kohleverstromung und zur Änderung weiterer Gesetze (Kohleausstiegsgesetz), 2020 [online], Available at: https://www.bmwk.de/Redaktion/DE/Artikel/Service/kohleausstiegsgesetz.html.Search in Google Scholar
[3] Bundesministerium für Wirtschaft und Klimaschutz, Überblickspapier Osterpaket, 2022 [online], Available at: https://www.bmwk.de/Redaktion/DE/Downloads/Energie/0406_ueberblickspapier_osterpaket.html.Search in Google Scholar
[4] R. Ghosh, N. R. Tummuru, B. S. Rajpurohit, and A. Monti, “Virtual inertia from renewable energy sources: mathematical representation and control strategy,” in 2020 IEEE International Conference on Power Electron-ics, Cochin, India, Smart Grid and Renewable Energy (PESGRE2020), 2020, pp. 1–6.10.1109/PESGRE45664.2020.9070733Search in Google Scholar
[5] S. Reineke, D. Turschner, I. Hauer, and H.-P. Beck, “Verification of the uninterrupted transition from grid parallel to island grid operation of the Virtual Synchronous Machine in a microgrid,” in 21th International Conference on Renewable Energies and Power Quality (ICREPQ’23), Madrid, Spain, 2023.10.24084/repqj21.236Search in Google Scholar
[6] Z. Huang, R. Diao, S. Jin, and Y. Chen, “Predictive dynamic security assessment through advanced computing,” in 2014 IEEE PES General Meeting, 2014.10.1109/PESGM.2014.6938850Search in Google Scholar
[7] R. Schainker, P. Miller, W. Dubbelday, P. Hirsch, and G. Zhang, “Real-time dynamic security assessment: fast simulation and modeling applied to emergency outage security of the electric grid,” IEEE Power Energy Mag., vol. 4, no. 2, pp. 51–58, 2006. https://doi.org/10.1109/mpae.2006.1597996.Search in Google Scholar
[8] Y. Zeng, P. Zhang, M. Wang, H. Jia, Y. Yu, and S. T. Lee, “Development of a new tool for dynamic security assessment using dynamic security region,” in 2006 IEEE International Conference on Power System Technology, 2006.10.1109/ICPST.2006.321756Search in Google Scholar
[9] S. Datta and V. Vittal, “A diagnostics tool for risk-based dynamic security assessment of renewable generation,” in 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 2018.10.1109/PMAPS.2018.8440550Search in Google Scholar
[10] A. al-Masri, M. Z. A. Ab-Kadir, H. Hizam, J. Jasni, and N. Mariun, “Transient security assessment for power system stability: a review on artificial intelligence approach,” in 2009 IEEE Student Conference on Research and Development (SCOReD), 2009.10.1109/SCORED.2009.5442996Search in Google Scholar
[11] M. Wolter, Lecture Script Power Network Planning and Operation, 2020 [online], Available at: https://www.lena.ovgu.de/lena_media/Dokumente+und+Skripte/Skript_PNP.pdf.Search in Google Scholar
[12] N. Hatziargyriou, J. Milanovic, C. Rahmann, et al.., “Definition and classification of power system stability – revisited & extended,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3271–3281, 2021. https://doi.org/10.1109/TPWRS.2020.3041774.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston