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Abstract

This paper develops tests for overidentifying restrictions in Factor-Augmented Vector Au-
toregressive (FAVAR) models. The FAVAR combines a high-dimensional factor model and a
conventional VAR for the latent factors. The identification of structural shocks in FAVAR can
lead to restrictions on the factor loadings of many variables, so it can involve infinitely many
identifying restrictions as the number of cross sections goes to infinity. Our focus is to test the
joint null hypothesis that all the restrictions are satisfied. Conventional tests cannot be used due
to the large dimension. We transform the infinite-dimensional problem into a finite-dimensional
one by combining the individual statistics across the cross section dimension. We find the limit
distribution of our joint test statistic under the null hypothesis and prove that it is consistent
against the alternative that a fraction of or all identifying restrictions are violated. The Monte
Carlo results show that the joint test statistic has good finite-sample size and power. We imple-
ment our tests to an updated version of Stock and Watson’s (2005) data set. The proposed test
rejects the null hypotheses that the number of fast shocks is two or more, but does not reject the
null that there is only one fast shock, which is the monetary policy shock. This result is further
confirmed by the impulse responses of major macroeconomic variables to the monetary policy
shock: the impulse responses based on one fast shock are generally more economically plausible
than those based on two or more fast shocks; and the price puzzle is either considerably reduced

or entirely solved for all price indexes when only one fast shock is used.
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1 Introduction

Dynamic Factor Models (DFM) have received more and more attention from empirical
macroeconomists because a few number of factors can explain a substantial amount of vari-
ations of major economic variables (Sargent and Sims, 1977; Stock and Watson, 2002; Gian-
none, Reichlin, and Sala, 2004). One important application of factor models is the Factor-
Augmented Vector Autoregressive (FAVAR) analysis introduced by Bernanke, Boivin, and
Eliasz (2005; BBE hereafter). They introduced factors estimated from large panel data sets
into conventional VAR models. The main advantage of FAVAR relative to conventional VAR
is that it utilizes the information in high-dimensional data sets to identify the space spanned
by the structural shocks without the loss of parsimony. Due to such advantages, FAVAR has
become increasingly popular in the empirical macroeconomic literature during recent years
(for example, Stock and Watson (2005); Boivin, Giannoni, and Mihov (2009); Gilchrist,
Yankov and Zakraisek (2009); Bianchi, Mumtaz and Surico (2009); Forni and Gambetti
(2010); Eickmeier, Lemke, and Marcellino (2011), among others).

In spite of the various applications of FAVAR, the existing literature has not addressed
the overidentification problem in FAVAR models except Stock and Watson (2005). Unlike
the conventional structural VAR analysis where the number of restrictions for identifying
structural shocks is usually small, the FAVAR tends to involve a large number of identifying
restrictions. This is because factors are estimated from many macroeconomic time series
and imposing an identification condition on a factor results in imposing an identification
condition on each of the macroeconomic time series used to estimate the factor. In such a
setup, the number of identifying restrictions is much larger than the number of structural
shocks and the system is highly overidentified. If a substantial amount of these restrictions
are violated, then it is likely that the structural shocks cannot be consistently estimated,
and policy analysis such as impulse response functions based on a misspecified identification

scheme may produce very misleading results.



In this paper, we consider testing the joint null hypothesis that all the identifying restric-
tions are satisfied against the alternative that a non-negligible fraction of or all restrictions
are violated. We follow the setup of Stock and Watson (2010) and the identification scheme
of Stock and Watson (2005; SW hereafter). SW conduct a structural analysis of monetary
policy by imposing contemporaneous timing restrictions in the FAVAR model. They classify
all the variables into three groups: slow variables (GDP, wages, etc), the federal funds rate,
and fast variables (asset returns, etc). They also partition the structural shocks into three
groups: slow shocks, the monetary policy shock, and fast shocks. The identification scheme
of SW assumes that the slow variables are not affected by the monetary policy shock and
fast shocks within the same month, that the federal funds rate is not affected by the fast
shocks within the same month, and that the fast variables can respond contemporaneously
to all shocks. Since the number of slow variables is large, SW’s scheme imposes many zero
restrictions on the coefficients of the structural MA representation of FAVAR. Our focus is
to develop a joint test to check whether these zero restrictions hold simultaneously.

Conventional overidentification tests are usually designed in a finite-dimensional frame-
work, so they cannot be applied to test the null hypothesis that involves parameters whose
number goes to infinity as the sample size grows. As argued by Han and Inoue (2011),
directly accommodating the conventional test to the infinite dimension case is technically
challenging for several reasons. First, to construct such statistics, one needs to estimate an
infinite-dimensional covariance matrix, but the norm of the difference between the estimated
and true covariance matrices can be very large even if each entry of the estimated matrix
converges in probability. Second, taking the inverse of such a high dimensional matrix will
amplify the estimation error dramatically and lead to very inaccurate results (Ledoit and
Wolf, 2004). Also, if the time dimension is smaller than the dimension of the covariance
matrix, then the sample covariance computed in a conventional way is singular. Finally,
unlike the finite dimension test statistics that have Chi-square limit distributions, the limit

distribution of overidentification test statistics with infinite degrees of freedom, even if it is



well-defined, is likely to be nonstandard.

To the best of our knowledge, SW is the only one that considers testing the overidentifying
restrictions in FAVAR models. They regress each slow variable on the estimated structural
shocks and test whether the coefficients on the monetary policy shock and fast shocks are zeros
by conventional Wald statistics. The main problem of this method is that it is an equation-
by-equation test and it cannot control the overall type I error for the joint null hypothesis that
all identifying restrictions hold simultaneously. Hence, if some of the equation-by-equation
statistics rejects the null hypothesis but some do not, then it will be difficult to make a
decision whether we should reject the joint null hypothesis or not. In their empirical analysis
based on a post-war monthly US data, SW establish an FAVAR model with four slow shocks,
a monetary policy shock and two fast shocks. They implement their methods to test the
coefficients on the monetary policy shock and fast shocks in 67 equations and they find that
49 test statistics reject the null hypothesis at the 5% level. The rejection rate, 73.1% = 49/67,
seems to be too high compared to 5%, so it somehow indicates that the setup is possibly
misspecified. However, since these equation-by-equation statistics are not independent, it is
still hard to say whether the joint null hypothesis should be rejected or not based on the
rejection rate. Thus, it is necessary to develop a joint test for all identification restrictions.

The contribution of this paper is threefold. First, we propose a new equation-by-equation
statistic and establish its limit theory. The intuition of this statistic is similar to that of SW,
but the estimation procedure is different from theirs. SW does not provide a formal proof
for the limit distribution of their statistic, and it may be difficult to formally prove their
result because their statistic is based on a high-dimensional reduced rank regression which
involves inverting a large singular matrix when the time dimension is less than the number
of slow variables. This paper circumvents this difficulty and develops a new statistic with
theoretically justified limit theory both under the null and alternative hypotheses. Second,
based on the proposed equation-by-equation statistic, this paper develops a statistic that

can test the joint null hypothesis that all identifying restrictions hold simultaneously. To the



best of our knowledge, this is the first test that deals with such kind of null hypothesis in the
literature. The intuition is to combine the equation-by-equation statistics across the cross
section dimension, so that the infinite-dimensional problem reduces to a finite-dimensional
one. Under some regularity conditions, we establish the limit theory under the null hypothesis
and prove that the joint test statistic is consistent against the alternative that a substantial
amount of identifying restrictions are violated. The Monte Carlo results show that the joint
test statistic has good finite-sample size and power. Finally, this paper extends the theoretical
results found by Bai (2003). He shows that the factors estimated from observed data can
be treated as if they were observed as long as v/T' /N — 0and N, T'— oo, where N and T
denote the cross section and time dimensions, respectively. In SW’s FAVAR setup, not only
the factors but also data are estimated, i.e. the factors are estimated from estimated data.
We show that the main results of Bai still hold under some regularity conditions. This result
is a by-product when we try to establish the limit theory for our statistics, but we believe
that it would be useful for future research in the literature of dynamic factor models.
Although the main focus of this paper is on SW’s contemporaneous timing restrictions,
our test can be applied to test other similar identifying restrictions in the literature as well.
For example, Gilchrist, Yankov and Zakraisek (2009) use a setup very close to that of SW
to investigate the impulse responses of credit spreads and macroeconomic variables to the
credit shock. They assume that the credit shock does not affect the macroeconomic variables
contemporaneously, which can be tested using our statistics. Furthermore, we can test BBE’s
identifying restrictions, even though they are slightly different from those of SW. BBE assume
that the monetary policy shock does not contemporaneously affect other factors that are
estimated from slow variables, and then they estimate a structural VAR model that consists
of the federal funds rate and other factors. Although this VAR itself is just identified,
the factors other than the monetary policy instrument are estimated under the assumption
that slow variables are not contemporaneously affected by the monetary policy shock, which

implies a larger number of restrictions. In this sense, it is similar to the identification scheme



of SW and these restrictions are testable by our statistics!.

We implement our tests to an updated version of SW’s data set. The tests reject the null
hypotheses that the number of fast shocks is two or three, but they do not reject the null that
there is only one fast shock, which is the monetary policy shock by definition. Interestingly,
this result provides some evidence to support the BBE’s identifying restrictions in which
factors other than the monetary policy shock are assumed to be slow. We also check the
number of slow and fast shocks by information criteria, which should provide consistent
estimates as V and T' — oo. However, the information criteria find a contradictory result
that the number of slow shocks is greater than the total number of structural shocks. The
reason is that the information criteria could lead to biased estimates in a finite sample. In
such a scenario, our testing procedure is the only way to evaluate the identifying restrictions
in FAVAR.

Furthermore, we compute the impulse responses of major macroeconomic variables to the
monetary policy shock based on kr = 1 and 2, where xkr denotes the potential number of
fast shocks. It turns out that the impulse responses based on kp = 1 are generally more
economically plausible than those based on kr = 2. Moreover, we investigate the impulse
responses of different price indexes. Compared to kr = 2 which leads to persistent positive
responses to a contractionary monetary policy shock, kp = 1 either substantially reduces
or completely solves the price puzzle (Sims, 1992) in all price indexes. Hence, these results
confirm that our tests are useful to select correct identifying restrictions in FAVAR models.

The rest of the paper is organized as follows. Section 2 briefly describes the setup of
FAVAR and the contemporaneous timing restrictions considered by SW. Section 3 proposes
the equation-by-equation and joint test statistics for the overidentifying restrictions in the
FAVAR, and the asymptotic properties are established under the null and alternative hy-
potheses. Section 4 investigates the finite-sample size and power of our statistics using

Monte Carlo experiments. Section 5 provides an empirical application of our test statistics

1Besides the above examples, our test statistics can be also applied to test the identifying restrictions in other papers that
use similar setup of BBE (for example, Mumtaz and Surico (2009); Eickmeier, Lemke and Marcellino (2011)).



and computes the impulse response functions for major macroeconomic variables based on a

monthly US data set. Section 6 concludes.

2 The FAVAR Models and Contemporaneous Timing Restrictions

2.1 The FAVAR Models

In this subsection, we briefly review that setup of FAVAR models. Let X; = [Xy;, ..., Xni)'
be an N—dimentional vector of stationary time series variables observed for ¢t = 1,...,T.

Suppose that the number of common factors is g. The DFM can be expressed as:

Xit = S\Z(L)ft -+ €t (21)

fe=o(L) fi1 +ne (2.2)

where f; is the ¢ x 1 vector of common dynamic factors at period t, S\Z(L) are the dynamic
factor loadings for series ¢, consisting of a 1 x ¢ vector lag polynomial, 7; is a ¢—dimensional
innovation for dynamic factors at time ¢, and e; is the idiosyncratic shock for series ¢ at
period t.

Suppose that \;(L) has a finite degree py. Define the static factor F, = [f/ fiafip)s

where the dimension of F; is r x 1. The DFM has the following static representation:

Xt = AFt + e (23)
Fy=®(L)F—1 + Gy (2.4)
where A is the static factor loading matrix of Fi, e; = [ey,...,end)', (L) is r X r matrix

lag polynomial, and G is r X ¢ matrix of zeros and ones. Suppose e;; is modeled as an

autoregressive process:

eir = 0;(L)ej—1 + vyt (2.5)



Let D(L) = : : , and vy = [v1g, ..., Une)’, SO we have

0 - Sy(L)

€t = D(L)@t_l + vy (26)

Combining Equations (2.3), (2.4) and (2.6), we can re-write the static representation in the

following VAR form:

F, O(L 0 F,_ EF,
t _ ( ) =1 + Fi (27)
X, A®(L) — D(L)A D(L) | | X, £x,
where
EF, I 0
= GT}t + (28)
EX, A Ut

If the VAR model (2.7) is invertible, then we have the MA form of the DFM:
X =B(L)n + e

where B(L) = A[I —®(L)L]"'G, which can be derived by substituting (2.4) into (2.3). Let ¢,
denote the ¢ dimensional structural shocks to the dynamic factors, and E¢(; = I,. Assume

that the reduced form innovations 7; are linear combinations of (; in the following way:
Ay = ¢ (2.9)
Let B(L) = B(L)A™!, then we have the structural MA representation for X;:
X, =B(L)G + e (2.10)

Note that if the structural shocks (; is a vector white noise process, then the link between



Equations (2.1) and (2.10) is that the filters \;(L)’s are replaced with B(L) such that the
dynamic factors are transformed into orthonormal white noise processes. Thus, if we think
of (; as the transformed dynamic factors, then Model (2.10) is exactly the DFM considered
by Forni et al. (2000).

2.2 Contemporaneous Timing Restrictions in FAVAR

Contemporaneous timing restrictions are commonly applied to identify the monetary policy
shock in structural VAR models. It is always assumed that the monetary policy shock
does not affect variables, such as output, consumptions, etc, within the same period. Such
identification scheme implies that some of the coefficients in the structural MA must be
zeros. In the conventional structural VAR analysis, variables are properly ordered such that
the monetary policy shock can be identified using Cholesky decomposition.

Now, we consider SW’s identification scheme for the monetary policy shock in the FAVAR
model. Note that

ex, = BoGi + v (2.11)

where By is an N x ¢ coefficient matrix which is the zero-lag term in B (L). By Equations
(2.8) and (2.9), we have By = AGA~'. Thus, the contemporanecous timing restriction is
the same as restricting some elements of By to be zeros. SW categorize variables into three
groups: slow variables, the federal funds rate and the fast variables; they also categorize
shocks into three groups: slow shocks, the monetary policy shock and the fast shocks. They
assume that the slow variables are only affected by the slow shocks contemporaneously, that
the federal funds rate can be affected by slow and monetary policy shocks within the same
period, and that the fast variables can be affected by all shocks contemporaneously. Let
us use superscripts 'S’, 'R’, and 'F’ to denote the three groups, respectively. Then we have
X =X XE XV, ex, = 5,68, e8], and ¢ = [, ¢F, ¢"), where X and &%, are
Ng x 1 vectors, X, e | and ([ are scalers, X[ and £§ are Np x 1 vectors, ¢ is a g x 1

vector, and (" is a qr x 1 vector. Note that Ng + Np+ 1 = N and g5 + qr + 1 = ¢. Given



the contemporaneous timing restrictions on By, Equation (2.11) can be rewritten as:

S = S

€Xt BO,SS ONle ONsXqF Ct
R | —| & = R

ex, | = | Bors Borr Oixgr G|t (2.12)
F = = ~ F

£x, Bors Borr Borr G

Note that the number of zeros in By is equal to (1 + gr) X Ng + ¢, but identifying A
only requires ¢(q + 1)/2 restrictions. If Ng > ¢, then the system is overidentified. We are
interested in whether all the zeros restrictions on By in Equation (2.12) are satisfied or not.

Let us partition By into the following block matrix:

Byss DBosr Bosr

Bo=| Bors Borr Borr

Bors Borr DBorr

Consider the following null hypothesis:
Hj - BO,SR = On,x1, BO,SF = 0N, xqp, and BQRF = O1xqr

This null hypothesis involves testing an infinite number of restrictions at the limit. SW argue
that the conventional statistics that have asymptotic Chi-square distribution are expected to
have poor performance due to the large number of restrictions. Thus, they only implement
equation-by-equation hypothesis testing for Equation (2.12). Their null hypothesis can be

written as

HSY . for given i
Bé,SR =0 and B[i),SF = O1xq, if 7 € slow group

Bo.rr = 01, ifi=R

where Bj g and B g denote the i row of By sr and By gr, respectively, and i = R means

10



that the 5" variable is the federal funds rate.

It is worth noting that as Ng — oo, there will always exist some equation specific test
statistics that reject the null H5"W | even if H; is true. For example, if all the equation specific
test statistics are independent, then about 5% of the statistics will reject the null hypothesis
based on the critical value at the 5% level. Thus, even if the equation specific test rejects
the null hypothesis H5" for some 4, it does not necessarily mean that we should also reject

the null hypothesis H{.

3 Testing the Overidentifying Restrictions

In the rest of the paper, we consider the following model:

Xt = AFt + (2 (31)
p

F =% ®;F_;+Gn (3.2)
7=1

where X; is an N—dimensional vector, F} is the r—dimensional static factor at time ¢, A =
[A1, ..., An]" is the static factor loading matrix (IV x r), ®,’s are autoregressive coefficients of
F;, G is a r X ¢ matrix, and n; is a g—dimensional innovation of F; with ¢ < r. Unlike the
derivation of the FAVAR model (2.7), quasi-demeaning Equation (3.1) is not necessary to
test the overidentifying restrictions, so we do not make assumptions (such as Equation (2.6))
on the dynamics of the idiosyncratic components e;.

Let Fy = [F{ ,....F{_)], ® = [®4,...,®,], and 7, is linked to the structural shocks (; by

Equation (2.9). Substituting Equations (3.2) and (2.9) into Equation (3.1), we have:
X, =1IF,+T¢+ e fort=p+1,..,T (3.3)
where IT = A® and I' = AGA™!. The matrix form representation of Equation (3.3) is:
X =FI'+(T +e (3.4)

11



where X = [X,11, ... X7, F = [Fpt1, s Frl's ¢ = [Cpt1s -, G, and € = [ept1, ... er]'.

In this paper, variables are classified as slow and fast variables, and structural shocks are
classified as slow and fast shocks. The fast shocks do not have contemporaneous impacts on
slow variables, whereas slow shocks are allowed to have contemporaneous impacts on both
slow and fast variables. By this definition, the monetary policy shock is treated as a fast shock
and the federal fund rate is a member of the fast variables. This is different from Equation
(2.12), which uses a three-group setup and imposes the restriction that 307 rr = 0 to identify
the monetary policy shock. We use a two-group setup for three reasons: first, classifying
the monetary policy shock as a fast shock does not affect the zero restrictions on the factor
loadings of slow variables. Second, classifying the federal funds rate as a fast variable only
eliminates the restriction that the fast shocks should not have contemporaneous effects on
the federal funds rate, but this involves only a fixed number of restrictions, which can be
handled by a conventional testing procedure with finite dimension. Finally, the following
section shows that jointly testing the overidentifying restrictions requires estimates of the
fast shocks. Since the estimates of factors are extracted from a large number of variables,
adding one more variable in the fast group will not affect the estimates asymptotically. Hence,
we focus on the following model:

X3 s [SS TSF ¢S es

XtF HF FFS FFF CtF ef

where X is an Ng x 1 vector of slow variables, X[ is an Ny x 1 vector of fast variables,
e? and el are idiosyncratic shocks of X and X[, respectively, ¢ is a g X 1 vector of slow
structural shocks, and ¢} is a gr x 1 vector of fast structural shocks. In this setup, we have
Ns+Np=N,qs+aqr=q X, = X7 X]'), ¢ = [¢, ¢, and e, = [¢/, e]"]'. Equation

(3.5) can be expressed in the following matrix form:

XS — FHS” +<SFSS/ +CFFSF’ +€S (36)
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XF :.FHFI +CSFFSI +CFFFF/ +€F (37)

where X* = [X7 |, ..., X7]"is a (T — p) x N¥ matrix of slow variables, X* = [XI", . XT]

is a (T'—p) x N¥ matrix of fast variables, (¥ = [(7,...,¢?]" is a (T — p) x ¢° matrix of
slow structural shocks, ¢* = [¢}},....¢7] is a (T — p) x ¢" matrix of fast structural shocks,
e = [e),...,e7] is the idiosyncratic shocks of slow variables, and e = [ef,,,...,ef] is the

idiosyncratic shocks of fast variables. Note that X = [X%:XF] ¢ = [¢:¢(F] and e = [e%:ef].

Note that X — FII = (I + e follows a factor structure, where the structural shocks ( is
a g—dimensional factor for X — FII. Amengual and Watson (2007) show that the number
of factors in X — FII can be consistently estimated by implementing Bai and Ng’s (2002)
information criteria on X — F f[, where F is constructed by stacking the principal component
estimator £ and II is the OLS estimator from regression of X; on F;. Thus, we treat ¢ as

known in the rest of the this section?.

Now, we impose the contemporaneous timing restriction that the fast shock ¢/* does not
affect X7 i.e. T°F = 0. This implies that X — FII¥ = ¢5T%% 4 €5 follows a gg—factor
structure, in contrast with the full sample X — FII that follows a g—factor structure. Hence,
testing zeros coefficient restrictions in Equation (3.6) is same as comparing the numbers of
factors in X° — FII% and X — FIL

One noteworthy thing is that Equations (3.5), (3.6) and (3.7) are the true model and ¢p
is an unknown parameter € {0,1,...,q}. If ¢r = 0, then all the structural shocks are slow in
the sense that they can affect X contemporaneously, so I'F and ' are Ng x 0 and Np x 0
matrices, respectively. If ¢r = ¢, then all the structural shocks are fast as they do not affect

FSF

X7 contemporaneously, so is an Ng x ¢ zero matrix and I'* and I''™¥ are Ng x 0 and

Np x 0 matrices, respectively. If 1 < qr < ¢ — 1, then slow factors and fast factors co-exist,

FSF

and is an Ng X qp zero matrix, which is the true identifying restriction that one should

24 can be also consistently determined by methods proposed by Bai and Ng (2007) and Hallin and Liska (2007)
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impose if ¢r were known. To test the value of qr, we consider the following hypotheses:

Hy: gr = kp

H gr < Kp (38)

kr is the candidate value of ¢p, and it means that we impose Ng X kg zero restrictions in
the upper right corner of I' to identify the structural shocks, so (3.3) becomes:

ONsXI{F

*
Xt = H.Ft + Ct —|— Ct (39)

where the asterisks denote unrestricted entries in I'. We set kr € {1,...,q}, and kKp = 0
is ruled out because the structural shocks cannot be identified if no restriction is imposed.
Hence, g is always greater than zero under the null hypothesis Hy. Under the alternative
hypothesis Hy, however, qr = 0 is allowed, indicating that no fast shock exists for the current
classification of X* and X*. If the test rejects Hy: gr = 1 in favor of H;: gr < 1, then one

may need to consider re-classifying the slow and fast variables.

Remarks:
(1) The hypotheses in (3.8) transform the infinite-dimensional problem to a finite-dimensional

one. The original null hypothesis that T'°¥ = O, is slightly stronger the null considered

PSF FSF

in (3.8). To see this, suppose that is Ng x kr and that a fixed number of entries in
are non-zero, so ['*Y" # O, and the original null hypothesis should be rejected. On the
contrary, the null hypothesis that gr = kg still holds, because a fixed number of non-zero
entries in I'5F will not change the number of factors in X — FII%. In fact, only a fixed
number of non-zeros in I'** will not affect the principal component estimates in large samples,
so we do not want a test that that is powerful against a very small number of violations in

' In this sense, the transformed null and alternative hypotheses are more favorable than

the original ones. Also, the transformed the hypotheses do cover the cases where we want
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I'SF are non-zeros so that

the statistics to have power. For instance, if a fraction of entries in
the number of factors in X — FII¥ is greater than ¢ — kp, then Hy in (3.8) will be rejected

in favor of H;.

(2) Onatski (2009) proposes a test for the number of factors in large factor models. However,
this method is not applicable to test our hypotheses (3.8) for two technical reasons. First,
testing (3.8) implies that we need to compare the dimensions of ¢ and (;, which cannot
be estimated from X — FII% and X — FII because F and II are not observed. Onatski’s
test would be applicable if X — FII¥ and X — FII were observed. Since we can only
use the feasible analogs, X° — FII% and X — ﬁﬂ, to estimate ¢ and (;, one must take
into account the estimation errors in F and f[, which may change the limit distribution of
Onatski’s test statistic. Second, Onatski (2009) proposes both dynamic and static versions
of statistics for the number of factors. On the one hand, the static version requires the
the idiosyncratic component to be Gaussian and serially uncorrelated, which are very strong
assumptions compared to the literature on factor models. On the other hand, the dynamic
version requires N = o(T'/2=1/410g™! T)%/13 for some d > 2 if no Gaussianity is imposed. Bai
and Ng (2006) show that when v/7/N — 0 as N and T — oo, the estimated factors can be
treated as if they were observed, and this nice property is widely used in the FAVAR literature.
It is clear that Onatski’s condition on the relative rate between N and T' contradicts Bai and
Ng’s condition. Thus, to maintain the Bai-Ng property, one cannot apply Onatski’s statistic

to test (3.8).

3.1 The Statistics

In this subsection, we will propose statistics to test the the null hypothesis that Hy : qr = Kk
against the alternative hypothesis that Hy : qr < kp. Let us first define some notations:
for any matrix Z, the projection matrix, denoted as Py, is set equal to Z(Z'Z)~1Z’, and the

residual maker, denoted as My, is set equal to I — P,. The statistics are computed using the
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following steps:

(1) The estimated static factors, denoted as a . is /T times the eigenvectors corresponding
to the r largest eigenvalues of the T' x T matrix X X’. Let F}, denote the transpose of the ¢
row of F'. Define F, = [E]_,, ..., Ft’_p]’ and F = [Fpy1, ..., Fr]'-

(2) Define X = M:X, X5 = MzX5 and X¥ = M;X". Set the estimated slow structural
shocks, denoted as QA S, equal to /T — p times the eigenvectors corresponding to the kg =
q— K largest eigenvalues of the (T'—p) x (T'—p) matrix X5X5. Let ff denote the transpose
of the ™" row of 5.

(3) Define X = MéS)A(, X5 = Mésf(s, and XF = MéSXF. Set the estimated fast structural
shocks, denoted as CA F equal to /T — p times the eigenvectors corresponding to the xp largest
eigenvalues of the (T — p) x (T — p) matrix X X’. Let {f denote the transpose of the ¢t row
of CF.

(4) Let X; = [Xip+1),...,Xir|" denote the observations of the ith variable. Accordingly,
)A(i = MzX; and X, = Méin. Define ¢; = Mé—FXZ'. Let i € S abbreviate that the i variable

belongs to the slow group. Define the individual statistic for the i** variable:
wi = XIEFOTEF R, /(T —p), i €S

where Q; = (T —p)~1 Z?:p+1 é-tFét /ézzt‘

(5) Define the joint statistic for all slow variables:

W (z X;éF) o (g zx) /(T = p)N

i€S (IS
where Q = (T — p)~'Ng* ZtT:pH Yies ¢ CER

3.2 Asymptotics under the Null Hypothesis

Let M < oo and m € (0, 1) be constants that do not depend on N or 7.
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Assumption 1:

(a) E||F|* < M, T7' Y F,F] =, Sp, and T' Y FulF, =, 7, as T — oo for some
positive definite matrices X and X r.

(b) E((C)) = 1, E||Gl|* < M, E(¢()) =0 for any s # ¢, and T ZZH Gl —p 1y

(¢) Bl Sy PG /VT = pl* < M for gp > 0 and E|| 0,41 GF/VT = pl* < M.

Assumption 2:

(a) E||N]|* < M, and ||[NA/N — X, —, 0 for some r x r positive definite matrix 3.

(b) G has rank ¢. |G| < M and ||®|| < M. A is non-singular and [|A|| < M.

(c) |T99T9 /Ng — Spss|| —p 0 and ||TFFTFF /Np — Sper|| —, 0 for some positive definite

matrices Ypss(gs X qg) and Xrrr(gr X qp) for gp > 0, and Ng/N — m.

Assumption 3:

(a) E(ey) =0, E|ey|® < M for all i and t.

(b) E(ele;/N) = E(N7' SN eiseir) = v (s, 1), |y (s, s)| < M for all s, and T S1, ST
v (s, )] < M. E(edel/Ng) = E(Ng* Yieq eiseir) = v5(s, 1), |¥5(s, 5)] < M for all s, and
T Xl (s, )] < M.

(c) Eleieri—;) = Tikej with |7 ;| < |7ik| for some 7, and for all ¢ and j = 0,...,p. In
addition, N™* 33V, S | < M.

() Bleaers) = g and (NT) S, S8, 5T 5T ] < M.

(e) for every (t,s), E¥ ‘N‘l/z SN [eiseir — E(eiseit)]‘4 < Mand F ‘Ngl/Q Siesleisein — E(eiseit)]r
< M.

(f) for each t, E(N;l/2 Sieg i) < M.

Assumption 4:

Aiy (¢, and e;; are mutually independent groups.

Assumption 5: For every ¢t < T and for every i < N:

(2) ooy lyw(s, )] < M, and Ty [y5(s, )] < M.
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(b) i Il < M.

Assumption 6:

(a) foreach t, £ HF ST SN Fulerser: — E(eksekt)]HQ <M, FE H\/ﬁ i Yt Golersent
_E(eksekt)”’ < M, and F H \/ﬁ Zs=p+1 Sres Cslersert — Elegsert)] H <M.

(b) for each ¢ and for j = 0,1,....,p, E Hﬁ ZtT:pH S Ak [ere—jei — E(ek,t,jel-t)]HQ < M.

For cach i, B || 2z X7 S M [ewen — Blenea)]||” < M.

OF | A= ST, S ENew| < M. For j = 0,1,.c,p, B| A= 5L, S0 Mere, 7| <
M, E| Azl TN, /\kekz,t—jCéHQ <M, and B | = Y10 Thes Akekt}}’HQ < M, and
E Hﬁ S p1 Ykes )\kektC}'HQ < M.

(d) for cach t, B[ = S0 hea|” < M, and B | A Sics M
< Mand E| L5, Gea|
<

2
< M.

(e) for each i, F H% ST Fey ! < M. For each i and for

Jj=1 7p7EHth p+1F/ i€t

2 2
<Mand E | 2 S0 Ties Gea| < M.

H W Zt:pﬂ >ies Fieit

Assumption 7:
a) Ng'* Cics A = Op(1),
< M.

(
(b) For each t and for j =0,1,...,p, F HF Yies Ni€it—j€it
( < M and

C) For j 07 ]-7 ey Py E H \/7 Zt—erl Zk;ﬁz ZzES /\kekt j€it
2|

m Zt=p+1 Zkes,kyéi >ies Ak€riCit S M.

Assumption 8: under the null hypothesis,

(a) ﬁ ZtT:pH ey —q N(0,9;) and (T — p)~1 ZtT:pH ¢f'¢fe? —, Q; for i € S and some
positive definite matrix €2;.

(b) ﬁ Zf:p—l-l 2ies CtFez‘t —a N(0,Q) and [(T — p)Ns]™! Z?:p—i-l > ies gtFCfIBzzt —p £,

where (2 is positive definite.

Assumptions 1 - 6 are either from or slight modifications of those in the factor model

literature. Assumption 1(a) is almost the same as Assumption A of Bai (2003), and the
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only difference is that we also requires the positive definiteness of >z, which follows from
Assumption A10 of Amengual and Watson (2007). Assumptions 1(b) and 2(c) provide reg-
ularity conditions on the structural shocks. Assumption 1(b) requires that the structural
shocks are serially uncorrelated and have unit variance, which is standard in the dynamic
factor model literature (see Forni et al., 2000). The first moment inequality in Assumption
1(c) holds if structural shocks are orthogonal, which follows from Forni et al. (2000), and
the second moment inequality in Assumption 1(c) is not stringent because EGF, = 0 by
Assumption 1(b). Assumption 2(a) is similar to Assumption B in Bai and Ng (2006), and
assumption 2(c) is just an analog of 2(a). The condition that Ng/N — a constant € (0, 1)
ensures that both slow and fast variables are a non-negligible fraction of the full sample.
Assumptions 3 and 5 follow from Assumption C and E of Bai (2003), while Assumption 4 is
the same as Assumption D in Bai and Ng (2006). Assumption 6 is not stringent because all
the sums in this assumption involve zero mean random variables. This assumption is similar
to Assumption F of Bai (2003), and the main difference is that we introduce lags of Fy, e;

and (; into the sums.

Assumption 7 imposes some further restrictions on the factor loadings. Assumption 7(a)
requires that the sum of factor loadings in the slow variables is Op(\/N ). This will hold
if \;’s are centered around zero, i.e. some variables have positive loadings and some have
negative, so that the sum of \;’s for i € S diverge at rate v/N by the central limit theorem.
Assumptions 7(b) and 7(c) imply similar restriction to that of Assumption 7(a). A simple
sufficient condition for Assumptions 7(b) and 7(c) is that e;;’s and \;’s are independent with
EX; = 0, but 7(b) and 7(c) can also hold for weakly correlated e;’s and \;’s. The role of
Assumption 7 is to ensure that the difference between the (f S s X}) /+/ (T — p)Ng and its
infeasible analog Hlr(" Y e ei/\/(T — p)Ns is 0p(1), where Her is a non-singular rotation
matrix (see Appendix A3), so that the limit distribution of W is the same as that of W’s
infeasible analog. This assumption imposes more restrictions on A; than the conventional
factor model literature, however, it seems to hold for the data set used in Section 5 and other

commonly used data sets such as SW.3

3The largest elements of | ZiES ;\i/\/Ns\ are less than 3 for both the data set used in Section 5 and data set of SW, where
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Assumptions 8(a) and 8(b) are simply central limit theorems. This assumption is applied
to establish the asymptotic null distributions of w; and W, which are summarized in the

following theorem.

THEOREM 1: If \/T/N — 0 and the null hypothesis Hy: qr = kr holds, then
(i) under Assumptions 1 - 6 and 8, w; —q X, fori € S.

(ii) under Assumptions 1 -8, W —4 x2_.

Remarks:

(1) The detailed proof of Theorem 1 is provided in Appendix B. The basic idea of the proof is
to show that w; — w} = 0,(1) and W —W* = 0,(1), where w} = /(¥ (S, 1 (F'¢ed) (e
and W* = Yics el (T 01 Yies G ¢ €4) ¢ Sics €4, so wi and W* are simply the infea-
sible analogs of w; and W. Note that w; is just the Wald statistic that tests the coefficients
in the regression of X; on (AF . Theorem 1 shows that one can apply the conventional Wald
statistic as if X; and ¢¥ are observed. This is a new result in the literature. Bai (2003) shows
that factors estimated from observed data can be treated as if they were observed as long
as \/T/N — 0and N, T' — oco. We extends Bai’s result in the sense that fF can be still
treated as observed even if éF is estimated from X which is also estimated. This property
plays a central role in establishing the limit distributions of w; and W, and it may be poten-
tially useful in other inferential problems where both data and factors are not observed but

estimated.

(2) Note that the variance matrices in w; and W are estimated without imposing the null

hypothesis. We can also construct LM-like test by imposing the null hypothesis. Define

tm; = X;CPQ7 M X /(T —p), i€ S

Xi is estimated from the regression of X; on the estimated factors by principal components. Thus, Assumption 7(a) is likely
to hold for these data sets. If one encounters a data set that has too large numbers in | Zies 5\1/\/N75| to satisfy Assumption
7(a), one could adjust the signs of some X;’s such that Assumption 7 holds, because changing the signs of X;’s will not affect
the estimated factor space asymptotically.
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LM = (Z X;&F) ot (6F’ > X) /(T — p)Ns
i€S

icS
where Qi = (T —p)! Z?:pﬂ éfff/)z?t and Q = (T - P)_1N§1 ZtT:pH >ies Efff/)?i The

following corollary shows the asymptotic distributions of Im; and LM.

COROLLARY 1: If ﬁ/N — 0 and the null hypothesis Hy: qr = kr holds, then
(i) under Assumptions 1 - 6 and 8, lm; —4 X, fori e S.

(ii) under Assumptions 1 -8, LM —4 X7,

3.3 Asymptotics under the Alternative Hypothesis

Recall that the estimator fs is equal to /T — p times the eigenvectors corresponding to
the kg = q — Kkp largest eigenvalues of the (7' — p) x (T — p) matrix X5XS. Under the
alternative hypothesis kg < qg, 5 is (T — p) X Kg, so it is impossible for (S to consistently
estimate the space spanned by ¢%, which is (T — p) x gg. Let (¥ equal /T — p times the
eigenvectors corresponding to the ggs largest eigenvalues of X5X5 and Vs be the diagonal
matrix consisting of the first ¢° largest eigenvalues of (1/N°T )X' $X5 in decreasing order.

Hence, we have

(1/NST)XSX¥ % = {5V (3.10)

Define Hes = (I'S5'T99 /Ng)(¢5'¢5/T)Vgt, T = [D99TF9] and T = [P T so we
have I' = [['¥:T'F] and
X =FIU + 1% + ¢ + e (3.11)

Lemma C1 in the Appendix C shows that I:.Qs is asymptotically non-singular, so Equation

(3.11) can be rewritten as

X = FI 4 (PHsHLTS + T 4 e

= FII' + (P HsZ5 + T te (3.12)
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=S’

— ! “ . —_—
where =° = Cslf‘s. Partition =°

as [ 7

where =7, is the first £g columns

=S ]
ks —rks+1lqs!

of 2% and = is the last qg — kg columns of Z°. Let denote the transpose of

Hs+1qs Zﬂs+1qs

the " row of = To show that our test statistics are consistent under the alternative

ms+1qs

hypothesis, we make the following assumption.

Assumption 9:

There exist constants 0 < a < 0.5 and C' > 0, such that

- ) -

Prob <H \/— Z ézsﬁerl \qs

€S

as N and T — oo.

Assumption 9 ensures that the joint statistic W diverges to infinity under the alterna-
tive hypothesis. One simple sufficient condition for Assumption 9 is that > ;cq 555 <15/ Ns

converges to a non-zero constant. For the case where 3 ,cq 51 ks+1igs

/Ng —, 0, this as-
sumption can still hold under other sufficient conditions. For example, if the central limit
theorem holds such that > ,cq fﬁ atlgs/ V/Ng is normally distributed at the limit, then
T Y ies &g i1:qs/ V' Ns will diverge for any a > 0 as long as N and T' — oo at the same

rate.

THEOREM 2: Suppose that v/T /N — 0 and the alternative hypothesis Hy: qr < Kk holds.

(i) under Assumptions 1 - 6, if £ #0 fori € S, then w; = oo as N and T — 0.

t,ks+1l:qs

ii) under Assumptions 1 - 6 and 9, W — oo if VN/T1"%/2 s 0 as N and T — .
(ii) p

Remarks:
(1) The divergence rate of w; is T', whereas the divergence rate of W depends on the asymp-
totic behavior of e s &5 11:05/V/ Ns- Assumption 9 implies that the divergence rate of W is

no slower than 7'~ For the case where 3 ;cq &7

irst1iqs /Ng converges to non-zero constant,

the divergence rate of W is NT', which is very fast compared to conventional test statistic.
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When } ;g 5;9,1 <+1:45/Ns converges to zero, the divergence rate can be slower than 7. For
example, if >",cq 52-5:,{ <+1.4s/ V' Ns converges in distribution to a normal random variable and
N and T diverge at the same rate, then T7%/2 %, ¢ Q?H <+1:0/ V' Ns will diverge for any positive

a. In such a case, the divergence rate of W is less than but arbitrarily close to T'.

(2) The condition that v/N/T'=%/> — 0 is slightly stronger than /N/T — 0 used by Bai
(2003), but it still allows a wide range of relative rate between N and 7T'. For example, both
\/N/Tlfo‘/2 — 0 and \/T/N — 0 will be satisfied for a < 0.5 if N and T are proportional to
each other, which seems to be a reasonable assumption for typical macroeconomic data sets

in the DFM literature.

(3) The following corollary shows that Im; and LM are also consistent tests against the al-
ternative.

COROLLARY 2: Suppose that v/T/N — 0 and the alternative hypothesis Hy: qp < £p holds.
(i) under Assumptions 1 - 6, if & .. # 0 for i € S, then Im; — oo as N and T' — .

(ii) under Assumptions 1 - 6 and 9, LM — oo if vVN/T'%/? — 0 as N and T — oo.

4 Monte Carlo Simulations

In the Monte Carlo experiments we investigate the finite sample properties of our statistics
and some other statistics. It is noteworthy that there are no theoretically verified alternatives
to both our individual and joint statistics to test the contemporaneous timing restrictions in
the FAVAR framework of SW. However, it would be interesting to see how these unverified
alternatives perform relative to our statistics. Hence, we also explore the size-power properties
of the following statistics: the individual statistic of SW, Bonferroni and pooled statistics
based on our individual statistics, Onatski’s (2009) statistics for number of dynamic and static
factors. The individual statistic of SW, denoted as sw;, is computed as follows: let (r x r)

denote the sample covariance of the residual from the VAR of E}, estimate the g—dimensional
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innovations 7); for the dynamic factors by using the spectral decomposition of f), estimate the
q — kr dimensional slow shocks 77 by conducting a reduced rank regression of XS=M ﬁXf
on 7, estimate the kp—dimensional fast shocks 7/ that are orthogonal to 77, regress )A(g on
7Y and 7}, and test whether the coefficients on A" are zeros or not by the conventional Wald
statistic. Furthermore, we also compute the Bonferroni and pooled statistics based on our
individual test statistic. The Bonferroni statistic, denoted as B,,, is simply the maximum
of w; for i € S, and the 5% critical value is equal to X~'(1 — 5%/Ng), where X is the
chi-square CDF with the degree of freedom kp. The pooled statistic, denoted as P,, is
set equal to (X;cgw; — kpNs) /v/2Nsrpr and the 5% critical values are 41.96. The critical
values of the Bonferroni and pooled statistics are based on the sequential limit argument
that first w; —y XiF and then Ng — oco. The problem of the sequential limit is that the
convergence of w; relies on N, Ng and T" — oo simultaneously, so w; —4 XiF and Ng — oo
cannot be separated into two sequential steps. The sequential limit and simultaneous limit
are not always equivalent (see Phillips and Moon, 1999). Hence, we would like to include
these two statistics because they allow us to see what would be the size distortion based
on the incorrect limit distributions derived from the sequential limit. For Onatski’s (2009)
statistics, we use Rgy, and Ryq to denote the statistics for the numbers of dynamic and
static factors, respectively. Note that the number of dynamic factors in X — FII¥ is the
same as the number of static factors, so both Rgy, and Ry test the same null hypothesis
that q¢ = ¢ — kr against the alternative that ¢ — kr < qs < kjpaz- To implement Onatski’s
tests, X% — FII¥ is replaced by its feasible analog M X% and kyq, is set equal to 8.

In all Monte Carlo experiments, r and g are selected by IC,; of Bai and Ng (2002), and
the number of lags of F; is assumed to be known*. The number of replications is 5000 in

each data generating process (DGP).
The data is produced by the model: X;; = Fy\, + we;;. Under the null hypothesis, we use

4We also use BIC to select the number of lags of F}, and the results are robust and not reported
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the following DGPs:

N1: fu = psfos—1+ne e ~ i.i.d. N(0, 1—pfp) for 0 =1,....q. Fy = [fies oo, fots fra—1, oo froqi—])
eit = Oiflig, 0; ~ t.i.d. U(0.5, 1.5), i = puptit—1 + €ir, € ~ t.i.d. N(0, 1 —p,).

Ai = [Ni1, s Aip]. For i =1, ..., Ng, set [N, ..., Nig.] = 01, and draw \;; ~ i.i.d. N(0,1) for
j=qr+1,..,rwith gp <gq Fori=Ng+1,..,N, \j~iid N(,1)forj=1,..r.

Set w = 1/12(r — qr)/13 for i = 1, ..., Ng, and set w = {/12r/13 for i = Ng+ 1,..., N.

N2: F, and \; are generated in the same way as in DGP N1. Set w = /12(r — qp) for
i=1,..,Ng, and set w = /12r for i = Ng+1,..., N. ey ~ i.i.d. U(—0.5, 0.5).

In DGPs N1 and N2, the factor loadings are generated in a way such that factors fi, ..., g«
do not affect X;; fori =1, ..., Ng. Hence, the subscripts i = 1, ..., Ng stand for slow variables,
while the subscripts ¢ = Ng + 1, ..., N stand for the fast variables. w is chosen such that the
factors explain 50% variation in the data. We set Ng = 0.5N, py = p, = 0.5, and (7, ¢, qr) €
{(5, 3, 1), (5, 4, 3)}.

The results under DGP N1 are summarized in Table 1. The upper and lower panels
report the results for (r, ¢, qr) = (5,3,1) and (r, q, qr) = (5,4,3), respectively. The first
two columns of Table 1 are simply the numbers of observations in cross section and time
dimensions. The numbers in columns 3 — 5 are computed in the following way: for each
simulated sample, we compute the ratio between the number of rejections by the individual
tests at the 5% level and the number of slow variables Ng, and then we take the mean of
these ratios from 5000 simulated samples. Hence, columns 3 — 5 show the finite-sample size
properties of the individual statistics. It is noteworthy that the size of sw; is about 60% when
Ng = 250 > T = 200. The reason is that the reduced rank regression will invert a Ng x Ng
sample covariance matrix, which is singular when 7" < Ng. Compared to sw;, w; and [m; do
not have the large size distortion problem when Ng > T, and their size is approaching the
nominal level as N and T" become larger.

Columns 6 — 11 of Table 1 report the effective size of different joint tests. First, Bonferroni

and Pooled statistics always reject the null much more often than the nominal level. This
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confirms that the critical values based on the sequential limit argument are invalid and that
the asymptotic distributions of B, and P, are likely to be non-standard as N and T" — oo
simultaneously. Second, Onatski’s (2009) tests seem to work well under DGP1 except that
R0t rejects slightly too often when N = 200, T = 500, r = 5, ¢ = 4, and ¢r = 3. Finally,
the size of our statistics is slightly higher than the normal level in small samples, but the size
distortion become smaller as the sample size increases.

Table 2 summarizes the results under DGP N2, in which the idiosyncratic shocks are drawn
from the uniform distribution U(—0.5, 0.5). The size properties of B,,, P,, W, and LM are
almost the same as those under DGP N1. However, both R, and R tend to over-reject
especially when r = 5, ¢ = 4, and ¢r = 3. The reasons are twofold: (1) Onatski (2009) derives
the asymptotic distribution of R, based on the Gaussianity of the idiosyncratic shocks.
Under DGP N2, the Gaussianity assumption is violated, and the size distortion of Ry, is
very large when r = 5, ¢ = 4, and qr = 3. This implies that the asymptotic distribution
of Rgq crucially relies on the distribution of the idiosyncratic shocks. Hence, the inference
using Rgqr can be misleading if Gaussianity does not hold. (2) The asymptotic distributions
of Rgy, and R, are developed when the data are observed. Recall that we use the feasible
Mz X S instead of its infeasible counterpart X — FII®" to compute Onatski’s statistics. The
estimation errors in M ;X S may change the asymptotic distributions of Riyn and Rgqt. This
explains why Rgy,, which does not relies on the Gaussianity assumption, also has a non-
trivial size distortion. Hence, implementing Onatski’s statistics to test the overidentifying

restrictions in FAVAR may lead to substantial over rejection of the null hypothesis.

Under the alternative hypothesis, we use the following DGPs.

A1l: F, and e;; are generated in the same way as in DGP N1.

Ai = Ay Ao For i = 1,..,(1 — a)Ng, set [Ai, ..., Ninp] = O1xy, and draw A;; ~
ii.d. N(0,1) for j = kp+1,...,r with kp < ¢q. Fori = (1—a)Ng+1,.... N, \;; ~i.i.d. N(0,1)
for j =1,...7. a € {0.2,0.4,0.6,0.8,1}. w = /12r/13,

A2: F, and e;; are generated in the same way as in DGP N1.
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Ai = ity -, Air)/. For i = 1,..., Ng, draw \;; ~ i.i.d. N(0,0?) for j = 1,...,kp and draw
Aij ~i.4.d. N(0,1) for j = kp+1,...,r with Kp < gq. Fori = Ng+1,...,N, \;; ~i.i.d. N(0,1)
for j=1,..,r. be {0.2,0.4,0.6,0.8,1}. w = \/12r/13.

In both DGPs Al and A2, we set Ng = 0.5N, py = p, = 0.5, and (7, ¢, k) € {(5, 3, 1),
(5,4, 3)}. Note that the true number of fast shock, gr, is zero under both DGPs Al and A2.

In DGP A1, factors fi, ..., fupt do not affect X;; fori =1,..., (1 — a)Ng, so « controls the
fraction of slow variables that have non-zero factor loadings on fi, ..., fi,+. Table 3 shows
how the power® changes as « increases. Columns 4 — 9 show the results when r = 5, ¢ = 3,
and kg = 1, and columns 10 — 15 show the results when r =5, ¢ = 4, and krp = 3. First, it is
clear that the averaged rejection rates of w; and Im,; increase as N and T increase. Second,
the Onatski’s statistics do not have much power for small a, N and T. For example, when
r=54¢=3 kp=10a=04and N =T = 200, the power of Ry, is only 6% and the
power of R is 16%, whereas the power of W and LM is 59% and 55.5%, respectively. It is
remarkable that the power against small a is a desired property. In practice, it is unlikely that
all the slow variables are misclassified, but it is likely that economists are not sure whether
some variables should be classified as slow or fast. In the latter case, we want a test that
is powerful to detect the violation of identifying restrictions by only a/Ng many variables,
especially when a is small. Furthermore, Ry, seems to be more powerful than our joint
statistics when a is close to one and N and T are large, but this power is suspicious due to
potential size distortion of R, shown in Table 2. Finally, the power of W and LM increase
as Kk increases, which is expected because the tests should be more powerful when there are
more wrong restrictions.

In DGP A2, we investigate the relationship between the power and the variance of the
factor loadings in slow groups. b controls the extent to which the null hypothesis is violated.
Larger b allows the loadings in slow variables to deviate further away from zero. When b =1,

DGP A2 is the same as DGP A1l with o = 1. Table 4 reports how the power changes as b

5Since the Bonferroni and Pooled statistics always have large size distortion and sw; has large size distortion when Ng > T,
we do not report their power.
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increases. The pattern in Table 4 is similar to that in Table 3. Both the average rejection
rates of w; and Im; and the power of W and LM increase as N, T and kp increase. Rgyp
is always less powerful than our joint tests, except when r =5, g =3, kp = 1, b =1, and
N =T =500. Rgq is less powerful than W and LM for small b but more powerful as b, IV,
and 7' become larger.

In sum, SW’s individual statistic sw; has large size distortion when Ng > T, but our w;
and [m; have good size and power in finite samples. The Bonferroni and pooled statistics have
large size distortion because the critical values based on the sequential limit are invalid in the
factor models where N and T" go to infinity simultaneously. Onatski’s Rgy, and Rgte could
have substantial size distortions due to violating the Gaussianity assumption and neglecting
the estimation errors. They are also less powerful when only a fraction of slow variables
violate the identifying restrictions in their factor loadings or when the factor loadings of all
slow variables violate the identifying restrictions but their deviations of from zero are not
large. Our joint test statistics have reasonably good size and power in finite samples: their

size distortion decreases and power increases as N and T — oo.

5 Empirical Results

In the section, we implement our statistics to a data set, and investigate the impulse responses
of major macroeconomic variables to the monetary policy shock, which is identified based
on different numbers of fast shocks. The data set is an updated version® of the one used by
SW. It consists of monthly observations of 125 U.S. macroeconomic time series from 1960:1
through 2007:12, and the number of slow variables is 64. The series are transformed by taking
logarithms and/or differencing so that the transformed series are approximately stationary.
The transformation mainly follows from SW. For example, all the interest rates variables are
transformed by taking the first differences. However, we transform all the prices by taking

the first rather than the second differences of logarithms, which follows from BBE and Forni

6Some of the variables used by SW are dropped due to the missing values.
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and Gambetti (2010). The full list of variables along with the corresponding transformations

is given in Appendix D.

5.1 Testing the Overidentifying Restrictions

We first implement Bai and Ng’s (2002) /C,; and IC)s to determine the number of static
factors in the transformed series”. The upper bound of r is set equal to 10, which is also
selected as the estimate for r by both IC),; and IC),. This is different from the view in
the forecasting literature (for example, Stock and Watson (2002)), which finds that 1 or 2
factors are needed to to explain the variation of US macroeconomic variables. However, it
is common to use large estimates for the number of static factors in the FAVAR literature.
For example, SW set 7 = 9, whereas Forni and Gambetti (2010) set # = 10. The reason is
that using large 7 tend to better estimate the space spanned by the structural shocks, which
is crucial in the structural VAR analysis. Thus, we adopt 10 static factors in our empirical
application.

Before implementing our hypothesis testing procedure, it is of interest to see the perfor-
mance of information criteria. We apply the estimators of Amengual and Watson (2007) and
Bai and Ng (2007) to determine the values of ¢ and gs. Amengual and Watson’s estimator
is computed in the following way: regress the transformed data on the lags of F}, store the
residuals, and then use Bai and Ng’s (2002) IC}; and IC)s to determine the number static
factors in the residuals. Bai and Ng (2007) propose two estimators, g3 and gy, for the num-
ber of dynamic factors. These two estimators are constructed as follows: fit a VAR for F},
compute the sample variance of the residuals, denoted as i, truncate small eigenvalues of )y
to zeros by some thresholds, and then choose the number of non-zero eigenvalues of 3 as the
estimate for q. For both Amengual and Watson’s and Bai and Ng’s estimators, the number
of lags of E} is set equal to 2, which is selected by BIC. We also use 4 lags for a robustness

check, and the results do not change. The estimate for ¢ is equal to 6 by IC,1, 5 by 1C), 6

7As usual in the literature, all the transformed series are normalized to have zero mean and unit variance.
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by g3, and 5 by ¢q4. The estimate for gg is equal to 7 by 1C;.® It is remarkable that these
estimates cause a problem if one wants to use them in the FAVAR setup. The estimate of
gs is greater than that of ¢, which contradicts the fact that gg < ¢. This problem might be
caused by the limited number of observations in the cross section dimension (recall that Ng is
only 64), so that IC,;, ICp2, g3 and ¢4 lead to finite-sample biases in the estimates, although
they are consistent as N and T' — oo. In a word, these results show that information criteria
can give biased estimates for ¢ and gs due to the limited sample size, so that one cannot
setup the restrictions to identify the monetary policy shock in the FAVAR model. Hence, our
hypothesis testing procedure is the only way to evaluate the specification in such scenarios.

We next implement our statistics to test the null hypothesis Hy: qr = kp against the
alternative hypothesis Hy : qp < kp. Since ¢ = ¢s + qr, these hypotheses are equivalent to
the null hypothesis that q¢ = ¢—kp against the alternative hypothesis that gg > ¢—k g, which
can be tested by Onatski’s (2009) statistics. Table 5 reports the p-values of our and Onatski’s
test statistics for different values of ¢ and kr. The numbers outside the parentheses are the
p-values when the number of lags of Fy s equal to 2 and the numbers inside the parentheses
are the p-values when the number of lags of E, is equal to 4. In general, the p-values of W
and LM are small for kp = 2 and 3, but relatively large for kp = 1, so our statistics suggest
that the number of fast shock is equal to 1. Since the monetary policy shock is assumed not
to affect slow variables contemporaneously, the only fast shock in this data set is identified
as the monetary policy shock.

Compared to our statistics, Onatski’s (2009) statistics have large p-values for almost all
values of ¢, kr and the number of lags. The null hypotheses Hy: qr = kr are not rejected at
the 5% level for kp =1, 2, 3, except that Ry, rejects the setup where ¢ = 4, kp = 3, and
the number of lags of F} is 2. These results indicate that one can impose kp = 1, 2 or 3 in the

FAVAR to identify the fast shocks. Recall that the simulation results show that Onatski’s

8Note that ¢g is not necessarily equal to the number of dynamic factors in the slow group, because slow shocks are defined
as the dynamic factors that can affect slow variables contemporaneously, but the dynamic factors in the slow variables could be
either fast or slow. Hence, ¢q3 and g4 are not valid to estimate gg.
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tests are not powerful especially when the identifying restrictions are mildly violated and the
sample size is relatively small. Thus, the identifying restriction that xp = 2 or 3 could be

wrong, but the R, and R, are not able to detect the misspecification.

5.2 Impulses Responses to the Monetary Policy Shock

In this subsection, we compare the impulse response functions based on different values of
kr to check which value of kr generates more plausible results. We consider the following

FAVAR model:

Ft (I)(L) 0 Ft—l E€F
= + (5.1)
Xt T(L) D(L) thl EX,
where
€F, I 0
- Gn +
€X, A Vg

The setup in (5.1) is almost the same as that of (2.7), except that A®(L)— D(L)A is replaced
by an unrestricted lag polynomial. We use 2 lags of F} and 6 lags of X; in the regression. The
results are robust to using 4 lags of F; or 8 lags of X;. Based on the results by information
criteria, we set ¢ = 6 as our benchmark, and the results are robust to ¢ =5, 7, 8.

The Impulse Responses are computed as follows:

(1) Given F}, estimated from X using principal components, get the residuals ér, and £y,
from the regression (5.1).

(2) Compute the sample variance of £g,, denoted as 3. Define e = A'ép,, where A is ar x q
matrix consisting of eigenvectors that correspond to the ¢ largest eigenvalues of S Impose
the identifying restriction that ¢ = kp and run a reduced rank regression of éit on 7 to
get an estimate of the ¢ — xp dimensional slow shock 77, where é}g(t is the residuals of slow

variables from (5.1).

(3) Estimate the monetary policy shock by 7ff = Proj(e% |f:) — Proj(¢%,|;), where the
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projections are implemented by OLS. If kr > 2, then regress f on [/°:)%] and get the
residuals 2. Estimate the additional fast factors H" as the eigenvectors corresponding to
kp — 1 largest eigenvalues of 22’. Normalize [7°:7T:/F] so that they have unity variances.
Denote the normalized estimates as 5 e é R and 5 F

(4) Regress [€),, &,) on & and (F for kp = 1 and regress [&},, &y,] on (7, F, and I for

kp > 2 and store the estimates for the coefficients. Compute impulse responses based on

these estimated coefficients and the companion form of (5.1).

Confidence bands of the impulse responses are obtained by a bootstrap technique. To
create bootstrapped samples of the T' x N data X°, we use a slight modification of the
procedure proposed by Yamamoto (2011). Given the principal component estimator F,
estimate A = X'F'/T , ¢ = X — FN', ®(L) and &5, where ®(L) and ép, are the estimates of
®(L) and ep, in (5.1). Re-sample the demeaned residuals ér, — &5, with replacement and label
it as €},. Generate the bootstrapped factor £} by F) = O(L)FP | + e}.. Since Yamamoto’s
(2011) bootstrap algorithm does not allow é; to be serially correlated, we modify his way of
generating e’ using the re-sampling procedure proposed by Ludvigson and Ng (2009). By
equation (2.5), for each i, we estimate 0;(L) and residuals 0, which are then re-centered.
Re-sample the N x 1 vector 9; to get v? so that the cross-section correlation structure is
preserved, and then generate ¢ using v? and 6;(L). Next, the bootstrapped data X? is
constructed as X? = FPA’ + e for b = 1,...,2000. Given the re-sampled data X°, the impulse
responses are computed following steps (1) — (4).

Figure 1 demonstrates the impulse responses of major macroeconomic variables to a unity
variance contractionary monetary policy shock. The solid curves are computed using the
identifying restriction that kK = 1, whereas the dashed curves are computed using the
identifying restriction that kr = 2.9 We report the bootstrap 68% and 95% confidence bands

for the impulse responses for kK = 1. Although the impulse responses based on krp = 2

9The results based on kp = 3 are similar to or even worse than those based on kr = 2, so they are not reported in the paper.
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are within the 95% confidence bands of the impulse responses based on kr = 1 for some
variables, the improvement from using xp = 1 is still considerable. In general, the impulse
responses based on kg = 1 are more economically plausible than those based on kp = 2. For
example, when kr = 2, the output has a peak equal to 0.17 percent, and response becomes
negative 10 months after the contractionary monetary policy shock. This result contradicts
the conventional view that a monetary tightening would be expected to cause a decline in real
output over time rather than an increase. When kg = 1, i.e., the monetary policy shock is
the only fast shock in the data set, both the magnitude and duration of the positive response
decrease: the output has a peak equal to 0.05 percent, and response becomes negative 4
months after the contractionary monetary policy shock. Hence, kp = 1 generates a result
much closer to the prediction by economic theory than kp = 2.

It is remarkable that the positive impulse response of real output after a monetary tight-
ening has already been noticed in the empirical macroeconomics literature. For example,
Uhlig (2005) finds a positive response of real output after a contractionary monetary policy
shock by imposing sign restrictions on the impulse responses of prices, non-borrowed reserves
and the federal funds rate but no restrictions on the impulse response of real output. Sim-
ilar results are derived by Inoue and Kilian (2011) based on a new inferential technique on
the impulse response functions. The reason that Uhlig does not impose restrictions on the
impulse response of real output is that he wished to be agnostic about it. In this sense,
our estimation procedure has some similarity to Uhlig’s because all the impulse response
functions are estimated by OLS without imposing restrictions that are used in the identifi-
cation of structural shocks. Although the problem found by Uhlig is not completed solved in
our FAVAR framework, the results are more consistent with the traditional economic theory
when we impose identifying restrictions that are not rejected by our joint tests.

Another improvement from imposing kr = 1 instead of kr = 2 is that the price puzzle
(Sims, 1992) is considerably reduced in the former setup. When we impose kp = 2 in the

FAVAR, the CPI has a persistent positive response lasting for about 2 years. When we impose
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kp = 1, the price puzzle in CPI almost disappears. Figure 2 further investigates the impulse
responses of different price indexes. Compared to kK = 2 which leads to persistent positive
responses to a contractionary monetary policy shock, kg = 1 either substantially reduces
or completely solves the price puzzle in all price indexes. This further confirms that the
monetary policy shock is likely to be the only fast shock in this data set and that Onatski’s
tests fail to reject kKp = 2 or 3 due to their lack of power.

Moreover, the responses of other variables based on kr = 1 are generally more consistent
with economic theory in terms of signs and magnitudes. For example, the monetary tighten-
ing leads to an immediate reduction in the real consumption and employment when xkp = 1,
but it generates positive responses when kr = 2. Also, the response of consumer expectation
has the expected sign for kr = 1 but entirely wrong sign for kp = 2. For some variables, such
as capacity utilization, unemployment, orders, inventories and commodity price, the impulse
responses after the monetary policy shock have the “unexpected” signs for both kp = 1 and
kr = 2. However, the results based on kg = 1 are still much better than those based on
krp = 2, because the unexpected parts of the responses are much smaller in magnitude and

much shorter in duration for kp = 1.

6 Conclusions

In this paper, we develop test statistics for the overidentifying restrictions in FAVAR models.
Unlike the conventional structural VAR analysis, the FAVAR can involve a large number of
identifying restrictions but a few structural shocks, so the system is highly overidentified.
We focus on testing the joint null hypothesis that all the identifying restrictions are satisfied.
Since the number of restrictions goes to infinity as the sample size grows, conventional tests
are not applicable. Our new joint statistics solve this problem by combining the individual
statistics across the cross section dimension, so that the infinite-dimensional problem reduces
to a finite-dimensional one. Under some regularity conditions, we find the asymptotic dis-

tribution of our statistic under the null hypothesis and prove that it is consistent against
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the alternative that a substantial amount of identifying restrictions are violated. In the
Monte Carlo experiments, we find that our statistics have relatively good size and power in
finite samples. Also, the simulation results confirm that other alternative test statistics do
not perform well, so our statistics are the only valid candidates to test the overidentifying
restrictions in FAVAR models.

In the empirical application, we estimate an FAVAR model using an updated version of
Stock and Watson’s (2005) data set. We follow the setup of Stock and Watson (2010) and
the identification scheme of Stock and Watson (2005). The tests reject the null hypotheses
that the number of fast shocks is two or three, but they do not reject the null that there is
only one fast shock, which is the monetary policy shock by definition. This result provides
some evidence to support the Bernanke, Boivin, and Eliasz’s (2005) identification assumption
that factors other than the monetary policy shock are slow. Also, Our results show that
information criteria could give contradictory estimates for number of shocks in small sample,
so the new testing procedure is the only way to evaluate the specification when information
criteria fail. To evaluate the performance of our tests in this data set, we compare the
impulse responses based on different values of kr, where kr denotes the potential number
of fast shocks. In general, the impulse responses of major macroeconomic variables are more
economically plausible based on kr = 1 than those based on kr = 2. Moreover, compared
to kp = 2 which leads to persistent positive responses to a contractionary monetary policy
shock, kg = 1 either substantially reduces or completely solves the price puzzle in all price
indexes.

Finally, the test statistics proposed by this paper mainly focus the contemporaneous timing
restrictions, which are widely used in the FAVAR models. Additionally, other identification
schemes, such as long run restrictions and sign restrictions, can be applied in FAVAR. We

leave for future research to generalize our statistics to cover these identification schemes.
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Appendix

A Preliminary Lemmas under the Null Hypothesis

To conserve space, we only state the lemmas in the file, and the detailed proofs of lemmas in Appendix

A are available in the supplement appendix.

A.1 Lemmas on F and F
Let that Vx is the r x r diagonal matrix of the first r largest eigenvalues of (1/TN)X X’ in decreasing

order. Recall that the estimated factor matrix F' is VT times eigenvectors corresponding to the r largest
eigenvalues of X X’. Therefore, we have (1/NT)XX'EVy ' = F, which can be expanded as:

NT(FA AF' + FNe¢ + eAF' +ee )PV = (A1)

Define Hp = (A'A/N)(F'F/T)Vy?, so we have:

1
NT

T T
1 - [
F,— H,F, = ( > Foyn (s, t)+TZFS [eﬁt
s=1 s=1

F—FH= (FA’e’F +eAF'F + ee'ﬁ) Vgl (A.2)

T T
(s, t)] + % ; E,F'Ne, + % ; Fge'SAFt>
(A.3)

Note that 71 Zthl |F3]|2 = O,(1) due to identification restriction F'F/T = I.. Also, |Hr| = O,(1)
because |[Hp|| < ||[E'F/T|z|F'F/T||2||ANA/N||VS = Op(1) by Assumptions 1, 2 and the following
lemma.

Lemma Al: (Lemmas, A.1, A.3, B.1, and B.2 of Bai (2003)) Let dy7 = min{v/N, VT}.

(i) Under Assumptions 1 -4, T~V [|B — HpFy|?> = O, (652).

(ii) Under Assumptions 1 - 4, Vx —, V, where V is the diagonal matrix consisting of the eigenvalues of
DI

(iil) Under Assumptions 1 -6, T~ (F — FHp)'e; = O, (657)-

(iv) Under Assumptions 1 - 6, T-'(F' — FHp)'F = O, (63%).

Lemma A1(i) means that F} is an consistent estimate for rotated factor H =F}. Analogously, we can define
Hz such that F; is a consistent estimate of H5-F;. Recall that F; = [E}_,, ..., Ft’fp]’ and Fy = [F{_4,....F{_]".
Let Hr = I, ® H, so Lemma A1(i) implies that 7! Zfﬂ |Fe — H-Fi||? = O, (63%), which is summarized

in the following lemma.

’ﬂ \

Lemma A2: Under Assumptions 1 - 4,
N 1T ) _
(i) 772341 |1 P — HEFl?> = O, (037)-
(ii) Hr and Hz are non-singular as N and T — oo.
Lemma A3:
(i) Under Assumptions 1 - 6, T~ (F — FHz)e; = O, (657)-
(ii) Under Assumptions 1 - 7, T*INS_UZ(}' — FHF)' Y cs€i =0, (0n7)-
Lemma A4: Under Assumptions 1 - 6,

(i) T-Y(F — FHz)'[F(] = O, (057)-
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(i) [T F/F) | = 0p(1).

A.2 Lemmas on QA“S under the Null Hypothesis

Note that I'*¥ in Equation (3.6) is always zero, so X can be expressed as
XS = FI% + 51759 465 (A.4)
By the definition of X, we have
XS = MzX5 = (5755 4 5 — PA(¢5T5S 4 €5) + MpFIS (A.5)

Recall that the estimator f S is equal to /T — p times the eigenvectors corresponding to the kg = ¢ — kp
largest eigenvalues of the (T — p) x (T' — p) matrix X5X5". Under the null hypothesis, g = kg and the

dimension of ¢5 is the same as that of ¢5. Hence, we have
(1/NST)XSX5' {5 = {5V (A.6)

where Vg is the diagonal matrix consisting of the first ¢° largest eigenvalues of (1/N* T)X' SX5 in decreasing
order. Let Vg be the diagonal matrix consisting of the first ¢° largest eigenvalues of (¢5T55 4 5)(¢5T55" +
¢5) /NST in decreasing order. Amengual and Watson (2007) show that Vs — Vs —p 0. Also, Lemma A1(ii)
implies that Vs converges to a non-singular diagonal matrix consisting of the eigenvalues of ¥s¥pss = Xpss.
Hence, Vs is non-singular asymptotically and |W§1|| = 0,(1). Also, note that 71 Zthp_H IES ] is 0,(1)
because ES,QA‘S/(T —p) =1I.

Now, substituting Equation (A.5) into Equation (A.6) gives
ﬁ ST 465 = PR 16%) 4 MeFIE | [(155 468 = PR(¢TT5% 4 65) 4 MpF® | (5051 = 89
Define Hs = (055155 /Ng)(¢5' (5 /T)Vg . We have Hes = O, (1) because ||Hes|| < [|¢5'C5 /T2 (1¢5°¢5 /T2
PSS TSS /N |||Vs || = Op(1) by Assumptions 1 and 2. Analogous to Lemma A1(i), the following lemma
shows that C}g is a consistent estimate for H 25 ¢’ and that the convergence rate is the same as in Lemma
A1(i).

Lemma A5: Under Assumptions 1 - 6, 7! EtT:pH ||€Cts —H[sGP|I? = 0, (657)-

Lemma A6: Under Assumptions 1 - 6, 71 Zf:p+1 l|bec|I? = Op((s;,‘lT) for £ = 1,2,4,5,6,8,10,...,15,
where by;’s are defined in the proof of Lemma Ab5.

Lemma AT:

(i) Under Assumptions 1 - 6, T-((5 — CSHes) e = Op(0n7)-

(ii) Under Assumptions 1 - 7, T_le_l/Z(fs —(SHes)' S cg€i = Op(0nr).

Lemma A8: Under Assumptions 1 - 6,

(i) T71({% = (9 H¢s) ¢ = Op(637)-

(ii) H¢s is non-singular as N and 7" — oo.
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A.3 Lemmas on ¢ under the Null Hypothesis
By the definitions of X, we have

X =Mss X = MgsMpX = Mes Mp(FIU + (T +e)
Ss’ FFS’

+e)

= M@sMﬁ(‘FH/+ [CSCF] [ FSF/ FFF/

= Mg Mp(FIU 4 ¢O[09 D8] 4 (PSP e
= Ms Ma(FIU +¢50% + (717 +e) (A.7)

where we use the definitions that T'S = [[S5":TFS') TF = [PSF:DFF') and T = [[5:TF]. Define G = [F¢5],
© = [II:T5], and G = [F:{5]. Note that F'(% = 0, so MsMz = M. Hence, Equation (A.7) can be
rewritten as

X = MpX =TT 46— Po(CTF + ) + MpGO' (A.8)

Recall that the estimate of fast structural shocks ¥ is equal to /T — p times the eigenvectors corresponding
to the kp largest eigenvalues of the (T'— p) x (T — p) matrix X X’. Under the null hypothesis, ¢z = kp > 0

and the dimension of fF is the same as that of (r. Hence, we have
(1/NT)XX'CF = (Vg (A.9)

where Vp is the diagonal matrix consisting of the first gp largest eigenvalues of (1/NT)X X’ in decreasing
order. Note that 71 Zz:pﬂ ICE |l is O,(1) because CF'CF /(T — p) = I,

Let Vg be the diagonal matrix consisting of the first ¢ largest eigenvalues of ((FI‘F/ —l—e)((FI‘F/ +e)'/NT
in decreasing order. Note that the difference between X and ¢¥TF "+ e is that X contains some additional
estimation error terms defined in Equation (A.8). Amengual and Watson (2007) show that such estimation
errors will not affect the limits of the first g largest eigenvalues of XX’/NT, ie. Vi — Vg —p 0. Also,
Lemma A1(ii) implies that Vr converges to a non-singular diagonal matrix consisting of the eigenvalues
of limp 700 (CF ¢F/TYTFTE/N) = (1 — m)LpEper, where we use the facts that ST = 0 and that
Np/N =1— Ng/N — 1 —m > 0. Hence, Vi is non-singular asymptotically and ||V, | = O,(1).

Now, substituting Equation (A.8) into Equation (A.9) gives

ﬁ CFTF e — PA(CFTF +e) + MéG@’} [QFFF’ be— Po(CFTF o)+ MsGO'| PVt = ¢F
Define Her = (DF'TF/N)(CF'CF/T)V . We have Her = O, (1) because || Her || < [|CF'CF/T||2]|CF ¢F/T||2
IDF'TF/N|||[Vat]] = Op(1) by Assumptions 1 and 2. Analogous to Lemmas A1(i) and A5, the following
lemma shows that ff is a consistent estimate for H ép ¢/ and that the convergence rate is the same as in
Lemmas Al(i) and A5.

Lemma A9: Under Assumptions 1 - 6, T~! EZ;,,H ||<AtF - HéFCtFHQ =0, (657)-

A sketch of the proof: (see the supplement appendix for details)

First, we show that G'CF = 0. Note that {5'(F = {ASlXX’fFV},?l/NT = 0 because (5'X = 0. Also,
FICF = ﬁ’MéSXX’fFVgl/NT = FXX'{FVLY/NT = 0 because ]:"’PCAS = 0 and F’X = 0. Hence,
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G'(F = [F5)¢F =o.
Now, define

H
o= | 7 O
0 Hes

Since G = [Fi¢5] and G = [F:(5], we have T ZtT:p+1 |Gy — HLG:||? = 0,(55%) by Lemmas A2(i) and
A5. Since both Hr and H.s are non-singular asymptotically by Lemmas A2(ii) and A8(ii), so Hg is also
non-singular asymptotically and ||Hg"'|| = O,(1). Also,

I(GG/T) 1) = 0,(1) (A.10)
To see this, note that /¢S5 = 0, so
G'G | FF/T 0
T o T

Since ||(F'F/T)~!|| = O,(1) by Lemma A4(ii) and ¢5'5 /T = I, (T —p)/T — 1,5, we have ||(G'G/T)~!|| =
0,(1). Furthermore, for an N x ko matrix Z, since © = [[I:T'], |©’Z| and ||T*" Z|| can be always bounded
by ||[ILT) Z|| and ||V Z]|, respectively. This trick can be used for any term containing © or I'F'.

Based on the above results, it is straightforward to prove that 7! Z;p 1 lleeel? = Op (657) for £ =
1,...,15 using very similar arguments in the proof of 71 EtT:pH bet]|*> = O, ((5;,%) for £ =1, ..., 15, because
cpr has a very similar structure to that of by;. To save space, we skip the detailed proof. Q.E.D.

Lemma A10: Under Assumptions 1 - 6, 71 ZtT=p+1 llceel|? = Op(6y7) for £ = 1,2,4,5,6,8,10, ..., 15,
where c¢y;’s are defined in the proof of Lemma A9.

Lemma A11:

(i) Under Assumptions 1 - 6, T~ ((F — CFHer) ei = Op(dn57).

(i) Under Assumptions 1 - 7, T*1N5_1/2(6F —CFHer) Y es€i = Op(6n7).

B Proof of Theorem 1

Lemma B1:
(i) Under Assumptions 1 - 6, 71 (fF/Xi - HéFCF/eZ-) = 0,(65%) for i € S if g5 = ks.

(ii) Under Assumptions 1 - 7, T_ll\fgl/2 (Zies CF' X — Yics HéFCF/ei) = 0,(65%) if g5 = Ks.
Proof:
(i) Recall Equation (3.6). Since gs = kg under the null hypothesis, we have

X% =FI% + (5159 + 65 = GO + ¢°

where ©° = [I[1°:1'%5](Ng x (rp + ¢s). Hence, we have X; = G6; + ¢; and

Xi=MgsMzpX; = MpX; = e; — Pge; + Mg GO, (B.1)
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where 6; is the transpose of the i*"* row of ©°. Since G”éF = 0 (see the proof of Lemma A9), we have

éF,Pé =0 and

1 oo . 1 p 1 g
f(( Xi—Hir("e;) = T« - HcF)lerf—TC M~GO;
1, . 1 ap
= f(CF — CFHCF)/ei + TCF Go; (BQ)

where T-1(CF — (FHer)e; = Op(6y7) by Lemma A11(i). Hence, it is sufficient to show that T-1CF Go; =
O,(65>). To see this, note that ||H5'|| = Op(1) (see the proof of Lemma A9) and E|6;| < (||®| +
|GA=)E||A\i]| < oo by Assumptions 2(a) and 2(b). Now, we have T~'CF G6; = O, (55%), because

1 apr 1 ap N
TQF Go; = TgF (GHg — G)HG'0;
1 A 1 / AN 1p—
- f(CF —("Her) (GHG — G)HG 0, + THQFCF (GHg — G)HZ'0 (B.3)

where the first term is O,(6y3:) by Cauchy-Schwarz inequality and Lemmas A2, A5 and A9, and the second
term is O, (dy3) by Lemmas A4(i) and AS8(i).
(ii) Similarly to Equation (B.2), we have

1 A~ ’ 1 ’
— X, =Y HL (P ez-) = —((F —¢FH.r) gF MG 0;
T+/Ng (; ; T ¢ f; /7;
= %(5 ¢"Her)' Zez lAF, ZG
1€S

where the first term is O,(dy3) by Lemma A11(ii) and the second term is O,(Jy%) because TG =
O,(65%) (see the proof in part (i) of this lemma) and Ng 12 > icg i = Op(1) by Assumption 7(a). Q.E.D.
Lemma B2: Under Assumptions 1 - 6, if gs = kg, then
) T ST 16 —HECE | = Opl(T/0hp), T S04 G HG Gt = Op(T/04g), TV S04y 16714 =
Op(T/5kyr) +0p(1), and TGt = O,(T/3hr) + Op(1).
(ii) If VT /N — 0, then T-1 37 [&5 —ear|! = 0,(1) for i € S and (NsT) ™2 S0/ 11 g 6 — el =
op(1)
Proof:
(i) Since Lemma A9 shows that 71 Z,:T:pﬂ H@F Hp (1P = Op( Sna), we have

T T T
_ A F _ s F A F T
T3 NG —HREIP <TG = HGFIPCOY. NG — H¢FIP) =0, ()

54
t=p+1 t=p+1 t=p+1 NT

Similarly, Lemmas A2 and A5 imply that 7! ZtT:erl |G —HLG||* = O, (T /8% 7). Also, T~! ZtT:p+1 H(ftFH‘l
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can be bounded by

A

T T T
_ A F 8 o F 8
T NG < D0 G~ HeGT I D IHE]

t=p+1 t=p+1 t=p+1

- o)

where the O,(1) term follows from Assumption 1(b) and the fact that |[Hcr||* = O,(1). The proof of
T S IGHll* = Op(T/8%r) + Op(1) is similar.

(ii) By the definition of &; and the fact that G'Ct" = 0, we have &; = M;r
PéGHi — PEFGGZ'. Thus,

Xi = €; 7PCA;61' *PéFei‘i’G@i —

€it — €t = di it + do it + dg it + da i
A A, A -1 A Al A A -1 ’ N A, A -1 PN
where dy s = —C (G/G/T) Gle; )T, do.is = —CF (gF er /T) CF e )T, ds.ir = 10— G, (G’G/T) G'Go;)T,

N nld Al A -1, /
and dy ;s = —(¢f (CF CF/T> ¢*"GO;/T. Note that |&; —e;|* < 64(d} ;,+d3 ;,+d3 5, +di ;,), s0 it is enough
to consider the bounds of dz},it for £ =1,2,3,4.
First, T-1 Zf:p_H df ;; can be bounded by

T o AN - S

» 1 NN VeeZe Cres

ey < (52 e (G &

t=p+1 t=p+1
N PRIE:
< afo, (L) 4o G G GHeYe: || | HLG e

o T
NT

P%DWUMWM@)

where 71 ZipH G|t = O, (T/6%,)+0,(1) by part (i) of this lemma, ||(G'G/T)~!|| = O,(1) by Equation
. 2
(A.10), |T-H(G — GHg)e:||* < (T*lzf:p+1 Iy — HLGPT P e n) = 0,(6y%) by Lemmas A2
and A5 and Assumption 3(a), and |[T7'G’¢e;||* = O,(T~2) by Assumption 6(e).
Similarly, (NsT)~! Zf:pﬂ > icg d1i; can be bounded by

Hé G’ei 4
TNS T

Z Yodia< { ((%VTJ +op(1)] op(1)]$sz S HGGHG)

t=p+1i€S €

where Ng'! Yies ITTHLG'e||* = O,(T~2) by Assumption 6(e), and Ng' Yics |T-YG — GHg) es||* =
O,(653) because

N 4
(G — GH(;)/&;

1 1 1 o - I
Nfsz N*SZ T Z ”Gt_HGGt”T Z %)

i€S T €S t=p+1 t=p+1
1 < 1
< (E X e mer) 1% 3 a0, (o
t=p+1 i€S t=p+1 NT
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by Lemmas A2 and A5 and Assumption 3(a). Since VT /N — 0, we have T/6%, — 0. Thus, 7! ZthpJ,-l di ;=
0p(1) and (NgT)~* ZtT:pH Yics iy = op(1). The structure of dg ;¢ is similar to that of di i, so it is
straightforward to prove that 7! Z’f:pﬂ d3;; = op(1) and (NgT)~* Z:{:pﬂ >iesdsy = o0p(1) using a
similar argument.

For term d3 ;;, we have

T oA =1 .
_ _ ~, [ G'G G'G
Yy <ty a-a(GE) G2
t=p+1 t=p+1
L& o (e e - an; 4
< — / /! / .
< Y Weie - Gomgt+ |G [ € - o
t=p+1
o = . . 4
T G'G G'(GHg — GYH;!
< o (55 ) ey s <T> (Gllo MG ||| o,
NT t=p+1

O (a7 o (5z) = o] ownon () o = ()

where 771G/ (GHg — G)||* < (TV 21,4 G~ HLGIPT L4, ||ét||2) op<<5;vi}> by Lemumas
A2 and A5, and ||6;]|* < (| @] + |GATD*|IN||* = Op(1) by Assumptions 2(a) and 2(b). As VT /N — 0,
T-! ZtT:p+1 3 = o0p(1). Also, since Ng' 5=, o [16:]|* = O,(1) by Absumptlons (a) and 2(b), we have
(NsT)~! ZtT:pH dies dg,it = 0p(1).

Lastly, since CAF/CAF/(T —p) = I, we can bound 7! Z?:;;H diit by

4
16:11*

(A Z di i - Z IG |

t=p+1 t=p+1
N

where ||CF'G/(T—p)||* = 0,(55%) is due to the proof following Equation (B.3). As VT /N — 0, T~ ZtT:pH i =
0p(1). Also, since Ng' 3. 5 10;]|* = O,(1) by Assumptions 2(a) and 2(b), we have (NgT)~* ZtT:pH s i =

0,(1). Q.E.D.
Lemma B3: Under Assumptions 1 - 6, if v/T/N — 0 and ¢g = kg, then

K S e ) - (Z el )HC] » 0
t=p+1 t=p+1

T
(T —p)'Ng* [(Z ZCtCt zt>_ 2F<Z ZC{C{IBEJHCF] —p 0

t=p+1€S t=p+1:€S

IN

Proof:
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By Lemma B2(ii) and Assumption 3(a), we have

1 T 8 T 8 T
T—p Z &y < T Z (€it — €)™ + T Z et = 0,(1) (B.4)
t=p+1 t=p+1 t=p+1
1 L 8 T 8 T
~4 ~ 4 4
Z Z €it S T A Z (€it —€it)” + 75— Z Z e;; = Op(1) (B.5)
(T B p)Ns €S t=p+1 (T B p)NS 1€S t=p+1 (T o p)NS i€S t=p+1
(i)
Z Ct Ct ,~§t éF ( Z Ct it) HCF
L p+1 Pz p+1
1 T
< T—p Z (CtFCtF FCt Ct HCF) zt+ Ti Z FCfCtF HCF(ézzt _ezzt)
t=p+1

t p+1

The first term is bounded by

1
T 3
PR / 1 -
(T p 2 I i He Py 3 i)

t=p+1

1 1
2 T 2
2 ~ At ’ ~F ’ ]_ -
< g D0 IGEEE =T HEIP+ G~ Her GG Her 1P ) | i Y &
pt =p+1 pt=p+1
1
2
< (7 X R 3 i - ) +
t p+1 t p+1

1

( Z e H<F|\47 Z 16" HQFCfI‘l) Op(1) = 0p(1)

t=p+1 t=p+1

because (T — )~ ST,y I — GF Her|[* = 0p(1) and (T = )~ S5, [EF I = Oy(1) by Lemma B()
and the assumption that VT/N — 0, (T — p)~ Z?:pﬂ HCtF/HCpH"‘ = O,(1) by Assumption 1(b), and

(T —p)~ Zt —pi1 €}, = O,(1) by Equation (B.4). The second term can be bounded by

T
’ 1 -
(5 32 et st > )

(NI

Pz p+1 t=p+1
1 1
2 T 2
2 2 .
< ”I'ICF”2 < Z ||Ct ”4) (T—p Z ezzt(eit - eit)2 +612t(€it —eit)2>
t p+1 t=p+1
2 = 2 & : 2 & 2 & 0"
= O |7 D Gig— D Cu—e)'| +|7— D ehm— D (éit—em‘*] = op(1)
pt:erl t=p+1 pt:p+1 t=p+1

because (T — p)~* Z;‘F:pﬂ I¢E1* = O,(1) by Assumption 1(b), (T — p)~ Zt 1 ¢}, = 0,(1) by Equation
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(B.4), (T—p)~! ZtT=p+1 e, = O,(1) by Assumption 3(a), and (T —p)~! ZtT:pH(éit —eit)* = 0,(1) by Lemma
B2(if).
(i) The proof of this part is similar to that of part (i).

( Yoy dde ) — Hix ( XTj Yo G 'e?t> HCF]

t=p+1i€S t=p+1i€S

T
1 PR , ~
o 2 DG~ H (G Her el + N 7 Z > Hie(E T Her (8, — €f)
t=p+1i€S

t=p+1icS

The first term is bounded by

[NIE

t Gt Ftt (Fi €it
Z||<< e Her|? Z Z

Pt Py S ies

Z Zezt] = 0p(1)0p(1)

S = p+1i€S

< op(1) |

where the 0,(1) terms follows from the proof in part (i) of this lemma and (7 —p)~*Ng* Zf:pﬂ > ics €l =
O,(1) follows from Equation (B.5). The second term is bounded by

T T 2Y) 3
1 I ~F F' 21 1 ~2 2
T Z ||H<FCt G Herl T Z NfZ(%‘%)

t=p+1 t=p+1 i€S

Nl=

T 2 T 2
< 0p(1) ; Z [ Ze” (€ir — €4t) +% Z [ Zezt ezt_ezt‘|
t=p+1 zES t= ZES
2
< TNS Z Zelt ezt e@t + Z Zelt ezt ezt ]
t=p+1ieS t p+1ieS
2 9 T
< 0,(1) —e + (it — eit)

where (NgT)~ Zt —pt1 2ies Gy = Op(1) follows from Equation (B.5), (NsT)™! Zf:p«kl Yieseh = 0p(1)
follows from Assumption 3(a), and (NST)_1 Zf:p%-l >ics(@ir — ei)* = 0p(1) follows from Lemma B2(ii).
Q.ED.

PRrROOF OF THEOREM 1:
We will first show that H.r is non-singular as N and 7' — oo. To see this, consider the bound of
Y| CF = H L¢P (P Hr |

1 22 / 1, apr,» 1. 4
THCF ("= H(r(" ("Her|| < THCF (" = ¢"Her) | + fH(CF — (" Hr)'("Her || = Op(0y7)
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by Lemma A9 and Cauchy-Schwarz inequality. Since éF,éF/(T —p) =1, and CF/CF/T —p I, by Assump-
tion 1(b), it must follow that H.r is non-singular as N and 7' — oo, otherwise (CF'CF — HéFCF/CFHCF)/T
cannot converge to zero.

(i) Define w; = ei¢F (Z?:p+1 CFCF e2) 1¢F e;, and it can be rewritten as

—1 ’
HéFCF €;

edel Hc”i) T—p —d X

* e;CFH(F Z
YT T T p

t=p+1

by Assumption 8(a). Note that Lemma B1(i) and the condition that /T /N — 0 imply that

1 / N T
ﬁ(HéFCF e — (" Xi) =0, <512v\/;> = 0p(1) (B.6)

Since (T —p)~! ZtT:p 41 ¢kl /eft —p a positive definite matrix ©; and H¢r is non-singular asymptotically,

||[Z;T:p+1 HEF t /Hcpeft/(T—p)]_l | = Op(1). Also, we have (T—p)~" (Zt_p+1 G F/ G Zt p+1 HéF t /HCFezzt> =
0p(1) by Lemma B3(ii), so (T—p)~* Zf:pﬂ CFCF' @2 is positive definite asymptotically and || [Zt:p+1 CFeFe /(T—

Pl = Op(1). Thus,

—1 —1

(75 S aaa) (7 > mdd )
gt P

1

T
e > (B Hered - (T8

-1
< ( Z Fcfcf’HgFei) |H Z rile )
t p+1 t=p+1 t p+1
= 0p(1)op(1)0p(1) (B.7)

Combining Equations (B.6) and (B.7), we have wl w* = 0p(1) and w; =4 X3, forieS.
(ii) Define W* =3, qe 1CF(Zt —pi1 2ics ¢Fef e2) 1¢eF > icg €i, and it can be rewritten as

2
d Xgr

T ’ _1 !
W = Yies ei¢t Her Zt:p+1 D ies HéFCtF 3 HCFezzt HéFCF D ies €
~ /(T -p)Ns (T - p)Ns (T — p)Ns

by Assumption 8(b). Note that Lemma B1(ii) and the condition that v/T/N — 0 imply that

\/7 Z 61', - Z&F,Xz) =0p (g?\i) = op(1) (B.8)
€S €S

Also, since (T — p)~'Ng' Zf b1 2icS CFCF e2 —p §, Her is non-singular asymptotically, and (7" —
P~ INS Zt-p+1 Yies (Ct Ct é HéF ried ngezt) —p 0 by Lemma B3(ii), we have

< Z ZCt Ct zt) - ( Z Z FCtFszF,HCFezzt> = op(1) (B.9)

S = p+1i€S t=p+1i€S
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by the same argument for proving Equation (B.7). Combining Equations (B.8) and (B.9), we have W —W* =
op(1) and W —4 x2,.. QE.D.

C Proof of Theorem 2

Let us re-consider X5:
X5 = Mpx5 =515 45 — PA(OT55 4 ¢%) + MyFII¥ (C.1)

Recall that the estimator é 9 is equal to /T — p times the eigenvectors corresponding to the kg = q — kp
largest eigenvalues of the (T — p) x (T — p) matrix XSXS". Under the alternative hypothesis, ks < gg, fsis
(T — p) x kg, so it can only span the subspace of ¢¥, which is (T — p) x gg. Let (% equal /T — p times the
eigenvectors corresponding to the ggs largest eigenvalues of X5X5 and Vg be the diagonal matrix consisting

of the first ¢5 largest eigenvalues of (1/NST)X5X5" in decreasing order. Hence, we have
(1/NST)XSX5' (% = 5V (C.2)

Recall that Hes = (TSS'TS5 /Ng)(¢5'¢5 /T)Vg L. Similar to Hes, Hes is also Op(1). Since (5 is (T —p) x gs,
Lemmas A5 and A8 in Appendix A.2 are directly applicable to ¢, which is summarized by the following
Lemma.

Lemma C1: Under Assumptions 1 - 6,

() T Y0, IG5 — HLsCPII? = 0p (6375

(i) T-1(CS = CSHes)'C = Op(032).

(iii) H¢s is non-singular as N and T' — oo.

Proof:

The same as the proof of Lemmas A5 and A8. Q.E.D.

By the definition of ES, fs is equal to the first kg columns of ¢°. Let ¢ be partitioned as ¢° =

[fﬁﬁsffﬁltqs], where éﬁﬁs is a (T — p) x kg matrix consisting of the first xg columns of ¢¥ and ¢

S
rks+1l:qs

a (T — p) X kp matrix consisting of the last kr = gs — kg columns of (. Thus, we have (S = C_ig;,@s- Define
5,y = (D55 T55 INg)(¢5' G / TV by amd HS, 100 = (DSS'TSS ING)(CE G5y /TIVi 41y Where

N l:iks ks+1:qs Ns+1iqu K
Vs.1:xg is a diagonal matrix consisting of the first ¥ largest eigenvalues of (1/N°T)X®X*® in descending

is

order, and Vs,,{sﬂzqs is a is a diagonal matrix consisting of the (x° 4 1) through the gg largest eigenvalues

e _ o _ Vs 1o 0
of (1/NT)X*X¥ in descending order. Hence, Hes = [Hiq:ng:Hfferl:qs] and Vg = Sliks
0 VS,nerl:qs
Now, re-write Equation (A.7) as
X =M;sMeX = MgMp(FIU+¢T9 + (T +¢)
= Mg Mp(FIU + (S Hes HZTS +¢FT 4 e)
= Mes Mp(FIU + [(PHP, COH7 1,0 2% + 7T +e) (C.3)
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where we use the definition that 25 = ﬂ'{slfsl. Recall that 2% = [E‘EHSEESSH;%L where EfmS is the first

#s columns of 2% and E§s+1:qs is the last gs — kg columns of 25, Let v¥ = (SHY, _, vF = [CSH§S+1;QS5CF]7

S _ =S F _ = :
U2 = —1l:kg? v = [‘—‘nerl:qg'

I'F], and ¥ = [U:0F), so Equation (C.4) reduces to
X = Mys Mp(FIU + 0505 + 00 4 ¢) (C.4)

Note that ¢S is an estimate for v5 = Csﬂ'fms and that

T T T
TP NG =l 1P =T D NG - HE 1P <TG — HisGP NP = 0p(657)  (C5)
t=p+1 t=p+1 t=p+1

by Lemma C1(i) and the fact that ¢, = (5. Let G = [F'(%], G = [Fv¥], and £ = [ILT5]. Note that
ﬁ’fs =0, so MCASM}A. = Mgm Hence, X can be rewritten as

X = Mg Ma(FIU + 0505 + 079" 4 ¢)
= o' e~ P (0O +e) + MsGL! (C.6)

Lemma C2: Under Assumption 2, \I'F/\IlF/N —p & KF X K positive definite matrix.
Proof: o

SipF S -1 F —1 HZ 0
Note that ¥ = [U°: "] = [T H<S T =TD =AGA'D, where D = f) s

is a non-singular
qF

matrix asymptotically. Hence,
N0 = N'D'AVG'NAGA™'D

Since A’A/N —, a r x r positive definite matrix ¥, rank(G) = ¢, and A is non-singular, N~1¥'W is positive
definite asymptotically. Since UF OF /N is a principal submatrix of N~'W/W¥, it must be positive definite
asymptotically. Q.E.D.
Lemma C3: Under Assumptions 1 - 6,
Hr 0
0 I

ks
tth

(i) Define Hg = . Hg is non-singular and 7! ZtT:pH G — HLG 1> = 0,(052), where G,

and G; are transposes of the row of G and G , respectively.

(ii) T vF = 0, (65%) + O, (T1/?).

Proof:

(i) Hg is non-singular because Hr is non-singular by Lemma A2(ii). Also, note that 71 Z;FZP_H | F —
HLF|? = 0,(05%) by Lemma A2(i) and that 7! Zfzpﬂ 1E8 — vP || = Op(6y) by Lemma C1 (see

Equation (C.5)). Since G = [F(5] and G = [Fv®], it follows that =23/ |G, — HEG||* = O, (3%

(ii) Since v¥ = (S H{, . and vF" = [CSHESH:,ISIF}.
1T~ 0 0| < 1T Y ¢ CHR g Il + 1T H ¢ T
where the second term is O,(T~'/?) by Assumption 1(c). For the first term, note that T_lfls:;s _§S+1:qs =0
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by the orthogonality of eigenvectors, so we have

—1778’ S’ S 7S
HT lHl:HSC C HK,s—‘rl:gs”

S HT_l(CS‘H-iS:KS - zins)/CSH§s+1:qs” + “T_léiszns (CSH1§3+1:¢]S - 7I§s+1:q5)|| + ||T_1§iszns 7§5+1:qs ||
< NTHCTHS = ()¢ Hes ||+ 1T71¢7 (P Hes = ¢7)
< 2T (P Hes — () PHes ||+ 1T71(C° = (P Hes) (P Hes — C°)|

Op(057)

by Lemma C1. Q.E.D.
Now, let us consider the estimator f F under the alternative hypothesis. Recall that f Fis equal to /T — p
times the eigenvectors corresponding to the xkp largest eigenvalues of the (T — p) x (T — p) matrix XX’ so

we have

(1/NT)XX'CF = (FUp (C.7)

where Up is the diagonal matrix consisting of the first xp largest eigenvalues of (1/NT)X X’ in decreasing
order. Let Ur be the diagonal matrix consisting of the first xr largest eigenvalues of (v ¥F "+ e) (v uF "+
e)'/NT in decreasing order. We have

10| = Op(1) (C.8)
To see this, first note that v v¥ /T has full rank asymptotically because v = [Csﬁ,fs+1:qSE(F} is of full

column rank (note that ﬁCS is non-singular asymptotically, so its submatrixH?>

rs+1:q5 Das rank equal to gs —

ks). By Lemma C2, \I!Fl\IIF/N also has full rank asymptotically, so Lemma A1(ii) is applicable to Ug, i.e. Up
converges to a non-singular diagonal matrix consisting of the eigenvalues of lim . 7o (¥ 0 /T) (T TF /N).
Additionally, the difference between X and 0¥ UF + ¢ is that X contains some additional estimation error
terms defined in Equation (C.6). Again, by Amengual and Watson’s (2007) results, we know that such
estimation errors will not affect the limits of the first kp largest eigenvalues of XX"/NT, ie. Up—Up —p 0.
Hence, Ur is non-singular asymptotically and |U || = O,(1).

Now, substituting Equation (C.6) into Equation (C.7) gives

NT VPO 4o — PQ(UFWFI +e) —|—Mgg£’} {UF\I/F/ +e— Pg(vFl/F, +e) + MsGL' /EFﬁgl =(F
Note that T—! ZtT:p+1 |IEE || is O, (1) because (F'CF /(T —p) = 1,,.. Define H,r = (OWF OF /N)(uF'(F/T)U .
We have H,r = Op(1) because |Hyr|| < |7 CF/T||> o vf /T2 | @5 @ /N|[|UR|| = Op(1) by Lemma
C2 and (C.8). Analogous to Lemmas A1(i), A5 and A9, the following lemma shows that (} is a consistent
estimate for H/ »vf" and that the convergence rate is the same as in Lemmas A1(i), A5, and A9.

Lemma C4: Under Assumptions 1 -6, 7! Z;F:p+1 ||6tF —H 0F1? =0, (05%).

Proof:

Note that Equation (C.4) has almost the same structure as (A.7). The only difference is that Equation(A.7)
deals with structural shock ¢, whereas Equation (C.4) deals with v, which is a rotation of ¢. Note that
Assumptions 1 - 6 are stated in terms of ¢ and I'. To prove Lemma C4, it is sufficient to show that

these assumptions hold if ¢ and I' are replaced by v and ¥. Assumptions 1(a), 2(a), 2(b), 3, 4, and 5 are
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the same whether the model is expressed in terms of { or v. Also, since v = [Csﬁgsch] = CD’lI and
P HY 0 ] . . .
v =["H cs T ] = I'D, where D = f) s is a asymptotically non-singular by Lemma C1 and

qF
D = 0,(1), the boundedness conditions in Assumption 6 still hold if we replace ¢; with v;. For the same

reason, Assumption 2(b) can be rewritten as “E|lv||* < M, E(vsv;) = 0 for any s # t, and 7! Z;_l
is a ¢ x ¢ positive definite matrix as T — oo0”. Furthermore, the role of Assumption 1(c) for the proof of
Lemma 9 is that 7-'¢%¢F can be bounded by O(T~'/2) < 0,(5)), but we have already proved that
T8 vF = 0,(032) + Op(T1/2) < 0,(55%), which can serve to play the same role as Assumption 1(c).
For Assumption 2(c), the role of TFF'TFF /N —, Brre is to ensure that DF'T'F /N is positive definite
asymptotically, and Lemma C2 shows that ¥ pF /N —, a kp X kp positive definite matrix. Lastly, the

RV

analog of 'Y in (C.4) is the first Ng rows of ¥ = =¥, corresponding to the slow variables. Let W59
and 255 denote the first Ng rows of ¥° and Z°, respectively. Since =5 = HgslI‘S/ and 255 = Hgsll"ss/,

Ng'E 1=55'=55 ig positive definite asymptotically by the assumption that rss'rss’ /Ng —p Xpss and Lemma

C1(iii) that Hes is non-singular. Ng W55 ¥ is a principal submatrix of Ng 25255 50 it is also positive

definite asymptotically. Since all analogous assumptions in terms of v and ¥ are satisfied, Lemma C4 holds
by Lemma A9. Q.E.D.

PROOF OF THEOREM 2:

We will first show that H,r is non-singular as N and T — oo. To see this, consider the bound of
=Y CF = H pof oF Hyr|

1, apra 1, 20 2 1, .2 _
SIS — Hy oo WP Hye | < I (CF = o Hye) | 4+ 2 I(CF = o7 Hor ) 0" Hyel| = Oy (635%)

by Lemma C4 and Cauchy-Schwarz inequality. Note that v’ WF /T is positive definite asymptotically because
it is a principal submatrix of v'v/T = D~1{’¢ DV /T, which is asymptotically positive definite by Assumption
1(b) and Lemma C1(iii). Also, since (¥'CF /(T —p) = I,.,., it must follow that H,» is non-singular as N and
T — oo, otherwise ((*'(F — H! xv™ vF" H,r)/T cannot converge to zero.

Furthermore, the proof of Lemma C4 has shown that the model in Equation (C.4) satisfies Assumptions

1 - 6 with ¢ and I" replaced by v and ¥. Thus, we have the following result analogous to Lemma B3.

T
< Kz e Zt)— . ( 5 ) HUF] 0
t=p+1 t=p+1

iz [( S S ) . (z S oFfe )H

t=p+1i€S t=p+1i€S

—p 0

Note that (T — p)~! ZtT:pH vFuf €2, and [N (T — p)]~* ZtT:pH S ies Vi vl €2, are Op(1) by Assumptions
Land 3,50 (T —p) ' Y1, CFCF'@% and [Ns(T = p)) 7t i1 Sies GG @2, are also O,(1).
(i) We will show that w; = X’CF(Zf —pt1 CFCF'e2)~1(F'X; — oo as N and T — oo for i € S. First,
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consider (¥ X; /(T — p), which can be rewritten as
/= 1 a5
—C" X = ECF [ + e — Po (v + ;) + MgG L))
1 Al
= mCF (W +ei +GL)

where ¥I" and £; are the transposes of the ' rows of U and £, respectively, and we use the fact that f F'g =

(F[Fi{] = 0. Note that [|C" es/ (T = p)|| <[[((F = v Hyr) e/ (T = p)|| + | H, 0" e/ (T = p)ll = Op(057) +
O,(T ~1/2) by Lemma C4, Cauchy-Schwarz inequality and Assumptions 3(a) and 6(e). Additionally, by the
fact that EF/C; =0, we have

1 ~ . A
= 7 fp(CF v Hyr)(GHg — G)Hg ' Li|| + |1 H "(GHg — G)HG 'L
1 F 5 A
S g — v Hor) (GHg — O)Hg L + [[Hor | HT_pD_lC/(QHg — G HL

1
©r (a%w)

by Lemmas C3(i), C4, A4(i) and C1(ii). Lastly, we consider (¥ vF¢F /(T — p). Recall that 25 = HC_SlFS,,

(1]

S _ [:S =S ] /2 - [HS

= F S F ; F _ [pSF'pFF’
= [Elns ERgt1qs) Ey 1.0 [F], and of = [¢ HSJquSC ]. Since T'" = [>T

[0gpxng TEFY, the last gp entries in 9! are zeros for i € S and vFyf = ¢SHS i 1iqs€h st 1:qss Where
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where the O,(1/v/T) term follows from Assumption 1(c) and the o0,(dyy) follows from Lemma C4 and
Cauchy Schwarz inequality. Note that HS
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H,r is of full rank, Equation (C.9) bounded away from zero asymptotically. Also, we have proved that

res+1:q5 15 Off full column rank by the fact that ]_{Cs is non-singular,

is of full rank asymptotically. Since & is assumed to be non-zero and
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CFlei)(T—p) = op(1) and CF'GL; ) (T—p) = 0,(1), 50 ¥ X; /(T —p) is bounded away from zero asymptotically.
Thus, we have the desired result:
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by Lemma C4 and Assumptions 3(f) and 6(f). Additionally, by the fact that CF'G =0, we have
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by Lemmas C3(i), C4, A4(i) and C1(ii). Lastly, we consider (¥ vF >ies ¥F /[VNs(T —p)]. Recall that =5 =

— N — —_ — . ’- ’
Hgsll"s,:S:[:fms.:fsﬂzqs],\IIF:[ S g TF] and oF = [(SHE ., :¢F]. Since I'F' = [DSF:DFF) =

:FFF}

[Ogpxns: !, the last qp entries in ¢! are zeros for i € S and viyf = CSHS where

55’
ks+1:qsSi,ks+1igs?

§fns+1:qs is the transpose of the i'" row of = Hence, we have

Ks+1 qs”
TS o
NS( €S

1 S S
= 7pc fis+1 qsrzgl rks+1l:gs

€S
= { R R o e, )45} o ﬁZf “
_ Ks qs 1,ks qs
T- p T p ZES
1 .
= |:T P 1,)F CS ks+1l:qs- CF]/CS =+ m(( FH F) CS:| rks+1: qS Zgl ks+1:qs
zES’
s’ CS) )
_ Ks+1 q4s T—p AF _F 1,8 S
- { CS) + Tfp(c v HUF) C HKS+1 qsrlezséz rks+1:qs

s’ CS ¢ gs
— HLF ks+ligs T—p " ks+ligs
Op(1/VT)

0, (5N1T> } Mo D> & it (C.12)

€S

where the O,(1/v/T) term follows from Assumption 1(c) and the o0,(dyr) follows from Lemma C4 and
Cauchy-Schwarz inequality. Using the results in (C.10), (C.11) and (C.12), we have

Ta/2
TS 2%
Ns icS
HS’ S Sﬁs Ta/2 Ta/2 Ta/2
= H rcs+1qu ks+1igs +O( ) gm <>+O (éig
{ 0,1 VT) ] ’ N A A

52



Note that the O, (%;2) term is 0,(1) because 0 < a < 0.5 and VT/N — 0 as N and T — oo,

that the O, (Taé/;‘/ﬁ) term is o0,(1) because VN/T'=*/2 — 0 as N and T — oo, and that H,r and
NT

75’ ¢5'¢S s
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cally. Since €2 is positive definite and O,(1), we have the desired result:

are asymptotically non-singular, so (C.13) is bounded away from zero asymptoti-
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D Data Description

Transformations: 1 = levels, 2 = first differences, 4 = logs, 5= first differences of logs of the original series.

S denote slow variables and F denotes fast variables.

Short Name Mnemonic Long Label F/S  Trans.
PI AOMO052 Personal income (AR, bil. Chain 2005%) S 5
PI less transfers AOMO51 Personal income less transfer payments (AR, bil. Chain 2005$) S 5
Consumption A0M224_ R Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB) S 5
M&T sales AOMO57 Manufacturing and trade sales (mil. Chain 2005 $) S 5
Retail sales AOMO059 Sales of retail stores (mil. Chain 2000 $) S 5
IP: total IPS10 Industrial Production Index - Total Index S 5
IP: products IPS11 Industrial Production Index - Products, Total S 5
IP: final prod IPS299 Industrial Production Index - Final Products S 5
IP: cons gds IPS12 Industrial Production Index - Consumer Goods S 5
IP: cons dble IPS13 Industrial Production Index - Durable Consumer Goods S 5
IP:cons nondble IPS18 Industrial Production Index - Nondurable Consumer Goods S 5
IP:bus eqpt IPS25 Industrial Production Index - Business Equipment S 5
IP: matls IPS32 Industrial Production Index - Materials S 5
IP: dble mats IPS34 Industrial Production Index - Durable Goods Materials S 5
IP:nondble mats IPS38 Industrial Production Index - Nondurable Goods Materials S 5
IP: mfg IPS43 Industrial Production Index - Manufacturing (Sic) S 5
IP: res util IPS307 Industrial Production Index - Residential Utilities S 5
IP: fuels IPS306 Industrial Production Index - Fuels S 5
NAPM prodn PMP Napm Production Index (Percent) S 1
Cap util B00004 Capacity Utilization S 2
Emp CPS total LHEM Civilian Labor Force: Employed, Total (Thous.,Sa) S 5
Emp CPS nonag LHNAG Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa) S 5
U: all LHUR Unemployment Rate: All Workers, 16 Years & Over (%,Sa) S 2
U: mean duration LHU680 Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa) S 2
U < 5 wks LHU5 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa) S 5
U 5-14 wks LHU14 Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa) S 5
U 154 wks LHU15 Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa) S 5
U 15-26 wks LHU26 Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa) S 5
U 27+ wks LHU27 Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa) S 5
UI claims AO0MO05 Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB) S 5
Emp: total CES002 Employees On Nonfarm Payrolls: Total Private S 5
Emp: gds prod CES003 Employees On Nonfarm Payrolls - Goods-Producing S 5
Emp: mining CES006 Employees On Nonfarm Payrolls - Mining S 5
Emp: const CESO011 Employees On Nonfarm Payrolls - Construction S 5
Emp: mfg CESO015 Employees On Nonfarm Payrolls - Manufacturing S 5
Emp: dble gds CESO017 Employees On Nonfarm Payrolls - Durable Goods S 5
Emp: nondbles CES033 Employees On Nonfarm Payrolls - Nondurable Goods S 5
Emp: services CES046 Employees On Nonfarm Payrolls - Service-Providing S 5
Emp: TTU CES048 Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities S 5
Emp: wholesale CES049 Employees On Nonfarm Payrolls - Wholesale Trade S 5
Emp: retail CES053 Employees On Nonfarm Payrolls - Retail Trade S 5
Emp: FIRE CES088 Employees On Nonfarm Payrolls - Financial Activities S 5
Emp: Govt CES140 Employees On Nonfarm Payrolls - Government S 5
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Avg hrs
Overtime: mfg
Avg hrs: mfg
NAPM empl
CPI-U: all
CPI-U: apparel
CPI-U: transp
CPI-U: medical
CPI-U: comm.
CPI-U: dbles
CPI-U: services
CPI-U: ex food
CPI-U: ex shelter
CPI-U: ex med
PCE defl

PCE defl: dlbes
PCE defl: nondble
PCE defl: services
AHE: goods
AHE: const
AHE: mfg
HStarts: Total
HStarts: NE
HStarts: MW
HStarts: South
HStarts: West
BP: total

BP: NE

BP: MW

BP: South

BP: West

PMI

PMNO
PMDEL
PMNV
AOMO008
AOMO07
AO0MO027
A1MO092
AOMO70
AOMOT7

FM1

FM2

AOM106
FMFBA
FMRRA
FMRNBA
AOM101
CCINRV
AOMO095
FSPCOM
FSPIN

CES151

CES155
AO0MO01
PMEMP
PUNEW

PU83

PU8g4

PU8S

PUC

PUCD

PUS

PUXF

PUXHS

PUXM

JPC

JPCD

JPCN

JPCSV

CES275
CES277
CES278

HSFR

HSNE

HSMW

HSSOU
HSWST

HSBR

HSBNE
HSBMW
HSBSOU
HSBWST

PMI

NAPM new ordrs
NAPM vendor del
NAPM Invent
Orders: cons gds
Orders: dble gds
Orders: cap gds
Unf orders: dble
M&T invent
M&T invent/sales
M1

M2

M2 (real)

MB

Reserves tot
Reserves nonbor
C&I loans

Cons credit

Inst cred/PI
S&P 500

S&P: indust

Avg Weekly Hrs: Private Nonfarm - Goods-Producing

Avg Weekly Hrs: Private Nonfarm Payrolls - Mfg Overtime Hours
Average Weekly Hours, Mfg. (Hours) (TCB)

Napm Employment Index (Percent)

CPI-U: All Items (82-84=100,Sa)

Cpi-U: Apparel & Upkeep (82-84=100,Sa)

Cpi-U: Transportation (82-84=100,Sa)

Cpi-U: Medical Care (82-84=100,Sa)

Cpi-U: Commodities (82-84=100,Sa)

Cpi-U: Durables (82-84=100,Sa)

Cpi-U: Services (82-84=100,Sa)

Cpi-U: All Items Less Food (82-84=100,Sa)

Cpi-U: All Items Less Shelter (82-84=100,Sa)

Cpi-U: All Items Less Medical Care (82-84=100,Sa)

Pce, Impl Pr Defl:Pce (1987=100)

Pce, Impl Pr Defl:Pce; Durables (1987=100)

Pce, Impl Pr Defl:Pce; Nondurables (1996=100)

Pce, Impl Pr Defl:Pce; Services (1987=100)

Avg Hourly Earnings: Private Nonfarm Payrolls - Goods-Producing
Avg Hourly Earnings: Private Nonfarm Payrolls - Construction
Avg Hourly Earnings: Private Nonfarm Payrolls - Manufacturing
Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar)
Housing Starts:Northeast (Thous.U.)S.A.

Housing Starts:Midwest(Thous.U.)S.A.

Housing Starts:South (Thous.U.)S.A.

Housing Starts:West (Thous.U.)S.A.

Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A
Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A.
Houses Authorized By Build. Permits:South(Thou.U.)S.A.
Houses Authorized By Build. Permits:West(Thou.U.)S.A.
Purchasing Managers’ Index (Sa)

Napm New Orders Index (Percent)

Napm Vendor Deliveries Index (Percent)

Napm Inventories Index (Percent)

Mfrs’ New Orders, Consumer Goods And Materials (Bil. Chain 1982 $) (TCB)

Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB)
Mifrs’ New Orders, Nondefense Capital Goods (Mil. Chain 1982 §) (TCB)
Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB)
Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB)

Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB)
Money Stock: M1 (Bil$,Sa)

Money Stock: M2 (Bil$,Sa)

Money Supply - M2 In 1996 Dollars (Bci)

Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)
Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa)
Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa)
Commercial and Industrial Loans Outstanding (mil. Chain 2005$)
Consumer Credit Outstanding - Nonrevolving(G19)

Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB)
S&P’s Common Stock Price Index: Composite (1941-43=10)

S&P’s Common Stock Price Index: Industrials (1941-43=10)
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FSDXP
FSPXE
FYFF
CP90/RMCP3
FYGM3
FYGM6
FYGT1
FYGT5
FYGT10
FYAAAC
FYBAAC
SCP90(AC)
sFYGM3
sFYGM6
sFYGT1
sFYGT5
sFYGT10
sFYAAAC
sFYBAAC
EXRSW
EXRJAN
EXRUK
EXRCAN
PWFSA
PWFCSA
PWIMSA
PWCMSA
PSCCOM
PMCP
UoMO083

S&P div yield
S&P PE ratio
FedFunds
Commpaper

3 mo T-bill

6 mo T-bill

1 yr T-bond

5 yr T-bond

10 yr T-bond
Aaabond
Baabond

CP-FF spread

3 mo-FF spread
6 mo-FF spread
1 yr-FF spread

5 yr-FFspread
10yr-FF spread
Aaa-FF spread
Baa-FF spread
Ex rate: Switz
Ex rate: Japan
Ex rate: UK

EX rate: Canada
PPI: fin gds

PPI: cons gds
PPI: int mat’ls
PPI: crude mat’ls
Commod: spot price
NAPM com price

Consumer expect

S&P’s Composite Common Stock: Dividend Yield (% Per Annum)
S&P’s Composite Common Stock: Price-Earnings Ratio (%,Nsa)
Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa)
Cmmercial Paper Rate (AC)

Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa)
Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa)
Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa)
Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa)
Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa)
Bond Yield: Moody’s Aaa Corporate (% Per Annum)

Bond Yield: Moody’s Baa Corporate (% Per Annum)

cp90-fyff (AC)

fygm3-fyff (AC)

fygm6-fyff (AC)

fygtl-fyff (AC)

fygts-fyff (AC)

fygt10-fyff (AC)

fyaaac-fyff (AC)

fybaac-fyff (AC)

Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$)
Foreign Exchange Rate: Japan (Yen Per U.S.$)

Foreign Exchange Rate: United Kingdom (Cents Per Pound)
Foreign Exchange Rate: Canada (Canadian $ Per U.S.$)

Producer Price Index: Finished Goods (82=100,Sa)

Producer Price Index: Finished Consumer Goods (82=100,Sa)

Producer Price Index:I ntermed Mat.Supplies & Components(82=100,Sa)

Producer Price Index: Crude Materials (82=100,Sa)

Spot market price index: bls & crb: all commodities(1967=100)
Napm Commodity Prices Index (Percent)

U. Of Mich. Index Of Consumer Expectations(Bcd-83)
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Table 1: Size of Tests for the Overidentifying Restrictions under DGP N1 with 5000 Replications

Ng = 0.5N

T:5aq:37qF:1

Individual Tests Bonferroni&Pooled Onatski New Joint Tests
N T sw; w; Im; B, P, Rayn Rgtat w LM
200 200 0.131 0.086 0.077 0.241 0.478 0.067 0.061 0.080 0.077
200 300 0.124 0.078 0.072 0.178 0.365 0.053 0.058 0.079 0.078
200 500 0.127 0.073 0.070 0.157 0.308 0.057 0.063 0.072 0.072
300 200 0.109 0.078 0.070 0.209 0.476 0.052 0.051 0.074 0.072
300 300 0.096 0.070 0.065 0.154 0.331 0.056 0.051 0.068 0.067
300 500 0.096 0.065 0.062 0.127 0.239 0.051 0.053 0.067 0.066
500 200 0.590 0.074 0.066 0.220 0.552 0.054 0.051 0.073 0.070
500 300 0.084 0.067 0.062 0.149 0.358 0.055 0.053 0.064 0.063
500 500 0.077 0.061 0.058 0.106 0.230 0.054 0.047 0.063 0.062

r:5aq:4,qF:3

Individual Tests Bonferroni&Pooled Onatski New Joint Tests
N T Sw; W; Imy; By, P, Rayn Rgiar w LM
200 200 0.126 0.101 0.073 0.312 0.713 0.066 0.079 0.087 0.080
200 300 0.117 0.088 0.071 0.231 0.540 0.067 0.089 0.075 0.069
200 500 0.115 0.079 0.069 0.162 0.403 0.065 0.134 0.073 0.070
300 200 0.113 0.092 0.065 0.284 0.752 0.059 0.067 0.074 0.068
300 300 0.099 0.080 0.063 0.209 0.543 0.064 0.072 0.066 0.061
300 500 0.091 0.070 0.060 0.144 0.344 0.066 0.098 0.059 0.057
500 200 0.648 0.088 0.062 0.302 0.863 0.059 0.056 0.072 0.067
500 300 0.090 0.076 0.059 0.198 0.623 0.061 0.060 0.070 0.065
500 500 0.077 0.066 0.057 0.131 0.350 0.059 0.066 0.062 0.060

Note: The nominal size is 5%. The first two columns are the numbers of observations in cross section and
time dimensions. The numbers in columns 3 — 5 are the means of individual tests’ rejection rates from 5000
simulated samples. Columns 6 — 11 are the rejection rates of Bonferroni, Pooled, Onatski, and our new joint
test statistics. The upper panel of Table 1 summarizes the results based on the setup where r = 5, ¢ = 3, and
qr = 1, whereas the lower panel of Table 1 summarizes the results based on the setup where r = 5, ¢ = 4,

and qr = 3.
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Table 2: Size of Tests for the Overidentifying Restrictions under DGP N2 with 5000 Replications

Ng = 0.5N

T:5aq:37qF:1

Individual Tests Bonferroni&Pooled Onatski New Joint Tests
N T sw; w; Im; B, P, Rayn Rgtat w LM
200 200 0.077 0.083 0.075 0.248 0.470 0.054 0.074 0.080 0.076
200 300 0.073 0.083 0.077 0.217 0.460 0.059 0.107 0.081 0.080
200 500 0.070 0.086 0.082 0.229 0.500 0.067 0.175 0.087 0.086
300 200 0.075 0.074 0.066 0.212 0.400 0.054 0.058 0.064 0.063
300 300 0.068 0.071 0.065 0.173 0.353 0.055 0.069 0.073 0.070
300 500 0.064 0.070 0.067 0.156 0.329 0.050 0.129 0.076 0.074
500 200 0.577 0.067 0.060 0.190 0.367 0.053 0.054 0.069 0.067
500 300 0.066 0.064 0.059 0.149 0.272 0.050 0.064 0.058 0.057
500 500 0.060 0.062 0.059 0.123 0.228 0.051 0.076 0.060 0.059

r:5aq:4,qF:3

Individual Tests Bonferroni&Pooled Onatski New Joint Tests
N T Sw; W; Imy; By, P, Rayn Rgiar w LM
200 200 0.089 0.101 0.073 0.359 0.719 0.101 0.320 0.081 0.073
200 300 0.077 0.094 0.075 0.273 0.615 0.135 0.551 0.084 0.078
200 500 0.069 0.093 0.082 0.256 0.596 0.174 0.846 0.089 0.087
300 200 0.088 0.090 0.064 0.325 0.714 0.080 0.204 0.078 0.069
300 300 0.074 0.081 0.064 0.234 0.552 0.088 0.406 0.078 0.075
300 500 0.066 0.076 0.066 0.174 0.461 0.121 0.754 0.070 0.068
500 200 0.625 0.083 0.058 0.324 0.764 0.056 0.122 0.061 0.056
500 300 0.075 0.074 0.057 0.215 0.536 0.065 0.228 0.059 0.055
500 500 0.064 0.067 0.058 0.154 0.358 0.073 0.580 0.062 0.060

Note: The nominal size is 5%. The first two columns are the numbers of observations in cross section and
time dimensions. The numbers in columns 3 — 5 are the means of individual tests’ rejection rates from 5000
simulated samples. Columns 6 — 11 are the rejection rates of Bonferroni, Pooled, Onatski, and our new joint
test statistics. The upper panel of Table 2 summarizes the results based on the setup where r = 5, ¢ = 3, and
qr = 1, whereas the lower panel of Table 2 summarizes the results based on the setup where r = 5, ¢ = 4,

and qr = 3.
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Table 3: Power of Tests for the Overidentifying Restrictions under DGP A1 with 5000 Replications

Ng = 0.5N

r=5q¢q=3,kr=1

r=5q=4,kr =3

Individual Onatski New Individual Onatski New

a N T w; Ilm; Rayn  Rstat w LM w; Ilm; Rayn  Rstat w LM
0.2 200 200 | 0.242 0.236 | 0.056 0.059 | 0.470 0.444 || 0.313 0.284 | 0.056 0.080 | 0.798 0.751
0.2 300 300 | 0.239 0.233 | 0.058 0.107 | 0.549 0.526 || 0.293 0.276 | 0.060 0.121 | 0.859 0.832
0.2 500 500 | 0.243 0.239 | 0.055 0.594 | 0.624 0.612 || 0.281 0.271 | 0.060 0.218 | 0.927 0.911
0.4 200 200 | 0.409 0.399 | 0.060 0.160 | 0.590 0.555 || 0.530 0.504 | 0.059 0.103 | 0.899 0.848
0.4 300 300 | 0.420 0.413 | 0.065 0.607 | 0.655 0.626 || 0.516 0.500 | 0.074 0.264 | 0.948 0.917
0.4 500 500 | 0.434 0.431 | 0.137 0.999 | 0.729 0.704 || 0.509 0.500 | 0.097 0.972 | 0.972 0.955
0.6 200 200 | 0.566 0.556 | 0.078 0.406 | 0.642 0.597 || 0.738 0.719 | 0.077 0.169 | 0.937 0.898
0.6 300 300 | 0.596 0.590 | 0.145 0.936 | 0.711 0.677 || 0.737 0.726 | 0.086 0.753 | 0.961 0.934
0.6 500 500 | 0.624 0.621 | 0.499 1.000 | 0.770 0.741 || 0.737 0.730 | 0.240 1.000 | 0.980 0.967
0.8 200 200 | 0.674 0.665 | 0.116 0.641 | 0.685 0.634 || 0.888 0.877 | 0.083 0.400 | 0.959 0.916
0.8 300 300 | 0.723 0.718 | 0.292 0.994 | 0.736 0.701 || 0.904 0.898 | 0.151 0.967 | 0.976 0.954
0.8 500 500 | 0.770 0.768 | 0.816 1.000 | 0.798 0.764 || 0.915 0.912 | 0.620 1.000 | 0.988 0.977
1 200 200 | 0.710 0.702 | 0.146 0.753 | 0.698 0.651 || 0.965 0.958 | 0.114 0.624 | 0.968 0.934
1 300 300 | 0.762 0.757 | 0.392 0.999 | 0.753 0.706 || 0.980 0.978 | 0.283 0.995 | 0.977 0.956
1 500 500 | 0.817 0.815 | 0.922 1.000 | 0.813 0.775 || 0.990 0.990 | 0.863 1.000 | 0.991 0.977

Note: The parameter a controls the fraction of slow variables that violate the zero restrictions in their
loadings on the fast shocks. The numbers in columns 3 — 4 and 9 —10 are the means of rejection rates of our
individual tests from 5000 simulated samples. Columns 5 — 8 and 11 — 14 are the rejection rates of Onatski
and our new joint test statistics. The left panel of Table 3 summarizes the results based on the setup where

r=05,q =3, and kp = 1, whereas the right panel of Table 3 summarizes the results based on the setup

where r =5, ¢ = 4, and kg = 3. The true number of fast shocks qg = 0.
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Table 4: Power of Tests for the Overidentifying Restrictions under DGP A2 with 5000 Replications

Ng = 0.5N

r=5q¢q=3,kr=1

r=5q=4,kr =3

Individual Onatski New Individual Onatski New

b N T w; Ilm; Rayn  Rstat w LM w; Ilm; Rayn  Rstat w LM
0.2 200 200 | 0.246 0.232 | 0.057 0.059 | 0.212 0.202 || 0.441 0.389 | 0.060 0.064 | 0.372 0.344
0.2 300 300 | 0.292 0.283 | 0.060 0.052 | 0.253 0.245 || 0.515 0.482 | 0.056 0.055 | 0.456 0.434
0.2 500 500 | 0.368 0.363 | 0.055 0.049 | 0.336 0.328 || 0.634 0.617 | 0.053 0.054 | 0.592 0.576
0.4 200 200 | 0.455 0.443 | 0.057 0.054 | 0.426 0.406 || 0.762 0.728 | 0.057 0.058 | 0.737 0.693
0.4 300 300 | 0.525 0.517 | 0.056 0.053 | 0.494 0.477 || 0.830 0.814 | 0.057 0.070 | 0.809 0.780
0.4 500 500 | 0.609 0.605 | 0.053 0.299 | 0.604 0.588 || 0.900 0.893 | 0.051 0.124 | 0.894 0.878
0.6 200 200 | 0.592 0.581 | 0.052 0.112 | 0.570 0.540 || 0.892 0.874 | 0.061 0.079 | 0.892 0.844
0.6 300 300 | 0.655 0.649 | 0.058 0.493 | 0.629 0.601 || 0.931 0.923 | 0.059 0.227 | 0.926 0.895
0.6 500 500 | 0.724 0.721 | 0.091 0.999 | 0.718 0.697 || 0.963 0.961 | 0.066 0.975 | 0.960 0.944
0.8 200 200 | 0.674 0.664 | 0.081 0.462 | 0.661 0.620 || 0.944 0.934 | 0.074 0.236 | 0.945 0.905
0.8 300 300 | 0.729 0.724 | 0.166 0.968 | 0.710 0.673 || 0.966 0.962 | 0.090 0.864 | 0.967 0.940
0.8 500 500 | 0.788 0.785 | 0.581 1.000 | 0.783 0.751 || 0.983 0.982 | 0.343 1.000 | 0.982 0.969

1 200 200 | 0.710 0.702 | 0.146 0.753 | 0.698 0.651 || 0.965 0.958 | 0.114 0.624 | 0.968 0.934

1 300 300 | 0.762 0.757 | 0.392 0.999 | 0.753 0.706 || 0.980 0.978 | 0.283 0.995 | 0.977 0.956

1 500 500 | 0.817 0.815 | 0.922 1.000 | 0.813 0.775 || 0.990 0.990 | 0.863 1.000 | 0.991 0.977

Note: The parameter b controls the standard deviation of the loadings that are assumed to be zeros by
the identification restrictions. The numbers in columns 3 — 4 and 9 —10 are the means of rejection rates of our
individual tests from 5000 simulated samples. Columns 5 — 8 and 11 — 14 are the rejection rates of Onatski
and our new joint test statistics. The left panel of Table 3 summarizes the results based on the setup where

r =05, q =3, and kp = 1, whereas the right panel of Table 3 summarizes the results based on the setup

where r = 5, ¢ = 4, and kg = 3. The true number of fast shocks ¢r = 0.
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Table 5: p-values for testing Hy: qr = kp against Hi: qp < kKp

%% LM
q=14 q=>5 q=2©6 q=171 q=2_8 q=414 q=>5 q=206 q=17 q=28
kp=1 0.933 0.755 0.385 0.053 0363 | kp=1 0.934 0.759 0.388 0.055 0.368
(0.810) (0.858) (0.293) (0.263) (0.438) (0.814) (0.861) (0.300) (0.265) (0.440)
kp =2 0.000 0.000 0.020 0.017 0.063 | kp =2 0.000 0.000 0.025 0.022 0.069
(0.029) (0.160) (0.025) (0.027) (0.020) (0.035) (0.172) (0.030) (0.032) (0.023)
krp =3 0.000 0.000 0.000 0.000 0.000 | kp =3 0.000 0.000 0.000 0.000 0.000
(0.000) (0.059) (0.000) (0.000) (0.000) (0.000) (0.082) (0.000) (0.000) (0.000)

Rayn Rtar
¢g=4 q¢=5 q=6 q¢=T7 ¢=8 =4 q¢=5 q=6 q¢=7 ¢q=8
kp=1 0.346 0.749 0.819 0.668 0384 | kp=1 0.791 0.870 0.854 0.706 0.499
(0.912) (0.971) (0.992) (0.926) (0.705) (0.222) (0.189) (0.151) (0.110) (0.843)
kp =2 0.392 0.346 0.749 0.819 0.668 | kp =2 0.841 0.791 0.870 0.854 0.706
(0.459) (0.912) (0.971) (0.992) (0.926) (0.255) (0.222) (0.189) (0.151) (0.110)
kp =3 0.043 0.392 0.346 0.749 0819 | kp =3 0.288 0.841 0.791 0.870 0.854
(0.505) (0.459) (0.912) (0.971) (0.992) (0.184) (0.255) (0.222) (0.189) (0.151)

Note: W and LM are our new statistics, and Rgyy, and Rgq: are the dynamic and static versions Onatski’s
(2009) statistics, respectively. The numbers outside the parentheses are the p-values when the number of

lags of F} is equal to 2, and the numbers inside the parentheses are the p-values when the number of lags is

equal to 4.

64




‘g = 4 UOI)O1I11S81 SUIAJIIULpI

oY) UO Paseq oIe SoUI| Poysep oY ], 'Spue(q 9ouapyuod deIlsiooq % GE pue %4Q9 Yym | = 3 UOIIILISeI SUIAJIIUSPI oY) U0 Paseq oIe Soul] PI[Os o1 ],

Yo0yS ADI[0J AIR)OUOIN AIRUOIJORIIUO) 90URLIBA AJIU() © 0 SO[qRLIRA DIWOU0IL0IR]N JO (e8ejuediod ul) sesuodsoy osinduwiy oy ], :T 9In3r]

09 ov (014 0 09 (014 (074 0 09 (014 (114 0
I- o .
\\/ S0 -
0 J\IL — - = A0
.- - le - -7 e
-——-- T S o ST z
uoneloadx3 Jawnsuo) 9914 Apowwo) 1dd USA 9ley X3
09 ov (014 0 09 ov (014 0 09 (014 (014 0 09 (014 (014
- 9'0-
- 90— GRS
- - ~ o B s o o = w _——_— 70—
N 0 /; Go- N S
> z0- Jlz D
\Z 20— N
NG| 0 X o
z0 0
SipaID JswWnNsuo) SEIVELEN] ZN S9LI0IUBAU| slaplo
09 ov (014 0 09 ov (014 0 09 o (014 0 09 o (014 0 09 o 0¢ 0

Jore)ad 30d juswAoldw3 juswAojdwaun

09 09 or 0¢ 0 09 or 0¢ 0 09 or 0¢ 0

uonezinn Auoede)d uondwnsuo)

65



‘g = 4 UOI)O1I11S81 SUIAJIIULpI

oY) UO Paseq oIe SoUI| Poysep oY ], 'Spue(q 9ouapyuod deIlsiooq % GE pue %4Q9 Yym | = 3 UOIIILISeI SUIAJIIUSPI oY) U0 Paseq oIe Soul] PI[Os o1 ],

ooYG Ad1[0J ATR}oUOJN AIRUOIJORIIUO)) 9OURLIBA AJIU[) © 0] SeXopu] 9oLld Jo (e8ejusniad ul) sesuodsey] esndwi] o], :g 9INSL]

09 or 0c 0

'0-

s[elalew apnid |dd s[eusrew ‘pawial |dd Spoob JaWNsSuod |dd spoob paysiul |dd se2IAI8S 30d
09 oy (014 0 09 oy (014 0 09 oy (014 0 09 (014 (014 0 09 (014 (014 0
70—
20—
= 0
S e -~ -
20
S9|gelnp-uou 30d ss|geinp 30d Jorej)sp 30d S9|qeinp |dO
09 (04 014 0 09 oy 0c 0 09 oy 014 0 09 oy 0c 0 09 oy 0c 0
70— 9'0- .
70—
. 70~
zo- 20
20—
T~ C-
~ ~o . = Cd 0 -~ = O S — S O
S~
z0 ¢o 20

SanIpPoOWWod |dD aled [ealpawl |dD uoireuodsuen |dD Jaredde |dD e do

66



