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Abstract

This paper develops tests for overidentifying restrictions in Factor-Augmented Vector Au-
toregressive (FAVAR) models. The FAVAR combines a high-dimensional factor model and a
conventional VAR for the latent factors. The identification of structural shocks in FAVAR can
lead to restrictions on the factor loadings of many variables, so it can involve infinitely many
identifying restrictions as the number of cross sections goes to infinity. Our focus is to test the
joint null hypothesis that all the restrictions are satisfied. Conventional tests cannot be used due
to the large dimension. We transform the infinite-dimensional problem into a finite-dimensional
one by combining the individual statistics across the cross section dimension. We find the limit
distribution of our joint test statistic under the null hypothesis and prove that it is consistent
against the alternative that a fraction of or all identifying restrictions are violated. The Monte
Carlo results show that the joint test statistic has good finite-sample size and power. We imple-
ment our tests to an updated version of Stock and Watson’s (2005) data set. The proposed test
rejects the null hypotheses that the number of fast shocks is two or more, but does not reject the
null that there is only one fast shock, which is the monetary policy shock. This result is further
confirmed by the impulse responses of major macroeconomic variables to the monetary policy
shock: the impulse responses based on one fast shock are generally more economically plausible
than those based on two or more fast shocks; and the price puzzle is either considerably reduced
or entirely solved for all price indexes when only one fast shock is used.
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1 Introduction

Dynamic Factor Models (DFM) have received more and more attention from empirical

macroeconomists because a few number of factors can explain a substantial amount of vari-

ations of major economic variables (Sargent and Sims, 1977; Stock and Watson, 2002; Gian-

none, Reichlin, and Sala, 2004). One important application of factor models is the Factor-

Augmented Vector Autoregressive (FAVAR) analysis introduced by Bernanke, Boivin, and

Eliasz (2005; BBE hereafter). They introduced factors estimated from large panel data sets

into conventional VAR models. The main advantage of FAVAR relative to conventional VAR

is that it utilizes the information in high-dimensional data sets to identify the space spanned

by the structural shocks without the loss of parsimony. Due to such advantages, FAVAR has

become increasingly popular in the empirical macroeconomic literature during recent years

(for example, Stock and Watson (2005); Boivin, Giannoni, and Mihov (2009); Gilchrist,

Yankov and Zakraisek (2009); Bianchi, Mumtaz and Surico (2009); Forni and Gambetti

(2010); Eickmeier, Lemke, and Marcellino (2011), among others).

In spite of the various applications of FAVAR, the existing literature has not addressed

the overidentification problem in FAVAR models except Stock and Watson (2005). Unlike

the conventional structural VAR analysis where the number of restrictions for identifying

structural shocks is usually small, the FAVAR tends to involve a large number of identifying

restrictions. This is because factors are estimated from many macroeconomic time series

and imposing an identification condition on a factor results in imposing an identification

condition on each of the macroeconomic time series used to estimate the factor. In such a

setup, the number of identifying restrictions is much larger than the number of structural

shocks and the system is highly overidentified. If a substantial amount of these restrictions

are violated, then it is likely that the structural shocks cannot be consistently estimated,

and policy analysis such as impulse response functions based on a misspecified identification

scheme may produce very misleading results.
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In this paper, we consider testing the joint null hypothesis that all the identifying restric-

tions are satisfied against the alternative that a non-negligible fraction of or all restrictions

are violated. We follow the setup of Stock and Watson (2010) and the identification scheme

of Stock and Watson (2005; SW hereafter). SW conduct a structural analysis of monetary

policy by imposing contemporaneous timing restrictions in the FAVAR model. They classify

all the variables into three groups: slow variables (GDP, wages, etc), the federal funds rate,

and fast variables (asset returns, etc). They also partition the structural shocks into three

groups: slow shocks, the monetary policy shock, and fast shocks. The identification scheme

of SW assumes that the slow variables are not affected by the monetary policy shock and

fast shocks within the same month, that the federal funds rate is not affected by the fast

shocks within the same month, and that the fast variables can respond contemporaneously

to all shocks. Since the number of slow variables is large, SW’s scheme imposes many zero

restrictions on the coefficients of the structural MA representation of FAVAR. Our focus is

to develop a joint test to check whether these zero restrictions hold simultaneously.

Conventional overidentification tests are usually designed in a finite-dimensional frame-

work, so they cannot be applied to test the null hypothesis that involves parameters whose

number goes to infinity as the sample size grows. As argued by Han and Inoue (2011),

directly accommodating the conventional test to the infinite dimension case is technically

challenging for several reasons. First, to construct such statistics, one needs to estimate an

infinite-dimensional covariance matrix, but the norm of the difference between the estimated

and true covariance matrices can be very large even if each entry of the estimated matrix

converges in probability. Second, taking the inverse of such a high dimensional matrix will

amplify the estimation error dramatically and lead to very inaccurate results (Ledoit and

Wolf, 2004). Also, if the time dimension is smaller than the dimension of the covariance

matrix, then the sample covariance computed in a conventional way is singular. Finally,

unlike the finite dimension test statistics that have Chi-square limit distributions, the limit

distribution of overidentification test statistics with infinite degrees of freedom, even if it is
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well-defined, is likely to be nonstandard.

To the best of our knowledge, SW is the only one that considers testing the overidentifying

restrictions in FAVAR models. They regress each slow variable on the estimated structural

shocks and test whether the coefficients on the monetary policy shock and fast shocks are zeros

by conventional Wald statistics. The main problem of this method is that it is an equation-

by-equation test and it cannot control the overall type I error for the joint null hypothesis that

all identifying restrictions hold simultaneously. Hence, if some of the equation-by-equation

statistics rejects the null hypothesis but some do not, then it will be difficult to make a

decision whether we should reject the joint null hypothesis or not. In their empirical analysis

based on a post-war monthly US data, SW establish an FAVAR model with four slow shocks,

a monetary policy shock and two fast shocks. They implement their methods to test the

coefficients on the monetary policy shock and fast shocks in 67 equations and they find that

49 test statistics reject the null hypothesis at the 5% level. The rejection rate, 73.1% = 49/67,

seems to be too high compared to 5%, so it somehow indicates that the setup is possibly

misspecified. However, since these equation-by-equation statistics are not independent, it is

still hard to say whether the joint null hypothesis should be rejected or not based on the

rejection rate. Thus, it is necessary to develop a joint test for all identification restrictions.

The contribution of this paper is threefold. First, we propose a new equation-by-equation

statistic and establish its limit theory. The intuition of this statistic is similar to that of SW,

but the estimation procedure is different from theirs. SW does not provide a formal proof

for the limit distribution of their statistic, and it may be difficult to formally prove their

result because their statistic is based on a high-dimensional reduced rank regression which

involves inverting a large singular matrix when the time dimension is less than the number

of slow variables. This paper circumvents this difficulty and develops a new statistic with

theoretically justified limit theory both under the null and alternative hypotheses. Second,

based on the proposed equation-by-equation statistic, this paper develops a statistic that

can test the joint null hypothesis that all identifying restrictions hold simultaneously. To the
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best of our knowledge, this is the first test that deals with such kind of null hypothesis in the

literature. The intuition is to combine the equation-by-equation statistics across the cross

section dimension, so that the infinite-dimensional problem reduces to a finite-dimensional

one. Under some regularity conditions, we establish the limit theory under the null hypothesis

and prove that the joint test statistic is consistent against the alternative that a substantial

amount of identifying restrictions are violated. The Monte Carlo results show that the joint

test statistic has good finite-sample size and power. Finally, this paper extends the theoretical

results found by Bai (2003). He shows that the factors estimated from observed data can

be treated as if they were observed as long as
√

T/N → 0 and N , T → ∞, where N and T

denote the cross section and time dimensions, respectively. In SW’s FAVAR setup, not only

the factors but also data are estimated, i.e. the factors are estimated from estimated data.

We show that the main results of Bai still hold under some regularity conditions. This result

is a by-product when we try to establish the limit theory for our statistics, but we believe

that it would be useful for future research in the literature of dynamic factor models.

Although the main focus of this paper is on SW’s contemporaneous timing restrictions,

our test can be applied to test other similar identifying restrictions in the literature as well.

For example, Gilchrist, Yankov and Zakraisek (2009) use a setup very close to that of SW

to investigate the impulse responses of credit spreads and macroeconomic variables to the

credit shock. They assume that the credit shock does not affect the macroeconomic variables

contemporaneously, which can be tested using our statistics. Furthermore, we can test BBE’s

identifying restrictions, even though they are slightly different from those of SW. BBE assume

that the monetary policy shock does not contemporaneously affect other factors that are

estimated from slow variables, and then they estimate a structural VAR model that consists

of the federal funds rate and other factors. Although this VAR itself is just identified,

the factors other than the monetary policy instrument are estimated under the assumption

that slow variables are not contemporaneously affected by the monetary policy shock, which

implies a larger number of restrictions. In this sense, it is similar to the identification scheme
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of SW and these restrictions are testable by our statistics1.

We implement our tests to an updated version of SW’s data set. The tests reject the null

hypotheses that the number of fast shocks is two or three, but they do not reject the null that

there is only one fast shock, which is the monetary policy shock by definition. Interestingly,

this result provides some evidence to support the BBE’s identifying restrictions in which

factors other than the monetary policy shock are assumed to be slow. We also check the

number of slow and fast shocks by information criteria, which should provide consistent

estimates as N and T → ∞. However, the information criteria find a contradictory result

that the number of slow shocks is greater than the total number of structural shocks. The

reason is that the information criteria could lead to biased estimates in a finite sample. In

such a scenario, our testing procedure is the only way to evaluate the identifying restrictions

in FAVAR.

Furthermore, we compute the impulse responses of major macroeconomic variables to the

monetary policy shock based on κF = 1 and 2, where κF denotes the potential number of

fast shocks. It turns out that the impulse responses based on κF = 1 are generally more

economically plausible than those based on κF = 2. Moreover, we investigate the impulse

responses of different price indexes. Compared to κF = 2 which leads to persistent positive

responses to a contractionary monetary policy shock, κF = 1 either substantially reduces

or completely solves the price puzzle (Sims, 1992) in all price indexes. Hence, these results

confirm that our tests are useful to select correct identifying restrictions in FAVAR models.

The rest of the paper is organized as follows. Section 2 briefly describes the setup of

FAVAR and the contemporaneous timing restrictions considered by SW. Section 3 proposes

the equation-by-equation and joint test statistics for the overidentifying restrictions in the

FAVAR, and the asymptotic properties are established under the null and alternative hy-

potheses. Section 4 investigates the finite-sample size and power of our statistics using

Monte Carlo experiments. Section 5 provides an empirical application of our test statistics
1Besides the above examples, our test statistics can be also applied to test the identifying restrictions in other papers that

use similar setup of BBE (for example, Mumtaz and Surico (2009); Eickmeier, Lemke and Marcellino (2011)).
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and computes the impulse response functions for major macroeconomic variables based on a

monthly US data set. Section 6 concludes.

2 The FAVAR Models and Contemporaneous Timing Restrictions

2.1 The FAVAR Models

In this subsection, we briefly review that setup of FAVAR models. Let Xt = [X1t, ..., XNt]′

be an N−dimentional vector of stationary time series variables observed for t = 1, ..., T .

Suppose that the number of common factors is q. The DFM can be expressed as:

Xit = λ̃i(L)ft + eit (2.1)

ft = ϕ(L)ft−1 + ηt (2.2)

where ft is the q × 1 vector of common dynamic factors at period t, λ̃i(L) are the dynamic

factor loadings for series i, consisting of a 1 × q vector lag polynomial, ηt is a q−dimensional

innovation for dynamic factors at time t, and eit is the idiosyncratic shock for series i at

period t.

Suppose that λ̃i(L) has a finite degree p0. Define the static factor Ft = [f ′
t f ′

t−1...f
′
t−p0 ]′,

where the dimension of Ft is r × 1. The DFM has the following static representation:

Xt = ΛFt + et (2.3)

Ft = Φ(L)Ft−1 + Gηt (2.4)

where Λ is the static factor loading matrix of Ft, et = [e1t, ..., eNt]′, Φ(L) is r × r matrix

lag polynomial, and G is r × q matrix of zeros and ones. Suppose eit is modeled as an

autoregressive process:

eit = δi(L)eit−1 + vit (2.5)
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Let D(L) =


δ1(L) · · · 0

... . . . ...

0 · · · δN(L)

, and vt = [v1t, ..., vNt]′, so we have

et = D(L)et−1 + vt (2.6)

Combining Equations (2.3), (2.4) and (2.6), we can re-write the static representation in the

following VAR form:
 Ft

Xt

 =

 Φ(L) 0

ΛΦ(L) − D(L)Λ D(L)


 Ft−1

Xt−1

+

 εFt

εXt

 (2.7)

where  εFt

εXt

 =

 I

Λ

Gηt +

 0

vt

 (2.8)

If the VAR model (2.7) is invertible, then we have the MA form of the DFM:

Xt = B(L)ηt + et

where B(L) = Λ[I −Φ(L)L]−1G, which can be derived by substituting (2.4) into (2.3). Let ζt

denote the q dimensional structural shocks to the dynamic factors, and Eζtζ
′
t = Iq. Assume

that the reduced form innovations ηt are linear combinations of ζt in the following way:

Aηt = ζt (2.9)

Let B̃(L) = B(L)A−1, then we have the structural MA representation for Xt:

Xt = B̃(L)ζt + et (2.10)

Note that if the structural shocks ζt is a vector white noise process, then the link between
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Equations (2.1) and (2.10) is that the filters λ̃i(L)’s are replaced with B̃(L) such that the

dynamic factors are transformed into orthonormal white noise processes. Thus, if we think

of ζt as the transformed dynamic factors, then Model (2.10) is exactly the DFM considered

by Forni et al. (2000).

2.2 Contemporaneous Timing Restrictions in FAVAR

Contemporaneous timing restrictions are commonly applied to identify the monetary policy

shock in structural VAR models. It is always assumed that the monetary policy shock

does not affect variables, such as output, consumptions, etc, within the same period. Such

identification scheme implies that some of the coefficients in the structural MA must be

zeros. In the conventional structural VAR analysis, variables are properly ordered such that

the monetary policy shock can be identified using Cholesky decomposition.

Now, we consider SW’s identification scheme for the monetary policy shock in the FAVAR

model. Note that

εXt = B̃0ζt + vt (2.11)

where B̃0 is an N × q coefficient matrix which is the zero-lag term in B̃(L). By Equations

(2.8) and (2.9), we have B̃0 = ΛGA−1. Thus, the contemporaneous timing restriction is

the same as restricting some elements of B̃0 to be zeros. SW categorize variables into three

groups: slow variables, the federal funds rate and the fast variables; they also categorize

shocks into three groups: slow shocks, the monetary policy shock and the fast shocks. They

assume that the slow variables are only affected by the slow shocks contemporaneously, that

the federal funds rate can be affected by slow and monetary policy shocks within the same

period, and that the fast variables can be affected by all shocks contemporaneously. Let

us use superscripts ’S’, ’R’, and ’F’ to denote the three groups, respectively. Then we have

Xt =[XS′
t , XR

t , XF ′
t ]′, εXt = [εS′

Xt
, εR

Xt
, εF ′

Xt
]′, and ζt = [ζS′

t , ζR
t , ζF ′

t ]′, where XS
t and εS

Xt
are

NS × 1 vectors, XR
t , εR

Xt
, and ζR

t are scalers, XF
t and εF

Xt
are NF × 1 vectors, ζS

t is a qS × 1

vector, and ζF
t is a qF × 1 vector. Note that NS + NF + 1 = N and qS + qF + 1 = q. Given
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the contemporaneous timing restrictions on B̃0, Equation (2.11) can be rewritten as:


εS

Xt

εR
Xt

εF
Xt

 =


B̃0,SS 0NS×1 0NS×qF

B̃0,RS B̃0,RR 01×qF

B̃0,F S B̃0,F R B̃0,F F




ζS

t

ζR
t

ζF
t

+ vt (2.12)

Note that the number of zeros in B̃0 is equal to (1 + qF ) × NS + qF , but identifying A

only requires q(q + 1)/2 restrictions. If NS ≫ q, then the system is overidentified. We are

interested in whether all the zeros restrictions on B̃0 in Equation (2.12) are satisfied or not.

Let us partition B̃0 into the following block matrix:

B̃0 =


B̃0,SS B̃0,SR B̃0,SF

B̃0,RS B̃0,RR B̃0,RF

B̃0,F S B̃0,F R B̃0,F F


Consider the following null hypothesis:

H∗
0 : B̃0,SR = 0Ns×1, B̃0,SF = 0Ns×qF

, and B̃0,RF = 01×qF

This null hypothesis involves testing an infinite number of restrictions at the limit. SW argue

that the conventional statistics that have asymptotic Chi-square distribution are expected to

have poor performance due to the large number of restrictions. Thus, they only implement

equation-by-equation hypothesis testing for Equation (2.12). Their null hypothesis can be

written as

HSW
0 : for given i

B̃i
0,SR = 0 and B̃i

0,SF = 01×qF
if i ∈ slow group

B̃0,RF = 01×qF
if i = R

where B̃i
0,SR and B̃i

0,SF denote the ith row of B̃0,SR and B̃0,SF , respectively, and i = R means
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that the ith variable is the federal funds rate.

It is worth noting that as NS → ∞, there will always exist some equation specific test

statistics that reject the null HSW
0 , even if H∗

0 is true. For example, if all the equation specific

test statistics are independent, then about 5% of the statistics will reject the null hypothesis

based on the critical value at the 5% level. Thus, even if the equation specific test rejects

the null hypothesis HSW
0 for some i, it does not necessarily mean that we should also reject

the null hypothesis H∗
0 .

3 Testing the Overidentifying Restrictions

In the rest of the paper, we consider the following model:

Xt = ΛFt + et (3.1)

Ft =
p∑

j=1
ΦjFt−j + Gηt (3.2)

where Xt is an N−dimensional vector, Ft is the r−dimensional static factor at time t, Λ =

[λ1, ..., λN ]′ is the static factor loading matrix (N × r), Φj’s are autoregressive coefficients of

Ft, G is a r × q matrix, and ηt is a q−dimensional innovation of Ft with q ≤ r. Unlike the

derivation of the FAVAR model (2.7), quasi-demeaning Equation (3.1) is not necessary to

test the overidentifying restrictions, so we do not make assumptions (such as Equation (2.6))

on the dynamics of the idiosyncratic components et.

Let Ft = [F ′
t−1, ..., F ′

t−p]′, Φ = [Φ1, ..., Φp], and ηt is linked to the structural shocks ζt by

Equation (2.9). Substituting Equations (3.2) and (2.9) into Equation (3.1), we have:

Xt = ΠFt + Γζt + et for t = p + 1, ..., T (3.3)

where Π = ΛΦ and Γ = ΛGA−1. The matrix form representation of Equation (3.3) is:

X = FΠ′ + ζΓ′ + e (3.4)
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where X = [Xp+1, ..., XT ]′, F = [Fp+1, ..., FT ]′, ζ = [ζp+1, ..., ζT ]′, and e = [ep+1, ..., eT ]′.

In this paper, variables are classified as slow and fast variables, and structural shocks are

classified as slow and fast shocks. The fast shocks do not have contemporaneous impacts on

slow variables, whereas slow shocks are allowed to have contemporaneous impacts on both

slow and fast variables. By this definition, the monetary policy shock is treated as a fast shock

and the federal fund rate is a member of the fast variables. This is different from Equation

(2.12), which uses a three-group setup and imposes the restriction that B̃0,RF = 0 to identify

the monetary policy shock. We use a two-group setup for three reasons: first, classifying

the monetary policy shock as a fast shock does not affect the zero restrictions on the factor

loadings of slow variables. Second, classifying the federal funds rate as a fast variable only

eliminates the restriction that the fast shocks should not have contemporaneous effects on

the federal funds rate, but this involves only a fixed number of restrictions, which can be

handled by a conventional testing procedure with finite dimension. Finally, the following

section shows that jointly testing the overidentifying restrictions requires estimates of the

fast shocks. Since the estimates of factors are extracted from a large number of variables,

adding one more variable in the fast group will not affect the estimates asymptotically. Hence,

we focus on the following model:

 XS
t

XF
t

 =

 ΠS

ΠF

Ft +

 ΓSS ΓSF

ΓF S ΓF F


 ζS

t

ζF
t

+

 eS
t

eF
t

 (3.5)

where XS
t is an NS × 1 vector of slow variables, XF

t is an NF × 1 vector of fast variables,

eS
t and eF

t are idiosyncratic shocks of XS
t and XF

t , respectively, ζS
t is a qS × 1 vector of slow

structural shocks, and ζF
t is a qF × 1 vector of fast structural shocks. In this setup, we have

NS + NF = N , qS + qF = q, Xt = [XS′
t , XF ′

t ]′, ζt = [ζS′
t , ζF ′

t ]′, and et = [eS′
t , eF ′

t ]′. Equation

(3.5) can be expressed in the following matrix form:

XS = FΠS′ + ζSΓSS′ + ζF ΓSF ′ + eS (3.6)
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XF = FΠF ′ + ζSΓF S′ + ζF ΓF F ′ + eF (3.7)

where XS = [XS
p+1, ..., XS

T ]′ is a (T − p) × NS matrix of slow variables, XF = [XF
p+1, ..., XF

T ]′

is a (T − p) × NF matrix of fast variables, ζS = [ζS
p+1, ..., ζS

T ]′ is a (T − p) × qS matrix of

slow structural shocks, ζF = [ζF
p+1, ..., ζF

T ]′ is a (T − p) × qF matrix of fast structural shocks,

eS = [eS
p+1, ..., eS

T ]′ is the idiosyncratic shocks of slow variables, and eF = [eF
p+1, ..., eF

T ]′ is the

idiosyncratic shocks of fast variables. Note that X = [XS...XF ], ζ = [ζS...ζF ] and e = [eS...eF ].
Note that X − FΠ = ζΓ′ + e follows a factor structure, where the structural shocks ζ is

a q−dimensional factor for X − FΠ. Amengual and Watson (2007) show that the number
of factors in X − FΠ can be consistently estimated by implementing Bai and Ng’s (2002)
information criteria on X −F̂Π̂, where F̂ is constructed by stacking the principal component
estimator F̂ and Π̂ is the OLS estimator from regression of Xt on F̂t. Thus, we treat q as
known in the rest of the this section2.

Now, we impose the contemporaneous timing restriction that the fast shock ζF
t does not

affect XS
t i.e. ΓSF = 0. This implies that XS − FΠS′ = ζSΓSS′ + eS follows a qS−factor

structure, in contrast with the full sample X − FΠ that follows a q−factor structure. Hence,

testing zeros coefficient restrictions in Equation (3.6) is same as comparing the numbers of

factors in XS − FΠS′ and X − FΠ.

One noteworthy thing is that Equations (3.5), (3.6) and (3.7) are the true model and qF

is an unknown parameter ∈ {0, 1, ..., q}. If qF = 0, then all the structural shocks are slow in

the sense that they can affect XS
t contemporaneously, so ΓSF and ΓF F are NS ×0 and NF ×0

matrices, respectively. If qF = q, then all the structural shocks are fast as they do not affect

XS
t contemporaneously, so ΓSF is an NS × q zero matrix and ΓSS and ΓF S are NS × 0 and

NF × 0 matrices, respectively. If 1 ≤ qF ≤ q − 1, then slow factors and fast factors co-exist,

and ΓSF is an NS × qF zero matrix, which is the true identifying restriction that one should
2q can be also consistently determined by methods proposed by Bai and Ng (2007) and Hallin and Liska (2007)
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impose if qF were known. To test the value of qF , we consider the following hypotheses:

H0 : qF = κF

H1 : qF < κF (3.8)

κF is the candidate value of qF , and it means that we impose NS × κF zero restrictions in

the upper right corner of Γ to identify the structural shocks, so (3.3) becomes:

Xt = ΠFt +

 ∗ 0NS×κF

∗ ∗

 ζt + et (3.9)

where the asterisks denote unrestricted entries in Γ. We set κF ∈ {1, ..., q}, and κF = 0

is ruled out because the structural shocks cannot be identified if no restriction is imposed.

Hence, qF is always greater than zero under the null hypothesis H0. Under the alternative

hypothesis H1, however, qF = 0 is allowed, indicating that no fast shock exists for the current

classification of XS and XF . If the test rejects H0: qF = 1 in favor of H1: qF < 1, then one

may need to consider re-classifying the slow and fast variables.

Remarks:

(1) The hypotheses in (3.8) transform the infinite-dimensional problem to a finite-dimensional

one. The original null hypothesis that ΓSF = 0NS×κF
is slightly stronger the null considered

in (3.8). To see this, suppose that ΓSF is NS × κF and that a fixed number of entries in ΓSF

are non-zero, so ΓSF ̸= 0NS×κF
and the original null hypothesis should be rejected. On the

contrary, the null hypothesis that qF = κF still holds, because a fixed number of non-zero

entries in ΓSF will not change the number of factors in XS − FΠS′ . In fact, only a fixed

number of non-zeros in ΓSF will not affect the principal component estimates in large samples,

so we do not want a test that that is powerful against a very small number of violations in

ΓSF . In this sense, the transformed null and alternative hypotheses are more favorable than

the original ones. Also, the transformed the hypotheses do cover the cases where we want
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the statistics to have power. For instance, if a fraction of entries in ΓSF are non-zeros so that

the number of factors in XS − FΠS′ is greater than q − κF , then H0 in (3.8) will be rejected

in favor of H1.

(2) Onatski (2009) proposes a test for the number of factors in large factor models. However,

this method is not applicable to test our hypotheses (3.8) for two technical reasons. First,

testing (3.8) implies that we need to compare the dimensions of ζS
t and ζt, which cannot

be estimated from XS − FΠS′ and X − FΠ because F and Π are not observed. Onatski’s

test would be applicable if XS − FΠS′ and X − FΠ were observed. Since we can only

use the feasible analogs, XS − F̂Π̂S′ and X − F̂Π̂, to estimate ζS
t and ζt, one must take

into account the estimation errors in F̂ and Π̂, which may change the limit distribution of

Onatski’s test statistic. Second, Onatski (2009) proposes both dynamic and static versions

of statistics for the number of factors. On the one hand, the static version requires the

the idiosyncratic component to be Gaussian and serially uncorrelated, which are very strong

assumptions compared to the literature on factor models. On the other hand, the dynamic

version requires N = o(T 1/2−1/d log−1 T )6/13 for some d > 2 if no Gaussianity is imposed. Bai

and Ng (2006) show that when
√

T/N → 0 as N and T → ∞, the estimated factors can be

treated as if they were observed, and this nice property is widely used in the FAVAR literature.

It is clear that Onatski’s condition on the relative rate between N and T contradicts Bai and

Ng’s condition. Thus, to maintain the Bai-Ng property, one cannot apply Onatski’s statistic

to test (3.8).

3.1 The Statistics

In this subsection, we will propose statistics to test the the null hypothesis that H0 : qF = κF

against the alternative hypothesis that H1 : qF < κF . Let us first define some notations:

for any matrix Z, the projection matrix, denoted as PZ , is set equal to Z(Z ′Z)−1Z ′, and the

residual maker, denoted as MZ , is set equal to I − PZ . The statistics are computed using the
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following steps:

(1) The estimated static factors, denoted as F̂ , is
√

T times the eigenvectors corresponding

to the r largest eigenvalues of the T × T matrix XX ′. Let F̂t denote the transpose of the tth

row of F̂ . Define F̂t = [F̂ ′
t−1, ..., F̂ ′

t−p]′ and F̂ = [F̂p+1, ..., F̂T ]′.

(2) Define X̂ = MF̂X, X̂S = MF̂XS, and X̂F = MF̂XF . Set the estimated slow structural

shocks, denoted as ζ̂S, equal to
√

T − p times the eigenvectors corresponding to the κS =

q−κF largest eigenvalues of the (T −p)×(T −p) matrix X̂SX̂S′ . Let ζ̂S
t denote the transpose

of the tth row of ζ̂S.

(3) Define X̃ = Mζ̂S X̂, X̃S = Mζ̂S X̂S, and X̃F = Mζ̂S X̂F . Set the estimated fast structural

shocks, denoted as ζ̂F , equal to
√

T − p times the eigenvectors corresponding to the κF largest

eigenvalues of the (T − p) × (T − p) matrix X̃X̃ ′. Let ζ̂F
t denote the transpose of the tth row

of ζ̂F .

(4) Let Xi = [Xi(P +1), ..., XiT ]′ denote the observations of the ith variable. Accordingly,

X̂i = MF̂Xi and X̃i = Mζ̂S X̂i. Define ẽi = Mζ̂F X̃i. Let i ∈ S abbreviate that the ith variable

belongs to the slow group. Define the individual statistic for the ith variable:

wi = X̃ ′
i ζ̂

F Ω̂−1
i ζ̂F ′

X̃i/(T − p), i ∈ S

where Ω̂i = (T − p)−1∑T
t=p+1 ζ̂F

t ζ̂F ′
t ẽ2

it.

(5) Define the joint statistic for all slow variables:

W =
(∑

i∈S

X̃ ′
i ζ̂

F

)
Ω̂−1

(
ζ̂F ′ ∑

i∈S

X̃i

)
/(T − p)NS

where Ω̂ = (T − p)−1N−1
S

∑T
t=p+1

∑
i∈S ζ̂F

t ζ̂F ′
t ẽ2

it.

3.2 Asymptotics under the Null Hypothesis

Let M < ∞ and m ∈ (0, 1) be constants that do not depend on N or T .
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Assumption 1:

(a) E∥Ft∥4 < M , T −1∑T
t=1 FtF

′
t →p ΣF , and T −1∑T

t=p+1 FtF ′
t →p ΣF , as T → ∞ for some

positive definite matrices ΣF and ΣF .

(b) E(ζtζ
′
t) = Iq, E∥ζt∥4 < M , E(ζsζ

′
t) = 0 for any s ̸= t, and T −1∑T

p+1 ζtζ
′
t →p Iq.

(c) E∥∑T
t=p+1 ζS

t ζF ′
t /

√
T − p∥2 < M for qF > 0 and E∥∑T

t=p+1 ζtF ′
t/

√
T − p∥2 < M .

Assumption 2:

(a) E∥λi∥4 ≤ M , and ∥Λ′Λ/N − ΣΛ∥ →p 0 for some r × r positive definite matrix ΣΛ.

(b) G has rank q. ∥G∥ ≤ M and ∥Φ∥ ≤ M . A is non-singular and ∥A∥ ≤ M .

(c) ∥ΓSS′ΓSS′
/NS − ΣΓSS ∥ →p 0 and ∥ΓF F ′ΓF F /NF − ΣΓF F ∥ →p 0 for some positive definite

matrices ΣΓSS (qS × qS) and ΣΓF F (qF × qF ) for qF > 0, and NS/N → m.

Assumption 3:

(a) E(eit) = 0, E |eit|8 ≤ M for all i and t.

(b) E(e′
set/N) = E(N−1∑N

i=1 eiseit) = γN(s, t), |γN(s, s)| ≤ M for all s, and T −1∑T
s=1

∑T
t=1

|γN(s, t)| ≤ M . E(eS′
s eS

t /NS) = E(N−1
S

∑
i∈S eiseit) = γS(s, t), |γS(s, s)| ≤ M for all s, and

T −1∑T
s=1

∑T
t=1 |γS(s, t)| ≤ M .

(c) E(eitek,t−j) = τik,t,j with |τik,t,j| ≤ |τik| for some τik and for all t and j = 0, ..., p. In

addition, N−1∑N
i=1

∑N
j=1|τik| ≤ M .

(d) E(eiteks) = τik,ts, and (NT )−1∑N
i=1

∑N
k=1

∑T
s=1

∑T
t=1 |τik,ts| ≤ M .

(e) for every (t, s), E
∣∣∣N−1/2∑N

i=1[eiseit − E(eiseit)]
∣∣∣4 ≤ M and E

∣∣∣N−1/2
S

∑
i∈S[eiseit − E(eiseit)]

∣∣∣4
≤ M .

(f) for each t, E(N−1/2
S

∑
i∈S eit)2 ≤ M .

Assumption 4:

λi, ζt, and eit are mutually independent groups.

Assumption 5: For every t ≤ T and for every i ≤ N :

(a) ∑T
s=1 |γN(s, t)| ≤ M , and ∑T

s=1 |γS(s, t)| ≤ M .
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(b)∑N
k=1 |τki| ≤ M .

Assumption 6:

(a) for each t, E
∥∥∥ 1√

NT

∑T
s=1

∑N
k=1 Fs[eksekt − E(eksekt)]

∥∥∥2
≤ M , E

∥∥∥ 1√
NT

∑T
s=p+1

∑N
k=1 ζs[eksekt

−E(eksekt)]∥2 ≤ M , and E
∥∥∥ 1√

NST

∑T
s=p+1

∑
k∈S ζs[eksekt − E(eksekt)]

∥∥∥2
≤ M .

(b) for each i and for j = 0, 1, ..., p, E
∥∥∥ 1√

NT

∑T
t=p+1

∑N
k=1 λk [ek,t−jeit − E(ek,t−jeit)]

∥∥∥2
≤ M .

For each i, E
∥∥∥ 1√

NST

∑T
t=p+1

∑
k∈S λk [ekteit − E(ekteit)]

∥∥∥2
≤ M .

(c)E
∥∥∥ 1√

NT

∑T
t=1

∑N
k=1 Ftλ

′
kekt

∥∥∥ ≤ M . For j = 0, 1, ..., p, E
∥∥∥ 1√

NT

∑T
t=p+1

∑N
k=1 λkek,t−jF ′

t

∥∥∥2
≤

M , E
∥∥∥ 1√

NT

∑T
t=p+1

∑N
k=1 λkek,t−jζ

′
t

∥∥∥2
≤ M , and E

∥∥∥ 1√
NST

∑T
t=p+1

∑
k∈S λkektF ′

t

∥∥∥2
≤ M , and

E
∥∥∥ 1√

NST

∑T
t=p+1

∑
k∈S λkektζ

′
t

∥∥∥2
≤ M .

(d) for each t, E
∥∥∥ 1√

N

∑N
i=1 λieit

∥∥∥2
≤ M , and E

∥∥∥ 1√
NS

∑
i∈S λieit

∥∥∥2
≤ M .

(e) for each i, E
∥∥∥ 1√

T

∑T
t=1 Fteit

∥∥∥4
≤ M and E

∥∥∥ 1√
T

∑T
t=p+1 ζteit

∥∥∥4
≤ M . For each i and for

j = 1, ..., p, E
∥∥∥ 1√

T

∑T
t=p+1 F ′

t−jeit

∥∥∥4
≤ M .

(f) E
∥∥∥ 1√

NST

∑T
t=p+1

∑
i∈S Fteit

∥∥∥2
≤ M and E

∥∥∥ 1√
NST

∑T
t=p+1

∑
i∈S ζteit

∥∥∥2
≤ M .

Assumption 7:

(a) N
−1/2
S

∑
i∈S λi = Op(1).

(b) For each t and for j = 0, 1, ..., p, E
∥∥∥ 1√

NS

∑
i∈S λiei,t−jeit

∥∥∥2
≤ M .

(c) For j = 0, 1, ..., p, E
∥∥∥ 1√

NSNT

∑T
t=p+1

∑
k ̸=i

∑
i∈S λkek,t−jeit

∥∥∥2
≤ M and

E
∥∥∥ 1

NS

√
T

∑T
t=p+1

∑
k∈S,k ̸=i

∑
i∈S λkekteit

∥∥∥2
≤ M .

Assumption 8: under the null hypothesis,

(a) 1√
T −p

∑T
t=p+1 ζF

t eit →d N(0, Ωi) and (T − p)−1∑T
t=p+1 ζF

t ζF ′
t e2

it →p Ωi for i ∈ S and some

positive definite matrix Ωi.

(b) 1√
(T −p)NS

∑T
t=p+1

∑
i∈S ζF

t eit →d N(0, Ω) and [(T − p)NS]−1∑T
t=p+1

∑
i∈S ζF

t ζF ′
t e2

it →p Ω,

where Ω is positive definite.

Assumptions 1 - 6 are either from or slight modifications of those in the factor model

literature. Assumption 1(a) is almost the same as Assumption A of Bai (2003), and the
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only difference is that we also requires the positive definiteness of ΣF , which follows from

Assumption A10 of Amengual and Watson (2007). Assumptions 1(b) and 2(c) provide reg-

ularity conditions on the structural shocks. Assumption 1(b) requires that the structural

shocks are serially uncorrelated and have unit variance, which is standard in the dynamic

factor model literature (see Forni et al., 2000). The first moment inequality in Assumption

1(c) holds if structural shocks are orthogonal, which follows from Forni et al. (2000), and

the second moment inequality in Assumption 1(c) is not stringent because EζtF ′
t = 0 by

Assumption 1(b). Assumption 2(a) is similar to Assumption B in Bai and Ng (2006), and

assumption 2(c) is just an analog of 2(a). The condition that NS/N → a constant ∈ (0, 1)

ensures that both slow and fast variables are a non-negligible fraction of the full sample.

Assumptions 3 and 5 follow from Assumption C and E of Bai (2003), while Assumption 4 is

the same as Assumption D in Bai and Ng (2006). Assumption 6 is not stringent because all

the sums in this assumption involve zero mean random variables. This assumption is similar

to Assumption F of Bai (2003), and the main difference is that we introduce lags of Ft, eit

and ζt into the sums.
Assumption 7 imposes some further restrictions on the factor loadings. Assumption 7(a)

requires that the sum of factor loadings in the slow variables is Op(
√

N). This will hold
if λi’s are centered around zero, i.e. some variables have positive loadings and some have
negative, so that the sum of λi’s for i ∈ S diverge at rate

√
N by the central limit theorem.

Assumptions 7(b) and 7(c) imply similar restriction to that of Assumption 7(a). A simple
sufficient condition for Assumptions 7(b) and 7(c) is that eit’s and λi’s are independent with
Eλi = 0, but 7(b) and 7(c) can also hold for weakly correlated eit’s and λi’s. The role of
Assumption 7 is to ensure that the difference between the

(
ζ̂F ′ ∑

i∈S X̃i

)
/
√

(T − p)NS and its
infeasible analog H ′

ζF ζF ∑
i∈S ei/

√
(T − p)NS is op(1), where HζF is a non-singular rotation

matrix (see Appendix A3), so that the limit distribution of W is the same as that of W ’s
infeasible analog. This assumption imposes more restrictions on λi than the conventional
factor model literature, however, it seems to hold for the data set used in Section 5 and other
commonly used data sets such as SW.3

3The largest elements of |
∑

i∈S
λ̂i/

√
NS | are less than 3 for both the data set used in Section 5 and data set of SW, where
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Assumptions 8(a) and 8(b) are simply central limit theorems. This assumption is applied

to establish the asymptotic null distributions of wi and W , which are summarized in the

following theorem.

Theorem 1: If
√

T/N → 0 and the null hypothesis H0: qF = κF holds, then

(i) under Assumptions 1 - 6 and 8, wi →d χ2
qF

for i ∈ S.

(ii) under Assumptions 1 - 8, W →d χ2
qF

.

Remarks:

(1) The detailed proof of Theorem 1 is provided in Appendix B. The basic idea of the proof is

to show that wi −w∗
i = op(1) and W −W ∗ = op(1), where w∗

i ≡ e′
iζ

F (∑T
t=p+1 ζF

t ζF ′
t e2

it)−1ζF ′
ei

and W ∗ ≡ ∑
i∈S e′

iζ
F (∑T

t=p+1
∑

i∈S ζF
t ζF ′

t e2
it)−1ζF ′ ∑

i∈S ei, so w∗
i and W ∗ are simply the infea-

sible analogs of wi and W . Note that wi is just the Wald statistic that tests the coefficients

in the regression of X̃i on ζ̂F . Theorem 1 shows that one can apply the conventional Wald

statistic as if X̃i and ζ̂F are observed. This is a new result in the literature. Bai (2003) shows

that factors estimated from observed data can be treated as if they were observed as long

as
√

T/N → 0 and N , T → ∞. We extends Bai’s result in the sense that ζ̂F can be still

treated as observed even if ζ̂F is estimated from X̃ which is also estimated. This property

plays a central role in establishing the limit distributions of wi and W , and it may be poten-

tially useful in other inferential problems where both data and factors are not observed but

estimated.

(2) Note that the variance matrices in wi and W are estimated without imposing the null

hypothesis. We can also construct LM-like test by imposing the null hypothesis. Define

lmi = X̃ ′
i ζ̂

F Ω̃−1
i ζ̂F ′

X̃i/(T − p), i ∈ S

λ̂i is estimated from the regression of Xi on the estimated factors by principal components. Thus, Assumption 7(a) is likely
to hold for these data sets. If one encounters a data set that has too large numbers in |

∑
i∈S

λ̂i/
√

NS | to satisfy Assumption
7(a), one could adjust the signs of some Xi’s such that Assumption 7 holds, because changing the signs of Xi’s will not affect
the estimated factor space asymptotically.
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LM =
(∑

i∈S

X̃ ′
i ζ̂

F

)
Ω̃−1

(
ζ̂F ′ ∑

i∈S

X̃i

)
/(T − p)NS

where Ω̃i = (T − p)−1∑T
t=p+1 ζ̂F

t ζ̂F ′
t X̃2

it and Ω̃ = (T − p)−1N−1
S

∑T
t=p+1

∑
i∈S ζ̂F

t ζ̂F ′
t X̃2

it. The

following corollary shows the asymptotic distributions of lmi and LM .

Corollary 1: If
√

T/N → 0 and the null hypothesis H0: qF = κF holds, then

(i) under Assumptions 1 - 6 and 8, lmi →d χ2
qF

for i ∈ S.

(ii) under Assumptions 1 - 8, LM →d χ2
qF

.

3.3 Asymptotics under the Alternative Hypothesis

Recall that the estimator ζ̂S is equal to
√

T − p times the eigenvectors corresponding to

the κS = q − κF largest eigenvalues of the (T − p) × (T − p) matrix X̂SX̂S′ . Under the

alternative hypothesis κS < qS, ζ̂S is (T − p) × κS, so it is impossible for ζ̂S to consistently

estimate the space spanned by ζS, which is (T − p) × qS. Let ζ̄S equal
√

T − p times the

eigenvectors corresponding to the qS largest eigenvalues of X̂SX̂S′ and V̄S be the diagonal

matrix consisting of the first qS largest eigenvalues of (1/NST )X̂SX̂S′ in decreasing order.

Hence, we have

(1/NST )X̂SX̂S′
ζ̄S = ζ̄SV̄S (3.10)

Define H̄ζS = (ΓSS′ΓSS/NS)(ζS′
ζ̄S/T )V̄ −1

S , ΓS ≡ [ΓSS′ ...ΓF S′ ]′ and ΓF = [ΓSF ′ ...ΓF F ′ ]′, so we

have Γ = [ΓS...ΓF ] and

X = FΠ′ + ζSΓS′ + ζF ΓF ′ + e (3.11)

Lemma C1 in the Appendix C shows that H̄ζS is asymptotically non-singular, so Equation

(3.11) can be rewritten as

X = FΠ′ + ζSH̄ζS H̄−1
ζS ΓS′ + ζF ΓF ′ + e

= FΠ′ + ζSH̄ζS ΞS′ + ζF ΓF ′ + e (3.12)
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where ΞS′ ≡ H̄−1
ζS ΓS′ . Partition ΞS as [ΞS

1:κS

...ΞS
κS+1:qS

], where ΞS
1:κS

is the first κS columns

of ΞS and ΞS
κS+1:qS

is the last qS − κS columns of ΞS. Let ξS
i,κS+1:qS

denote the transpose of

the ith row of ΞS
κS+1:qS

. To show that our test statistics are consistent under the alternative

hypothesis, we make the following assumption.

Assumption 9:

There exist constants 0 < α ≤ 0.5 and C > 0, such that

Prob
(∥∥∥∥∥ T α/2

√
NS

∑
i∈S

ξS
i,κS+1:qS

∥∥∥∥∥ > C

)
→ 1

as N and T → ∞.

Assumption 9 ensures that the joint statistic W diverges to infinity under the alterna-

tive hypothesis. One simple sufficient condition for Assumption 9 is that ∑i∈S ξS
i,κS+1:qS

/NS

converges to a non-zero constant. For the case where ∑
i∈S ξS

i,κS+1:qS
/NS →p 0, this as-

sumption can still hold under other sufficient conditions. For example, if the central limit

theorem holds such that ∑
i∈S ξS

i,κS+1:qS
/
√

NS is normally distributed at the limit, then

T α/2∑
i∈S ξS

i,κS+1:qS
/
√

NS will diverge for any α > 0 as long as N and T → ∞ at the same

rate.

Theorem 2: Suppose that
√

T/N → 0 and the alternative hypothesis H1: qF < κF holds.

(i) under Assumptions 1 - 6, if ξS
i,κS+1:qS

̸= 0 for i ∈ S, then wi → ∞ as N and T → ∞.

(ii) under Assumptions 1 - 6 and 9, W → ∞ if
√

N/T 1−α/2 → 0 as N and T → ∞.

Remarks:

(1) The divergence rate of wi is T , whereas the divergence rate of W depends on the asymp-

totic behavior of ∑i∈S ξS
i,κS+1:qS

/
√

NS. Assumption 9 implies that the divergence rate of W is

no slower than T 1−α. For the case where ∑i∈S ξS
i,κS+1:qS

/NS converges to non-zero constant,

the divergence rate of W is NT , which is very fast compared to conventional test statistic.
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When ∑
i∈S ξS

i,κS+1:qS
/NS converges to zero, the divergence rate can be slower than T . For

example, if ∑i∈S ξS
i,κS+1:qS

/
√

NS converges in distribution to a normal random variable and

N and T diverge at the same rate, then T α/2∑
i∈S ξS

i,κS+1:qS
/
√

NS will diverge for any positive

α. In such a case, the divergence rate of W is less than but arbitrarily close to T .

(2) The condition that
√

N/T 1−α/2 → 0 is slightly stronger than
√

N/T → 0 used by Bai

(2003), but it still allows a wide range of relative rate between N and T . For example, both
√

N/T 1−α/2 → 0 and
√

T/N → 0 will be satisfied for α < 0.5 if N and T are proportional to

each other, which seems to be a reasonable assumption for typical macroeconomic data sets

in the DFM literature.

(3) The following corollary shows that lmi and LM are also consistent tests against the al-

ternative.

Corollary 2: Suppose that
√

T/N → 0 and the alternative hypothesis H0: qF < κF holds.

(i) under Assumptions 1 - 6, if ξS
i,κS+1:qS

̸= 0 for i ∈ S, then lmi → ∞ as N and T → ∞.

(ii) under Assumptions 1 - 6 and 9, LM → ∞ if
√

N/T 1−α/2 → 0 as N and T → ∞.

4 Monte Carlo Simulations

In the Monte Carlo experiments we investigate the finite sample properties of our statistics

and some other statistics. It is noteworthy that there are no theoretically verified alternatives

to both our individual and joint statistics to test the contemporaneous timing restrictions in

the FAVAR framework of SW. However, it would be interesting to see how these unverified

alternatives perform relative to our statistics. Hence, we also explore the size-power properties

of the following statistics: the individual statistic of SW, Bonferroni and pooled statistics

based on our individual statistics, Onatski’s (2009) statistics for number of dynamic and static

factors. The individual statistic of SW, denoted as swi, is computed as follows: let Σ̂(r × r)

denote the sample covariance of the residual from the VAR of F̂t, estimate the q−dimensional
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innovations η̂t for the dynamic factors by using the spectral decomposition of Σ̂, estimate the

q − κF dimensional slow shocks η̂S
t by conducting a reduced rank regression of X̂S

t = MF̂XS
t

on η̂t, estimate the κF −dimensional fast shocks η̂F
t that are orthogonal to η̂S

t , regress X̂S
it on

η̂S
t and η̂F

t , and test whether the coefficients on η̂F
t are zeros or not by the conventional Wald

statistic. Furthermore, we also compute the Bonferroni and pooled statistics based on our

individual test statistic. The Bonferroni statistic, denoted as Bw, is simply the maximum

of wi for i ∈ S, and the 5% critical value is equal to X −1(1 − 5%/NS), where X is the

chi-square CDF with the degree of freedom κF . The pooled statistic, denoted as Pw, is

set equal to (∑i∈S wi − κF NS) /
√

2NSκF and the 5% critical values are ±1.96. The critical

values of the Bonferroni and pooled statistics are based on the sequential limit argument

that first wi →d χ2
κF

and then NS → ∞. The problem of the sequential limit is that the

convergence of wi relies on N , NS and T → ∞ simultaneously, so wi →d χ2
κF

and NS → ∞

cannot be separated into two sequential steps. The sequential limit and simultaneous limit

are not always equivalent (see Phillips and Moon, 1999). Hence, we would like to include

these two statistics because they allow us to see what would be the size distortion based

on the incorrect limit distributions derived from the sequential limit. For Onatski’s (2009)

statistics, we use Rdyn and Rstat to denote the statistics for the numbers of dynamic and

static factors, respectively. Note that the number of dynamic factors in XS − FΠS′ is the

same as the number of static factors, so both Rdyn and Rstat test the same null hypothesis

that qS = q − κF against the alternative that q − κF ≤ qS ≤ kmax. To implement Onatski’s

tests, XS − FΠS′ is replaced by its feasible analog MF̂XS and kmax is set equal to 8.

In all Monte Carlo experiments, r and q are selected by ICp1 of Bai and Ng (2002), and

the number of lags of Ft is assumed to be known4. The number of replications is 5000 in

each data generating process (DGP).
The data is produced by the model: Xit = Ftλ

′
i + ωeit. Under the null hypothesis, we use

4We also use BIC to select the number of lags of Ft, and the results are robust and not reported
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the following DGPs:

N1: fℓt = ρffℓ,t−1+ηℓt ηℓt ∼ i.i.d. N(0, 1−ρ2
f ) for ℓ = 1, ..., q. Ft = [f1t, ..., fqt, f1,t−1, ..., fr−q,t−1]′.

eit = σiµit, σi ∼ i.i.d. U(0.5, 1.5), µit = ρµµit−1 + ϵit, ϵit ∼ i.i.d. N(0, 1 − ρµ).
λi = [λi1, ..., λir]′. For i = 1, ..., NS, set [λi1, ..., λiqF

] = 01×qF
and draw λij ∼ i.i.d. N(0, 1) for

j = qF + 1, ..., r with qF ≤ q. For i = NS + 1, ..., N , λij ∼ i.i.d. N(0, 1) for j = 1, ..., r.
Set ω =

√
12(r − qF )/13 for i = 1, ..., NS, and set ω =

√
12r/13 for i = NS + 1, ..., N .

N2: Ft and λi are generated in the same way as in DGP N1. Set ω =
√

12(r − qF ) for
i = 1, ..., NS, and set ω =

√
12r for i = NS + 1, ..., N . eit ∼ i.i.d. U(−0.5, 0.5).

In DGPs N1 and N2, the factor loadings are generated in a way such that factors f1t, ..., fqF t

do not affect Xit for i = 1, ..., NS. Hence, the subscripts i = 1, ..., NS stand for slow variables,

while the subscripts i = NS + 1, ..., N stand for the fast variables. ω is chosen such that the

factors explain 50% variation in the data. We set NS = 0.5N , ρf = ρµ = 0.5, and (r, q, qF ) ∈

{(5, 3, 1), (5, 4, 3)}.

The results under DGP N1 are summarized in Table 1. The upper and lower panels

report the results for (r, q, qF ) = (5, 3, 1) and (r, q, qF ) = (5, 4, 3), respectively. The first

two columns of Table 1 are simply the numbers of observations in cross section and time

dimensions. The numbers in columns 3 – 5 are computed in the following way: for each

simulated sample, we compute the ratio between the number of rejections by the individual

tests at the 5% level and the number of slow variables NS, and then we take the mean of

these ratios from 5000 simulated samples. Hence, columns 3 – 5 show the finite-sample size

properties of the individual statistics. It is noteworthy that the size of swi is about 60% when

NS = 250 > T = 200. The reason is that the reduced rank regression will invert a NS × NS

sample covariance matrix, which is singular when T < NS. Compared to swi, wi and lmi do

not have the large size distortion problem when NS > T , and their size is approaching the

nominal level as N and T become larger.

Columns 6 – 11 of Table 1 report the effective size of different joint tests. First, Bonferroni

and Pooled statistics always reject the null much more often than the nominal level. This
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confirms that the critical values based on the sequential limit argument are invalid and that

the asymptotic distributions of Bw and Pw are likely to be non-standard as N and T → ∞

simultaneously. Second, Onatski’s (2009) tests seem to work well under DGP1 except that

Rstat rejects slightly too often when N = 200, T = 500, r = 5, q = 4, and qF = 3. Finally,

the size of our statistics is slightly higher than the normal level in small samples, but the size

distortion become smaller as the sample size increases.

Table 2 summarizes the results under DGP N2, in which the idiosyncratic shocks are drawn

from the uniform distribution U(−0.5, 0.5). The size properties of Bw, Pw, W , and LM are

almost the same as those under DGP N1. However, both Rdyn and Rstat tend to over-reject

especially when r = 5, q = 4, and qF = 3. The reasons are twofold: (1) Onatski (2009) derives

the asymptotic distribution of Rstat based on the Gaussianity of the idiosyncratic shocks.

Under DGP N2, the Gaussianity assumption is violated, and the size distortion of Rstat is

very large when r = 5, q = 4, and qF = 3. This implies that the asymptotic distribution

of Rstat crucially relies on the distribution of the idiosyncratic shocks. Hence, the inference

using Rstat can be misleading if Gaussianity does not hold. (2) The asymptotic distributions

of Rdyn and Rstat are developed when the data are observed. Recall that we use the feasible

MF̂XS instead of its infeasible counterpart XS − FΠS′ to compute Onatski’s statistics. The

estimation errors in MF̂XS may change the asymptotic distributions of Rdyn and Rstat. This

explains why Rdyn, which does not relies on the Gaussianity assumption, also has a non-

trivial size distortion. Hence, implementing Onatski’s statistics to test the overidentifying

restrictions in FAVAR may lead to substantial over rejection of the null hypothesis.
Under the alternative hypothesis, we use the following DGPs.

A1: Ft and eit are generated in the same way as in DGP N1.
λi = [λi1, ..., λir]′. For i = 1, ..., (1 − a)NS, set [λi1, ..., λiκF

] = 01×κF
and draw λij ∼

i.i.d. N(0, 1) for j = κF +1, ..., r with κF ≤ q. For i = (1−a)NS +1, ..., N , λij ∼ i.i.d. N(0, 1)
for j = 1, ..., r. a ∈ {0.2, 0.4, 0.6, 0.8, 1}. ω =

√
12r/13.

A2: Ft and eit are generated in the same way as in DGP N1.
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λi = [λi1, ..., λir]′. For i = 1, ..., NS, draw λij ∼ i.i.d. N(0, b2) for j = 1, ..., κF and draw
λij ∼ i.i.d. N(0, 1) for j = κF +1, ..., r with κF ≤ q. For i = NS +1, ..., N , λij ∼ i.i.d. N(0, 1)
for j = 1, ..., r. b ∈ {0.2, 0.4, 0.6, 0.8, 1}. ω =

√
12r/13.

In both DGPs A1 and A2, we set NS = 0.5N , ρf = ρµ = 0.5, and (r, q, κF ) ∈ {(5, 3, 1),

(5, 4, 3)}. Note that the true number of fast shock, qF , is zero under both DGPs A1 and A2.

In DGP A1, factors f1t, ..., fκF t do not affect Xit for i = 1, ..., (1 − a)NS, so α controls the

fraction of slow variables that have non-zero factor loadings on f1t, ..., fκF t. Table 3 shows

how the power5 changes as α increases. Columns 4 – 9 show the results when r = 5, q = 3,

and κF = 1, and columns 10 – 15 show the results when r = 5, q = 4, and κF = 3. First, it is

clear that the averaged rejection rates of wi and lmi increase as N and T increase. Second,

the Onatski’s statistics do not have much power for small a, N and T . For example, when

r = 5, q = 3, κF = 1, a = 0.4 and N = T = 200, the power of Rdyn is only 6% and the

power of Rstat is 16%, whereas the power of W and LM is 59% and 55.5%, respectively. It is

remarkable that the power against small a is a desired property. In practice, it is unlikely that

all the slow variables are misclassified, but it is likely that economists are not sure whether

some variables should be classified as slow or fast. In the latter case, we want a test that

is powerful to detect the violation of identifying restrictions by only aNS many variables,

especially when a is small. Furthermore, Rstat seems to be more powerful than our joint

statistics when a is close to one and N and T are large, but this power is suspicious due to

potential size distortion of Rstat shown in Table 2. Finally, the power of W and LM increase

as κF increases, which is expected because the tests should be more powerful when there are

more wrong restrictions.

In DGP A2, we investigate the relationship between the power and the variance of the

factor loadings in slow groups. b controls the extent to which the null hypothesis is violated.

Larger b allows the loadings in slow variables to deviate further away from zero. When b = 1,

DGP A2 is the same as DGP A1 with α = 1. Table 4 reports how the power changes as b

5Since the Bonferroni and Pooled statistics always have large size distortion and swi has large size distortion when NS > T ,
we do not report their power.
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increases. The pattern in Table 4 is similar to that in Table 3. Both the average rejection

rates of wi and lmi and the power of W and LM increase as N , T and κF increase. Rdyn

is always less powerful than our joint tests, except when r = 5, q = 3, κF = 1, b = 1, and

N = T = 500. Rstat is less powerful than W and LM for small b but more powerful as b, N ,

and T become larger.

In sum, SW’s individual statistic swi has large size distortion when NS > T , but our wi

and lmi have good size and power in finite samples. The Bonferroni and pooled statistics have

large size distortion because the critical values based on the sequential limit are invalid in the

factor models where N and T go to infinity simultaneously. Onatski’s Rdyn and RStat could

have substantial size distortions due to violating the Gaussianity assumption and neglecting

the estimation errors. They are also less powerful when only a fraction of slow variables

violate the identifying restrictions in their factor loadings or when the factor loadings of all

slow variables violate the identifying restrictions but their deviations of from zero are not

large. Our joint test statistics have reasonably good size and power in finite samples: their

size distortion decreases and power increases as N and T → ∞.

5 Empirical Results

In the section, we implement our statistics to a data set, and investigate the impulse responses

of major macroeconomic variables to the monetary policy shock, which is identified based

on different numbers of fast shocks. The data set is an updated version6 of the one used by

SW. It consists of monthly observations of 125 U.S. macroeconomic time series from 1960:1

through 2007:12, and the number of slow variables is 64. The series are transformed by taking

logarithms and/or differencing so that the transformed series are approximately stationary.

The transformation mainly follows from SW. For example, all the interest rates variables are

transformed by taking the first differences. However, we transform all the prices by taking

the first rather than the second differences of logarithms, which follows from BBE and Forni
6Some of the variables used by SW are dropped due to the missing values.
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and Gambetti (2010). The full list of variables along with the corresponding transformations

is given in Appendix D.

5.1 Testing the Overidentifying Restrictions

We first implement Bai and Ng’s (2002) ICp1 and ICp2 to determine the number of static

factors in the transformed series7. The upper bound of r is set equal to 10, which is also

selected as the estimate for r by both ICp1 and ICp2. This is different from the view in

the forecasting literature (for example, Stock and Watson (2002)), which finds that 1 or 2

factors are needed to to explain the variation of US macroeconomic variables. However, it

is common to use large estimates for the number of static factors in the FAVAR literature.

For example, SW set r̂ = 9, whereas Forni and Gambetti (2010) set r̂ = 10. The reason is

that using large r̂ tend to better estimate the space spanned by the structural shocks, which

is crucial in the structural VAR analysis. Thus, we adopt 10 static factors in our empirical

application.

Before implementing our hypothesis testing procedure, it is of interest to see the perfor-

mance of information criteria. We apply the estimators of Amengual and Watson (2007) and

Bai and Ng (2007) to determine the values of q and qS. Amengual and Watson’s estimator

is computed in the following way: regress the transformed data on the lags of F̂t, store the

residuals, and then use Bai and Ng’s (2002) ICp1 and ICp2 to determine the number static

factors in the residuals. Bai and Ng (2007) propose two estimators, q3 and q4, for the num-

ber of dynamic factors. These two estimators are constructed as follows: fit a VAR for F̂t,

compute the sample variance of the residuals, denoted as Σ̂, truncate small eigenvalues of Σ̂

to zeros by some thresholds, and then choose the number of non-zero eigenvalues of Σ̂ as the

estimate for q. For both Amengual and Watson’s and Bai and Ng’s estimators, the number

of lags of F̂t is set equal to 2, which is selected by BIC. We also use 4 lags for a robustness

check, and the results do not change. The estimate for q is equal to 6 by ICp1, 5 by ICp2, 6
7As usual in the literature, all the transformed series are normalized to have zero mean and unit variance.
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by q3, and 5 by q4. The estimate for qS is equal to 7 by ICp1.8 It is remarkable that these

estimates cause a problem if one wants to use them in the FAVAR setup. The estimate of

qS is greater than that of q, which contradicts the fact that qS ≤ q. This problem might be

caused by the limited number of observations in the cross section dimension (recall that NS is

only 64), so that ICp1, ICp2, q3 and q4 lead to finite-sample biases in the estimates, although

they are consistent as N and T → ∞. In a word, these results show that information criteria

can give biased estimates for q and qS due to the limited sample size, so that one cannot

setup the restrictions to identify the monetary policy shock in the FAVAR model. Hence, our

hypothesis testing procedure is the only way to evaluate the specification in such scenarios.

We next implement our statistics to test the null hypothesis H0: qF = κF against the

alternative hypothesis H1 : qF < κF . Since q = qS + qF , these hypotheses are equivalent to

the null hypothesis that qS = q−κF against the alternative hypothesis that qS > q−κF , which

can be tested by Onatski’s (2009) statistics. Table 5 reports the p-values of our and Onatski’s

test statistics for different values of q and κF . The numbers outside the parentheses are the

p-values when the number of lags of F̂t is equal to 2 and the numbers inside the parentheses

are the p-values when the number of lags of F̂t is equal to 4. In general, the p-values of W

and LM are small for κF = 2 and 3, but relatively large for κF = 1, so our statistics suggest

that the number of fast shock is equal to 1. Since the monetary policy shock is assumed not

to affect slow variables contemporaneously, the only fast shock in this data set is identified

as the monetary policy shock.

Compared to our statistics, Onatski’s (2009) statistics have large p-values for almost all

values of q, κF and the number of lags. The null hypotheses H0: qF = κF are not rejected at

the 5% level for κF = 1, 2, 3, except that Rdyn rejects the setup where q = 4, κF = 3, and

the number of lags of F̂t is 2. These results indicate that one can impose κF = 1, 2 or 3 in the

FAVAR to identify the fast shocks. Recall that the simulation results show that Onatski’s
8Note that qS is not necessarily equal to the number of dynamic factors in the slow group, because slow shocks are defined

as the dynamic factors that can affect slow variables contemporaneously, but the dynamic factors in the slow variables could be
either fast or slow. Hence, q3 and q4 are not valid to estimate qS .
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tests are not powerful especially when the identifying restrictions are mildly violated and the

sample size is relatively small. Thus, the identifying restriction that κF = 2 or 3 could be

wrong, but the Rdyn and Rstat are not able to detect the misspecification.

5.2 Impulses Responses to the Monetary Policy Shock

In this subsection, we compare the impulse response functions based on different values of

κF to check which value of κF generates more plausible results. We consider the following

FAVAR model:

 Ft

Xt

 =

 Φ(L) 0

Υ(L) D(L)


 Ft−1

Xt−1

+

 εFt

εXt

 (5.1)

where  εFt

εXt

 =

 I

Λ

Gηt +

 0

vt


The setup in (5.1) is almost the same as that of (2.7), except that ΛΦ(L)−D(L)Λ is replaced

by an unrestricted lag polynomial. We use 2 lags of Ft and 6 lags of Xt in the regression. The

results are robust to using 4 lags of Ft or 8 lags of Xt. Based on the results by information

criteria, we set q = 6 as our benchmark, and the results are robust to q = 5, 7, 8.

The Impulse Responses are computed as follows:

(1) Given F̂t estimated from X using principal components, get the residuals ε̂Ft and ε̂Xt

from the regression (5.1).

(2) Compute the sample variance of ε̂Ft , denoted as Σ̂. Define η̂t = ∆′ε̂Ft , where ∆ is a r × q

matrix consisting of eigenvectors that correspond to the q largest eigenvalues of Σ̂. Impose

the identifying restriction that qF = κF and run a reduced rank regression of ε̂S
Xt

on η̂t to

get an estimate of the q − κF dimensional slow shock η̂S
t , where ε̂S

Xt
is the residuals of slow

variables from (5.1).

(3) Estimate the monetary policy shock by η̂R
t = Proj(ε̂R

Xt
|η̂t) − Proj(ε̂R

Xt
|η̂S

t ), where the

31



projections are implemented by OLS. If κF ≥ 2, then regress η̂ on [η̂S...η̂R] and get the

residuals ẑ. Estimate the additional fast factors η̂F as the eigenvectors corresponding to

κF − 1 largest eigenvalues of zz′. Normalize [η̂S...η̂R...η̂F ] so that they have unity variances.

Denote the normalized estimates as ζ̂S, ζ̂R, and ζ̂F .

(4) Regress [ε̂′
Ft

, ε̂′
Xt

]′ on ζ̂S
t and ζ̂R

t for κF = 1 and regress [ε̂′
Ft

, ε̂′
Xt

]′ on ζ̂S
t , ζ̂R

t , and ζ̂F
t for

κF ≥ 2 and store the estimates for the coefficients. Compute impulse responses based on

these estimated coefficients and the companion form of (5.1).

Confidence bands of the impulse responses are obtained by a bootstrap technique. To

create bootstrapped samples of the T × N data Xb, we use a slight modification of the

procedure proposed by Yamamoto (2011). Given the principal component estimator F̂ ,

estimate Λ̂ = X ′F̂ /T , ê = X − F̂ Λ̂′, Φ̂(L) and ε̂Ft , where Φ̂(L) and ε̂Ft are the estimates of

Φ(L) and εFt in (5.1). Re-sample the demeaned residuals ε̂Ft − ¯̂εFt with replacement and label

it as εb
Ft

. Generate the bootstrapped factor F b
t by F b

t = Φ̂(L)F b
t−1 + εb

Ft
. Since Yamamoto’s

(2011) bootstrap algorithm does not allow êt to be serially correlated, we modify his way of

generating eb using the re-sampling procedure proposed by Ludvigson and Ng (2009). By

equation (2.5), for each i, we estimate δ̂i(L) and residuals v̂it, which are then re-centered.

Re-sample the N × 1 vector v̂t to get vb
t so that the cross-section correlation structure is

preserved, and then generate eb
t using vb

t and δ̂i(L). Next, the bootstrapped data Xb is

constructed as Xb = F bΛ̂′ +eb for b = 1, ..., 2000. Given the re-sampled data Xb, the impulse

responses are computed following steps (1) – (4).

Figure 1 demonstrates the impulse responses of major macroeconomic variables to a unity

variance contractionary monetary policy shock. The solid curves are computed using the

identifying restriction that κF = 1, whereas the dashed curves are computed using the

identifying restriction that κF = 2.9 We report the bootstrap 68% and 95% confidence bands

for the impulse responses for κF = 1. Although the impulse responses based on κF = 2
9The results based on κF = 3 are similar to or even worse than those based on κF = 2, so they are not reported in the paper.
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are within the 95% confidence bands of the impulse responses based on κF = 1 for some

variables, the improvement from using κF = 1 is still considerable. In general, the impulse

responses based on κF = 1 are more economically plausible than those based on κF = 2. For

example, when κF = 2, the output has a peak equal to 0.17 percent, and response becomes

negative 10 months after the contractionary monetary policy shock. This result contradicts

the conventional view that a monetary tightening would be expected to cause a decline in real

output over time rather than an increase. When κF = 1, i.e., the monetary policy shock is

the only fast shock in the data set, both the magnitude and duration of the positive response

decrease: the output has a peak equal to 0.05 percent, and response becomes negative 4

months after the contractionary monetary policy shock. Hence, κF = 1 generates a result

much closer to the prediction by economic theory than κF = 2.

It is remarkable that the positive impulse response of real output after a monetary tight-

ening has already been noticed in the empirical macroeconomics literature. For example,

Uhlig (2005) finds a positive response of real output after a contractionary monetary policy

shock by imposing sign restrictions on the impulse responses of prices, non-borrowed reserves

and the federal funds rate but no restrictions on the impulse response of real output. Sim-

ilar results are derived by Inoue and Kilian (2011) based on a new inferential technique on

the impulse response functions. The reason that Uhlig does not impose restrictions on the

impulse response of real output is that he wished to be agnostic about it. In this sense,

our estimation procedure has some similarity to Uhlig’s because all the impulse response

functions are estimated by OLS without imposing restrictions that are used in the identifi-

cation of structural shocks. Although the problem found by Uhlig is not completed solved in

our FAVAR framework, the results are more consistent with the traditional economic theory

when we impose identifying restrictions that are not rejected by our joint tests.

Another improvement from imposing κF = 1 instead of κF = 2 is that the price puzzle

(Sims, 1992) is considerably reduced in the former setup. When we impose κF = 2 in the

FAVAR, the CPI has a persistent positive response lasting for about 2 years. When we impose
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κF = 1, the price puzzle in CPI almost disappears. Figure 2 further investigates the impulse

responses of different price indexes. Compared to κF = 2 which leads to persistent positive

responses to a contractionary monetary policy shock, κF = 1 either substantially reduces

or completely solves the price puzzle in all price indexes. This further confirms that the

monetary policy shock is likely to be the only fast shock in this data set and that Onatski’s

tests fail to reject κF = 2 or 3 due to their lack of power.

Moreover, the responses of other variables based on κF = 1 are generally more consistent

with economic theory in terms of signs and magnitudes. For example, the monetary tighten-

ing leads to an immediate reduction in the real consumption and employment when κF = 1,

but it generates positive responses when κF = 2. Also, the response of consumer expectation

has the expected sign for κF = 1 but entirely wrong sign for κF = 2. For some variables, such

as capacity utilization, unemployment, orders, inventories and commodity price, the impulse

responses after the monetary policy shock have the “unexpected” signs for both κF = 1 and

κF = 2. However, the results based on κF = 1 are still much better than those based on

κF = 2, because the unexpected parts of the responses are much smaller in magnitude and

much shorter in duration for κF = 1.

6 Conclusions

In this paper, we develop test statistics for the overidentifying restrictions in FAVAR models.

Unlike the conventional structural VAR analysis, the FAVAR can involve a large number of

identifying restrictions but a few structural shocks, so the system is highly overidentified.

We focus on testing the joint null hypothesis that all the identifying restrictions are satisfied.

Since the number of restrictions goes to infinity as the sample size grows, conventional tests

are not applicable. Our new joint statistics solve this problem by combining the individual

statistics across the cross section dimension, so that the infinite-dimensional problem reduces

to a finite-dimensional one. Under some regularity conditions, we find the asymptotic dis-

tribution of our statistic under the null hypothesis and prove that it is consistent against

34



the alternative that a substantial amount of identifying restrictions are violated. In the

Monte Carlo experiments, we find that our statistics have relatively good size and power in

finite samples. Also, the simulation results confirm that other alternative test statistics do

not perform well, so our statistics are the only valid candidates to test the overidentifying

restrictions in FAVAR models.

In the empirical application, we estimate an FAVAR model using an updated version of

Stock and Watson’s (2005) data set. We follow the setup of Stock and Watson (2010) and

the identification scheme of Stock and Watson (2005). The tests reject the null hypotheses

that the number of fast shocks is two or three, but they do not reject the null that there is

only one fast shock, which is the monetary policy shock by definition. This result provides

some evidence to support the Bernanke, Boivin, and Eliasz’s (2005) identification assumption

that factors other than the monetary policy shock are slow. Also, Our results show that

information criteria could give contradictory estimates for number of shocks in small sample,

so the new testing procedure is the only way to evaluate the specification when information

criteria fail. To evaluate the performance of our tests in this data set, we compare the

impulse responses based on different values of κF , where κF denotes the potential number

of fast shocks. In general, the impulse responses of major macroeconomic variables are more

economically plausible based on κF = 1 than those based on κF = 2. Moreover, compared

to κF = 2 which leads to persistent positive responses to a contractionary monetary policy

shock, κF = 1 either substantially reduces or completely solves the price puzzle in all price

indexes.

Finally, the test statistics proposed by this paper mainly focus the contemporaneous timing

restrictions, which are widely used in the FAVAR models. Additionally, other identification

schemes, such as long run restrictions and sign restrictions, can be applied in FAVAR. We

leave for future research to generalize our statistics to cover these identification schemes.
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Appendix

A Preliminary Lemmas under the Null Hypothesis
To conserve space, we only state the lemmas in the file, and the detailed proofs of lemmas in Appendix

A are available in the supplement appendix.

A.1 Lemmas on F̂ and F̂
Let that VX is the r × r diagonal matrix of the first r largest eigenvalues of (1/TN)XX ′ in decreasing

order. Recall that the estimated factor matrix F̂ is
√
T times eigenvectors corresponding to the r largest

eigenvalues of XX ′. Therefore, we have (1/NT )XX ′F̂ V −1
X = F̂ , which can be expanded as:

1
NT

(FΛ′ΛF ′ + FΛ′e′ + eΛF ′ + ee′)F̂ V −1
X = F̂ (A.1)

Define HF = (Λ′Λ/N)(F ′F̂ /T )V −1
X , so we have:

F̂ − FH = 1
NT

(
FΛ′e′F̂ + eΛF ′F̂ + ee′F̂

)
V −1

X (A.2)

F̂t −H ′
FFt = V −1

X

(
1
T

T∑
s=1

F̂sγN (s, t) + 1
T

T∑
s=1

F̂s

[
e′

set

N
− γN (s, t)

]
+ 1
NT

T∑
s=1

F̂sF
′
sΛ′et + 1

NT

T∑
s=1

F̂se
′
sΛFt

)
(A.3)

Note that T−1∑T
t=1 ∥F̂t∥2 = Op(1) due to identification restriction F̂ ′F̂ /T = Ir. Also, ∥HF ∥ = Op(1)

because ∥HF ∥ ≤ ∥F̂ ′F̂ /T∥ 1
2 ∥F ′F/T∥ 1

2 ∥Λ′Λ/N∥∥V −1
X ∥ = Op(1) by Assumptions 1, 2 and the following

lemma.
Lemma A1: (Lemmas, A.1, A.3, B.1, and B.2 of Bai (2003)) Let δNT = min{

√
N,

√
T}.

(i) Under Assumptions 1 - 4, T−1∑T
t=1 ∥F̂t −H ′

FFt∥2 = Op

(
δ−2

NT

)
.

(ii) Under Assumptions 1 - 4, VX →p V , where V is the diagonal matrix consisting of the eigenvalues of
ΣF ΣΛ.

(iiI) Under Assumptions 1 - 6, T−1(F̂ − FHF )′ei = Op

(
δ−2

NT

)
.

(iv) Under Assumptions 1 - 6, T−1(F̂ − FHF )′F = Op

(
δ−2

NT

)
.

Lemma A1(i) means that F̂t is an consistent estimate for rotated factor H ′
FFt. Analogously, we can define

HF such that F̂t is a consistent estimate of H ′
F Ft. Recall that F̂t = [F̂ ′

t−1, ..., F̂
′
t−p]′ and Ft = [F ′

t−1, ..., F
′
t−p]′.

Let HF ≡ Ip ⊗HF , so Lemma A1(i) implies that T−1∑T
p+1 ∥F̂t −H ′

F Ft∥2 = Op

(
δ−2

NT

)
, which is summarized

in the following lemma.
Lemma A2: Under Assumptions 1 - 4,
(i) T−1∑T

p+1 ∥F̂t −H ′
F Ft∥2 = Op

(
δ−2

NT

)
.

(ii) HF and HF are non-singular as N and T → ∞.
Lemma A3:
(i) Under Assumptions 1 - 6, T−1(F̂ − FHF )′ei = Op

(
δ−2

NT

)
.

(ii) Under Assumptions 1 - 7, T−1N
−1/2
S (F̂ − FHF )′∑

i∈S ei = Op

(
δ−2

NT

)
.

Lemma A4: Under Assumptions 1 - 6,

(i) T−1(F̂ − FHF )′[F
...ζ] = Op

(
δ−2

NT

)
.
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(ii) ∥(T−1F̂ ′F̂)−1∥ = Op(1).

A.2 Lemmas on ζ̂S under the Null Hypothesis
Note that ΓSF in Equation (3.6) is always zero, so XS can be expressed as

XS = FΠS′
+ ζSΓSS′

+ eS (A.4)

By the definition of X̂S , we have

X̂S = MF̂X
S = ζSΓSS′

+ eS − PF̂ (ζSΓSS′
+ eS) +MF̂ FΠS′

(A.5)

Recall that the estimator ζ̂S is equal to
√
T − p times the eigenvectors corresponding to the κS = q − κF

largest eigenvalues of the (T − p) × (T − p) matrix X̂SX̂S′ . Under the null hypothesis, qS = κS and the
dimension of ζ̂S is the same as that of ζS . Hence, we have

(1/NST )X̂SX̂S′
ζ̂S = ζ̂S V̂S (A.6)

where V̂S is the diagonal matrix consisting of the first qS largest eigenvalues of (1/NST )X̂SX̂S′ in decreasing
order. Let VS be the diagonal matrix consisting of the first qS largest eigenvalues of (ζSΓSS′ + eS)(ζSΓSS′ +
eS)′/NST in decreasing order. Amengual and Watson (2007) show that V̂S − VS →p 0. Also, Lemma A1(ii)
implies that VS converges to a non-singular diagonal matrix consisting of the eigenvalues of ΣζS ΣΓSS = ΣΓSS .
Hence, V̂S is non-singular asymptotically and ∥V̂ −1

S ∥ = Op(1). Also, note that T−1∑T
t=p+1 ∥ζ̂S

t ∥ is Op(1)
because ζ̂S′

ζ̂S/(T − p) = IqS .
Now, substituting Equation (A.5) into Equation (A.6) gives

1
NST

[
ζSΓSS′

+ eS − PF̂ (ζSΓSS′
+ eS) +MF̂ FΠS′

] [
ζSΓSS′

+ eS − PF̂ (ζSΓSS′
+ eS) +MF̂ FΠS′

]′
ζ̂S V̂ −1

S = ζ̂S

DefineHζS = (ΓSS′ΓSS/NS)(ζS′
ζ̂S/T )V̂ −1

S . We haveHζS = Op(1) because ∥HζS ∥ ≤ ∥ζ̂S′
ζ̂S/T∥ 1

2 ∥ζS′
ζS/T∥ 1

2

∥ΓSS′ΓSS/NS∥∥V̂ −1
S ∥ = Op(1) by Assumptions 1 and 2. Analogous to Lemma A1(i), the following lemma

shows that ζ̂S
t is a consistent estimate for H ′

ζSζ
S
t and that the convergence rate is the same as in Lemma

A1(i).
Lemma A5: Under Assumptions 1 - 6, T−1∑T

t=p+1 ∥ζ̂t
S

−H ′
ζSζ

S
t ∥2 = Op

(
δ−2

NT

)
.

Lemma A6: Under Assumptions 1 - 6, T−1∑T
t=p+1 ∥bℓt∥2 = Op(δ−4

NT ) for ℓ = 1, 2, 4, 5, 6, 8, 10, ..., 15,
where bℓt’s are defined in the proof of Lemma A5.

Lemma A7:
(i) Under Assumptions 1 - 6, T−1(ζ̂S − ζSHζS )′ei = Op(δ−2

NT ).
(ii) Under Assumptions 1 - 7, T−1N

−1/2
S (ζ̂S − ζSHζS )′∑

i∈S ei = Op(δ−2
NT ).

Lemma A8: Under Assumptions 1 - 6,
(i) T−1(ζ̂S − ζSHζS )′ζ = Op(δ−2

NT ).
(ii) HζS is non-singular as N and T → ∞.
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A.3 Lemmas on ζ̂F under the Null Hypothesis
By the definitions of X̃, we have

X̃ = Mζ̂S X̂ = Mζ̂SMF̂X = Mζ̂SMF̂ (FΠ′ + ζΓ′ + e)

= Mζ̂SMF̂ (FΠ′ + [ζS
...ζF ]

[
ΓSS′ ΓF S′

ΓSF ′ ΓF F ′

]
+ e)

= Mζ̂SMF̂ (FΠ′ + ζS [ΓSS′ ...ΓF S′
] + ζF [ΓSF ′ ...ΓF F ′

] + e)

= Mζ̂SMF̂ (FΠ′ + ζSΓS′
+ ζF ΓF ′

+ e) (A.7)

where we use the definitions that ΓS = [ΓSS′ ...ΓF S′ ]′, ΓF = [ΓSF ′ ...ΓF F ′ ]′ and Γ = [ΓS
...ΓF ]. Define G = [F

...ζS ],

Θ = [Π
...ΓS ], and Ĝ = [F̂

...ζ̂S ]. Note that F̂ ′ζ̂S = 0, so Mζ̂SMF̂ = MĜ. Hence, Equation (A.7) can be
rewritten as

X̃ = MĜX = ζF ΓF ′
+ e− PĜ(ζF ΓF ′

+ e) +MĜGΘ′ (A.8)

Recall that the estimate of fast structural shocks ζ̂F is equal to
√
T − p times the eigenvectors corresponding

to the κF largest eigenvalues of the (T − p) × (T − p) matrix X̃X̃ ′. Under the null hypothesis, qF = κF > 0
and the dimension of ζ̂F is the same as that of ζF . Hence, we have

(1/NT )X̃X̃ ′ζ̂F = ζ̂F V̂F (A.9)

where V̂F is the diagonal matrix consisting of the first qF largest eigenvalues of (1/NT )X̃X̃ ′ in decreasing
order. Note that T−1∑T

t=p+1 ∥ζ̂F
t ∥ is Op(1) because ζ̂F ′

ζ̂F /(T − p) = IqF .
Let VF be the diagonal matrix consisting of the first qF largest eigenvalues of (ζF ΓF ′ +e)(ζF ΓF ′ +e)′/NT

in decreasing order. Note that the difference between X̃ and ζF ΓF ′ + e is that X̃ contains some additional
estimation error terms defined in Equation (A.8). Amengual and Watson (2007) show that such estimation
errors will not affect the limits of the first qF largest eigenvalues of X̃X̃ ′/NT , i.e. V̂F − VF →p 0. Also,
Lemma A1(ii) implies that VF converges to a non-singular diagonal matrix consisting of the eigenvalues
of limN,T →∞(ζF ′

ζF /T )(ΓF ′ΓF /N) = (1 − m)ΣF ΣΓF F , where we use the facts that ΓSF = 0 and that
NF /N = 1 −NS/N → 1 −m > 0. Hence, V̂F is non-singular asymptotically and ∥V̂ −1

F ∥ = Op(1).
Now, substituting Equation (A.8) into Equation (A.9) gives

1
NT

[
ζF ΓF ′

+ e− PĜ(ζF ΓF ′
+ e) +MĜGΘ′

] [
ζF ΓF ′

+ e− PĜ(ζF ΓF ′
+ e) +MĜGΘ′

]′
ζ̂F V̂ −1

F = ζ̂F

Define HζF = (ΓF ′ΓF /N)(ζF ′
ζ̂F /T )V̂ −1

F . We have HζF = Op(1) because ∥HζF ∥ ≤ ∥ζ̂F ′
ζ̂F /T∥ 1

2 ∥ζF ′
ζF /T∥ 1

2

∥ΓF ′ΓF /N∥∥V̂ −1
F ∥ = Op(1) by Assumptions 1 and 2. Analogous to Lemmas A1(i) and A5, the following

lemma shows that ζ̂F
t is a consistent estimate for H ′

ζF ζ
F
t and that the convergence rate is the same as in

Lemmas A1(i) and A5.
Lemma A9: Under Assumptions 1 - 6, T−1∑T

t=p+1 ∥ζ̂t
F

−H ′
ζF ζ

F
t ∥2 = Op

(
δ−2

NT

)
.

A sketch of the proof: (see the supplement appendix for details)
First, we show that Ĝ′ζ̂F = 0. Note that ζ̂S′

ζ̂F = ζ̂S′
X̃X̃ ′ζ̂F V̂ −1

F /NT = 0 because ζ̂S′
X̃ = 0. Also,

F̂ ′ζ̂F = F̂ ′Mζ̂S X̂X̃ ′ζ̂F V̂ −1
F /NT = F̂ ′X̂X̃ ′ζ̂F V̂ −1

F /NT = 0 because F̂ ′Pζ̂S = 0 and F̂ ′X̂ = 0. Hence,
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Ĝ′ζ̂F = [F̂
...ζ̂S ]′ζ̂F = 0.

Now, define

HG =

[
HF 0
0 HζS

]

Since G = [F
...ζS ] and Ĝ = [F̂

...ζ̂S ], we have T−1∑T
t=p+1 ∥Ĝt − H ′

GGt∥2 = Op(δ−2
NT ) by Lemmas A2(i) and

A5. Since both HF and HζS are non-singular asymptotically by Lemmas A2(ii) and A8(ii), so HG is also
non-singular asymptotically and ∥H−1

G ∥ = Op(1). Also,

∥(Ĝ′Ĝ/T )−1∥ = Op(1) (A.10)

To see this, note that F̂ ′ζ̂S = 0, so

Ĝ′Ĝ

T
=

[
F̂ ′F̂/T 0

0 ζ̂S′
ζ̂S/T

]

Since ∥(F̂ ′F̂/T )−1∥ = Op(1) by Lemma A4(ii) and ζ̂S′
ζ̂S/T = IqS (T −p)/T → IqS , we have ∥(Ĝ′Ĝ/T )−1∥ =

Op(1). Furthermore, for an N × k0 matrix Z, since Θ = [Π
...ΓS ], ∥Θ′Z∥ and ∥ΓF ′

Z∥ can be always bounded

by ∥[Π
...Γ]′Z∥ and ∥Γ′Z∥, respectively. This trick can be used for any term containing Θ or ΓF .

Based on the above results, it is straightforward to prove that T−1∑T
t=p+1 ∥cℓt∥2 = Op

(
δ−2

NT

)
for ℓ =

1, ..., 15 using very similar arguments in the proof of T−1∑T
t=p+1 ∥bℓt∥2 = Op

(
δ−2

NT

)
for ℓ = 1, ..., 15, because

cℓt has a very similar structure to that of bℓt. To save space, we skip the detailed proof. Q.E.D.
Lemma A10: Under Assumptions 1 - 6, T−1∑T

t=p+1 ∥cℓt∥2 = Op(δ−4
NT ) for ℓ = 1, 2, 4, 5, 6, 8, 10, ..., 15,

where cℓt’s are defined in the proof of Lemma A9.
Lemma A11:
(i) Under Assumptions 1 - 6, T−1(ζ̂F − ζFHζF )′ei = Op(δ−2

NT ).
(ii) Under Assumptions 1 - 7, T−1N

−1/2
S (ζ̂F − ζFHζF )′∑

i∈S ei = Op(δ−2
NT ).

B Proof of Theorem 1
Lemma B1:
(i) Under Assumptions 1 - 6, T−1

(
ζ̂F ′

X̃i −H ′
ζF ζ

F ′
ei

)
= Op(δ−2

NT ) for i ∈ S if qS = κS .

(ii) Under Assumptions 1 - 7, T−1N
−1/2
S

(∑
i∈S ζ̂

F ′
X̃i −

∑
i∈S H

′
ζF ζ

F ′
ei

)
= Op(δ−2

NT ) if qS = κS .
Proof:
(i) Recall Equation (3.6). Since qS = κS under the null hypothesis, we have

XS = FΠS′
+ ζSΓSS′

+ eS = GΘS′
+ eS

where ΘS = [ΠS
...ΓSS ](NS × (rp+ qS). Hence, we have Xi = Gθi + ei and

X̃i = Mζ̂SMF̂Xi = MĜXi = ei − PĜei +MĜGθi (B.1)
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where θi is the transpose of the ith row of ΘS . Since Ĝ′ζ̂F = 0 (see the proof of Lemma A9), we have
ζ̂F ′

PĜ = 0 and

1
T

(ζ̂F ′
X̃i −H ′

ζF ζ
F ′
ei) = 1

T
(ζ̂F − ζFHζF )′ei + 1

T
ζ̂F ′

MĜGθi

= 1
T

(ζ̂F − ζFHζF )′ei + 1
T
ζ̂F ′

Gθi (B.2)

where T−1(ζ̂F − ζFHζF )′ei = Op(δ−2
NT ) by Lemma A11(i). Hence, it is sufficient to show that T−1ζ̂F ′

Gθi =
Op(δ−2

NT ). To see this, note that ∥H−1
G ∥ = Op(1) (see the proof of Lemma A9) and E∥θi∥ ≤ (∥Φ∥ +

∥GA−1∥)E∥λi∥ < ∞ by Assumptions 2(a) and 2(b). Now, we have T−1ζ̂F ′
Gθi = Op(δ−2

NT ), because

1
T
ζ̂F ′

Gθi = 1
T
ζ̂F ′

(GHG − Ĝ)H−1
G θi

= 1
T

(ζ̂F − ζFHζF )′(GHG − Ĝ)H−1
G θi + 1

T
H ′

ζF ζ
F ′

(GHG − Ĝ)H−1
G θi (B.3)

where the first term is Op(δ−2
NT ) by Cauchy-Schwarz inequality and Lemmas A2, A5 and A9, and the second

term is Op(δ−2
NT ) by Lemmas A4(i) and A8(i).

(ii) Similarly to Equation (B.2), we have

1
T

√
NS

(∑
i∈S

ζ̂F ′
X̃i −

∑
i∈S

H ′
ζF ζ

F ′
ei

)
= 1

T
(ζ̂F − ζFHζF )′ 1√

NS

∑
i∈S

ei + 1
T
ζ̂F ′

MĜG
1√
NS

∑
i∈S

θi

= 1
T

(ζ̂F − ζFHζF )′ 1√
NS

∑
i∈S

ei + 1
T
ζ̂F ′

G
1√
NS

∑
i∈S

θi

where the first term is Op(δ−2
NT ) by Lemma A11(ii) and the second term is Op(δ−2

NT ) because T−1ζ̂F ′
G =

Op(δ−2
NT ) (see the proof in part (i) of this lemma) and N

−1/2
S

∑
i∈S θi = Op(1) by Assumption 7(a). Q.E.D.

Lemma B2: Under Assumptions 1 - 6, if qS = κS , then
(i) T−1∑T

t=p+1 ∥ζ̂t
F

−H ′
ζF ζ

F
t ∥4 = Op(T/δ4

NT ), T−1∑T
t=p+1 ∥Ĝt−H ′

GGt∥4 = Op(T/δ4
NT ), T−1∑T

t=p+1 ∥ζ̂t
F

∥4 =
Op(T/δ4

NT ) +Op(1), and T−1∑T
t=p+1 ∥Ĝt∥4 = Op(T/δ4

NT ) +Op(1).
(ii) If

√
T/N → 0, then T−1∑T

t=p+1 |ẽit − eit|4 = op(1) for i ∈ S and (NST )−1∑T
t=p+1

∑
i∈S |ẽit − eit|4 =

op(1)
Proof:
(i) Since Lemma A9 shows that T−1∑T

t=p+1 ∥ζ̂t
F

−H ′
ζF ζ

F
t ∥2 = Op(δ−2

NT ), we have

T−1
T∑

t=p+1
∥ζ̂t

F
−H ′

ζF ζ
F
t ∥4 ≤ T−1

T∑
t=p+1

∥ζ̂t
F

−H ′
ζF ζ

F
t ∥2(

T∑
t=p+1

∥ζ̂t
F

−H ′
ζF ζ

F
t ∥2) = Op

(
T

δ4
NT

)
.

Similarly, Lemmas A2 and A5 imply that T−1∑T
t=p+1 ∥Ĝt−H ′

GGt∥4 = Op(T/δ4
NT ). Also, T−1∑T

t=p+1 ∥ζ̂t
F

∥4
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can be bounded by

T−1
T∑

t=p+1
∥ζ̂t

F
∥4 ≤ 8

T

T∑
t=p+1

∥ζ̂t
F

−H ′
ζF ζ

F
t ∥4 + 8

T

T∑
t=p+1

∥H ′
ζF ζ

F
t ∥4

= Op

(
T

δ4
NT

)
+Op(1)

where the Op(1) term follows from Assumption 1(b) and the fact that ∥HζF ∥4 = Op(1). The proof of
T−1∑T

t=p+1 ∥Ĝt∥4 = Op(T/δ4
NT ) +Op(1) is similar.

(ii) By the definition of ẽi and the fact that Ĝ′ζ̂F = 0, we have ẽi = Mζ̂F X̃i = ei −PĜei −Pζ̂F ei +Gθi −
PĜGθi − Pζ̂FGθi. Thus,

ẽit − eit = d1,it + d2,it + d3,it + d4,it

where d1,it = −Ĝ′
t

(
Ĝ′Ĝ/T

)−1
Ĝ′ei/T , d2,it = −ζ̂F ′

t

(
ζ̂F ′

ζ̂F /T
)−1

ζ̂F ′
ei/T , d3,it = G′

tθi−Ĝ′
t

(
Ĝ′Ĝ/T

)−1
Ĝ′Gθi/T ,

and d4,it = −ζ̂F ′

t

(
ζ̂F ′

ζ̂F /T
)−1

ζ̂F ′
Gθi/T . Note that |ẽit −eit|4 ≤ 64(d4

1,it +d4
2,it +d4

3,it +d4
4,it), so it is enough

to consider the bounds of d4
ℓ,it for ℓ = 1, 2, 3, 4.

First, T−1∑T
t=p+1 d

4
1,it can be bounded by

T−1
T∑

t=p+1
d4

1,it ≤

(
1
T

T∑
t=p+1

∥Ĝt∥4

)∥∥∥∥∥∥
(
Ĝ′Ĝ

T

)−1
∥∥∥∥∥∥

4 ∥∥∥∥∥ Ĝ′ei

T

∥∥∥∥∥
4

≤ 64
[
Op

(
T

δ4
NT

)
+Op(1)

] ∥∥∥∥∥∥
(
Ĝ′Ĝ

T

)−1
∥∥∥∥∥∥

4∥∥∥∥∥ (Ĝ−GHG)′ei

T

∥∥∥∥∥
4

+
∥∥∥∥H ′

GG
′ei

T

∥∥∥∥4


=
[
Op

(
T

δ4
NT

)
+Op(1)

]
Op(1)Op

(
1
δ4

NT

)

where T−1∑T
t=p+1 ∥Ĝt∥4 = Op(T/δ4

NT )+Op(1) by part (i) of this lemma, ∥(Ĝ′Ĝ/T )−1∥ = Op(1) by Equation

(A.10), ∥T−1(Ĝ − GHG)′ei∥4 ≤
(
T−1∑T

t=p+1 ∥Ĝt −H ′
GGt∥2T−1∑T

t=p+1 e
2
it

)2
= Op(δ−4

NT ) by Lemmas A2
and A5 and Assumption 3(a), and ∥T−1G′ei∥4 = Op(T−2) by Assumption 6(e).

Similarly, (NST )−1∑T
t=p+1

∑
i∈S d

4
1,it can be bounded by

1
TNS

T∑
t=p+1

∑
i∈S

d4
1,it ≤

[
Op

(
T

δ4
NT

)
+Op(1)

]
Op(1) 1

NS

∑
i∈S

∥∥∥∥∥ (Ĝ−GHG)′ei

T

∥∥∥∥∥
4

+
∥∥∥∥H ′

GG
′ei

T

∥∥∥∥4


where N−1
S

∑
i∈S ∥T−1H ′

GG
′ei∥4 = Op(T−2) by Assumption 6(e), and N−1

S

∑
i∈S ∥T−1(Ĝ − GHG)′ei∥4 =

Op(δ−4
NT ) because

1
NS

∑
i∈S

∥∥∥∥∥ (Ĝ−GHG)′ei

T

∥∥∥∥∥
4

≤ 1
NS

∑
i∈S

(
1
T

T∑
t=p+1

∥Ĝt −H ′
GGt∥2 1

T

T∑
t=p+1

e2
it

)2

≤
(

1
T

T∑
t=p+1

∥Ĝt −H ′
GGt∥2

)2
1

NST

∑
i∈S

T∑
t=p+1

e4
it = Op

(
1
δ4

NT

)
Op(1)
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by Lemmas A2 and A5 and Assumption 3(a). Since
√
T/N → 0, we have T/δ4

NT → 0. Thus, T−1∑T
t=p+1 d

4
1,it =

op(1) and (NST )−1∑T
t=p+1

∑
i∈S d

4
1,it = op(1). The structure of d2,it is similar to that of d1,it, so it is

straightforward to prove that T−1∑T
t=p+1 d

4
2,it = op(1) and (NST )−1∑T

t=p+1
∑

i∈S d
4
2,it = op(1) using a

similar argument.
For term d3,it, we have

T−1
T∑

t=p+1
d4

3,it ≤ T−1
T∑

t=p+1

∥∥∥∥∥∥G′
t − Ĝ′

t

(
Ĝ′Ĝ

T

)−1
Ĝ′G

T

∥∥∥∥∥∥
4

∥θi∥4

≤ T−1
T∑

t=p+1

∥(G′
tHG − Ĝ′

t)H−1
G ∥4 +

∥∥∥∥∥∥Ĝ′
t

(
Ĝ′Ĝ

T

)−1
Ĝ′(GHG − Ĝ)H−1

G

T

∥∥∥∥∥∥
4
 ∥θi∥4

≤

Op

(
T

δ4
NT

)
+ T−1

T∑
t=p+1

∥Ĝt∥4

∥∥∥∥∥∥
(
Ĝ′Ĝ

T

)−1
∥∥∥∥∥∥

4 ∥∥∥∥∥ Ĝ′(GHG − Ĝ)H−1
G

T

∥∥∥∥∥
4
 ∥θi∥4

=
{
Op

(
T

δ4
NT

)
+
[
Op

(
T

δ4
NT

)
+Op(1)

]
Op(1)Op

(
1
δ4

NT

)}
Op(1) = Op

(
T

δ4
NT

)

where ∥T−1Ĝ′(GHG − Ĝ)∥4 ≤
(
T−1∑T

t=p+1 ∥Ĝt −H ′
GGt∥2T−1∑T

t=p+1 ∥Ĝt∥2
)2

= Op(δ−4
NT ) by Lemmas

A2 and A5, and ∥θi∥4 ≤ (∥Φ∥ + ∥GA−1∥)4∥λi∥4 = Op(1) by Assumptions 2(a) and 2(b). As
√
T/N → 0,

T−1∑T
t=p+1 d

4
3,it = op(1). Also, since N−1

S

∑
i∈S ∥θi∥4 = Op(1) by Assumptions 2(a) and 2(b), we have

(NST )−1∑T
t=p+1

∑
i∈S d

4
3,it = op(1).

Lastly, since ζ̂F ′
ζ̂F /(T − p) = IqF , we can bound T−1∑T

t=p+1 d
4
4,it by

T−1
T∑

t=p+1
d4

4,it ≤ T−1
T∑

t=p+1
∥ζ̂F ′

t ∥4

∥∥∥∥∥ ζ̂F ′
G

T − p

∥∥∥∥∥
4

∥θi∥4

=
[
Op

(
T

δ4
NT

)
+Op(1)

]
Op

(
1
δ8

NT

)
Op(1)

where ∥ζ̂F ′
G/(T−p)∥4 = Op(δ−8

NT ) is due to the proof following Equation (B.3). As
√
T/N → 0, T−1∑T

t=p+1 d
4
4,it =

op(1). Also, sinceN−1
S

∑
i∈S ∥θi∥4 = Op(1) by Assumptions 2(a) and 2(b), we have (NST )−1∑T

t=p+1
∑

i∈S d
4
4,it =

op(1). Q.E.D.
Lemma B3: Under Assumptions 1 - 6, if

√
T/N → 0 and qS = κS , then

(i)

(T − p)−1

[(
T∑

t=p+1
ζ̂F

t ζ̂
F ′

t ẽ2
it

)
−H ′

ζF

(
T∑

t=p+1
ζF

t ζ
F ′

t e2
it

)
HζF

]
→p 0

(ii)

(T − p)−1N−1
S

[(
T∑

t=p+1

∑
i∈S

ζ̂F
t ζ̂

F ′

t ẽ2
it

)
−H ′

ζF

(
T∑

t=p+1

∑
i∈S

ζF
t ζ

F ′

t e2
it

)
HζF

]
→p 0

Proof:
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By Lemma B2(ii) and Assumption 3(a), we have

1
T − p

T∑
t=p+1

ẽ4
it ≤ 8

T − p

T∑
t=p+1

(ẽit − eit)4 + 8
T − p

T∑
t=p+1

e4
it = Op(1) (B.4)

1
(T − p)NS

∑
i∈S

T∑
t=p+1

ẽ4
it ≤ 8

(T − p)NS

∑
i∈S

T∑
t=p+1

(ẽit − eit)4 + 8
(T − p)NS

∑
i∈S

T∑
t=p+1

e4
it = Op(1) (B.5)

(i)

1
T − p

T∑
t=p+1

ζ̂F
t ζ̂

F ′

t ẽ2
it −H ′

ζF

(
1

T − p

T∑
t=p+1

ζF
t ζ

F ′

t e2
it

)
HζF

≤ 1
T − p

T∑
t=p+1

(ζ̂F
t ζ̂

F ′

t −H ′
ζF ζ

F
t ζ

F ′

t HζF )ẽ2
it + 1

T − p

T∑
t=p+1

H ′
ζF ζ

F
t ζ

F ′

t HζF (ẽ2
it − e2

it)

The first term is bounded by

(
1

T − p

T∑
t=p+1

∥ζ̂F
t ζ̂

F ′

t −H ′
ζF ζ

F
t ζ

F ′

t HζF ∥2 1
T − p

T∑
t=p+1

ẽ4
it

) 1
2

≤
(

2
T − p

T∑
t=p+1

∥ζ̂F
t (ζ̂F ′

t − ζF ′

t HζF )∥2 + ∥(ζ̂t
F

−H ′
ζF ζ

F
t )ζF ′

t HζF ∥2

) 1
2
(

1
T − p

T∑
t=p+1

ẽ4
it

) 1
2

≤

2

(
1

T − p

T∑
t=p+1

∥ζ̂F
t ∥4 1

T − p

T∑
t=p+1

∥ζ̂F ′

t − ζF ′

t HζF ∥4

) 1
2

+

2

(
1

T − p

T∑
t=p+1

∥ζF ′

t HζF ∥4 1
T − p

T∑
t=p+1

∥ζ̂t
F

−H ′
ζF ζ

F
t ∥4

) 1
2


1
2

Op(1) = op(1)

because (T − p)−1∑T
t=p+1 ∥ζ̂F ′

t − ζF ′

t HζF ∥4 = op(1) and (T − p)−1∑T
t=p+1 ∥ζ̂F

t ∥4 = Op(1) by Lemma B(i)
and the assumption that

√
T/N → 0, (T − p)−1∑T

t=p+1 ∥ζF ′

t HζF ∥4 = Op(1) by Assumption 1(b), and
(T − p)−1∑T

t=p+1 ẽ
4
it = Op(1) by Equation (B.4). The second term can be bounded by

(
1

T − p

T∑
t=p+1

∥H ′
ζF ζ

F
t ζ

F ′

t HζF ∥2 1
T − p

T∑
t=p+1

(ẽ2
it − e2

it)2

) 1
2

≤ ∥HζF ∥2

(
1

T − p

T∑
t=p+1

∥ζF
t ∥4

) 1
2
(

2
T − p

T∑
t=p+1

ẽ2
it(ẽit − eit)2 + e2

it(ẽit − eit)2

) 1
2

= Op(1)


[

2
T − p

T∑
t=p+1

ẽ4
it

2
T − p

T∑
t=p+1

(ẽit − eit)4

] 1
2

+

[
2

T − p

T∑
t=p+1

e4
it

2
T − p

T∑
t=p+1

(ẽit − eit)4

] 1
2


1
2

= op(1)

because (T − p)−1∑T
t=p+1 ∥ζF

t ∥4 = Op(1) by Assumption 1(b), (T − p)−1∑T
t=p+1 ẽ

4
it = Op(1) by Equation
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(B.4), (T−p)−1∑T
t=p+1 e

4
it = Op(1) by Assumption 3(a), and (T−p)−1∑T

t=p+1(ẽit −eit)4 = op(1) by Lemma
B2(ii).

(ii) The proof of this part is similar to that of part (i).

1
NST

[(
T∑

t=p+1

∑
i∈S

ζ̂F
t ζ̂

F ′

t ẽ2
it

)
−H ′

ζF

(
T∑

t=p+1

∑
i∈S

ζF
t ζ

F ′

t e2
it

)
HζF

]

= 1
NST

T∑
t=p+1

∑
i∈S

(ζ̂F
t ζ̂

F ′

t −H ′
ζF ζ

F
t ζ

F ′

t HζF )ẽ2
it + 1

NST

T∑
t=p+1

∑
i∈S

H ′
ζF ζ

F
t ζ

F ′

t HζF (ẽ2
it − e2

it)

The first term is bounded by

 1
T − p

T∑
t=p+1

∥ζ̂F
t ζ̂

F ′

t −H ′
ζF ζ

F
t ζ

F ′

t HζF ∥2 1
T − p

T∑
t=p+1

(
1
NS

∑
i∈S

ẽ2
it

)2
 1

2

≤ op(1)

[
1

(T − p)NS

T∑
t=p+1

∑
i∈S

ẽ4
it

] 1
2

= op(1)Op(1)

where the op(1) terms follows from the proof in part (i) of this lemma and (T − p)−1N−1
S

∑T
t=p+1

∑
i∈S ẽ

4
it =

Op(1) follows from Equation (B.5). The second term is bounded by

 1
T

T∑
t=p+1

∥H ′
ζF ζ

F
t ζ

F ′

t HζF ∥2 1
T

T∑
t=p+1

[
1
NS

∑
i∈S

(ẽ2
it − e2

it)

]2


1
2

≤ Op(1)

 2
T

T∑
t=p+1

[
1
NS

∑
i∈S

ẽit(ẽit − eit)

]2

+ 2
T

T∑
t=p+1

[
1
NS

∑
i∈S

eit(ẽit − eit)

]2


1
2

≤ Op(1)

[
2

TNS

T∑
t=p+1

∑
i∈S

ẽ2
it(ẽit − eit)2 + 2

TNS

T∑
t=p+1

∑
i∈S

e2
it(ẽit − eit)2

] 1
2

≤ Op(1)


[

2
TNS

T∑
t=p+1

∑
i∈S

ẽ4
it

2
TNS

T∑
t=p+1

∑
i∈S

(ẽit − eit)4

] 1
2

+

[
2

TNS

T∑
t=p+1

∑
i∈S

e4
it

2
TNS

T∑
t=p+1

∑
i∈S

(ẽit − eit)4

] 1
2


1
2

= op(1)

where (NST )−1∑T
t=p+1

∑
i∈S ẽ

4
it = Op(1) follows from Equation (B.5), (NST )−1∑T

t=p+1
∑

i∈S e
4
it = Op(1)

follows from Assumption 3(a), and (NST )−1∑T
t=p+1

∑
i∈S(ẽit − eit)4 = op(1) follows from Lemma B2(ii).

Q.E.D.

Proof of Theorem 1:
We will first show that HζF is non-singular as N and T → ∞. To see this, consider the bound of

T−1∥ζ̂F ′
ζ̂F −H ′

ζF ζ
F ′
ζFHζF ∥

1
T

∥ζ̂F ′
ζ̂F −H ′

ζF ζ
F ′
ζFHζF ∥ ≤ 1

T
∥ζ̂F ′

(ζ̂F − ζFHζF )∥ + 1
T

∥(ζ̂F − ζFHζF )′ζFHζF ∥ = Op(δ−1
NT )
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by Lemma A9 and Cauchy-Schwarz inequality. Since ζ̂F ′
ζ̂F /(T − p) = IqF and ζF ′

ζF /T →p IqF by Assump-
tion 1(b), it must follow that HζF is non-singular as N and T → ∞, otherwise (ζ̂F ′

ζ̂F −H ′
ζF ζ

F ′
ζFHζF )/T

cannot converge to zero.
(i) Define w∗

i ≡ e′
iζ

F (
∑T

t=p+1 ζ
F
t ζ

F ′

t e2
it)−1ζF ′

ei, and it can be rewritten as

w∗
i =

e′
iζ

FHζF

√
T − p

(
1

T − p

T∑
t=p+1

H ′
ζF ζ

F
t ζ

F ′

t HζF e2
it

)−1
H ′

ζF ζ
F ′
ei

√
T − p

→d χ2
qF

by Assumption 8(a). Note that Lemma B1(i) and the condition that
√
T/N → 0 imply that

1√
T − p

(H ′
ζF ζ

F ′
ei − ζ̂F ′

X̃i) = Op

(√
T

δ2
NT

)
= op(1) (B.6)

Since (T − p)−1∑T
t=p+1 ζ

F
t ζ

F ′

t e2
it →p a positive definite matrix Ωi and HζF is non-singular asymptotically,

∥[
∑T

t=p+1 H
′
ζF ζ

F
t ζ

F ′

t HζF e2
it/(T−p)]−1∥ = Op(1). Also, we have (T−p)−1

(∑T
t=p+1 ζ̂

F
t ζ̂

F ′

t ẽ2
it −

∑T
t=p+1 H

′
ζF ζ

F
t ζ

F ′

t HζF e2
it

)
=

op(1) by Lemma B3(ii), so (T−p)−1∑T
t=p+1 ζ̂

F
t ζ̂

F ′

t ẽ2
it is positive definite asymptotically and ∥[

∑T
t=p+1 ζ̂

F
t ζ̂

F ′

t ẽ2
it/(T−

p)]−1∥ = Op(1). Thus,∥∥∥∥∥∥
(

1
T − p

T∑
t=p+1

ζ̂F
t ζ̂

F ′

t ẽ2
it

)−1

−
(

1
T − p

T∑
t=p+1

H ′
ζF ζ

F
t ζ

F ′

t HζF e2
it

)−1∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
T − p

T∑
t=p+1

H ′
ζF ζ

F
t ζ

F ′

t HζF e2
it

)−1∥∥∥∥∥∥
∥∥∥∥∥ 1
T − p

T∑
t=p+1

(
H ′

ζF ζ
F
t ζ

F ′

t HζF e2
it − ζ̂F

t ζ̂
F ′

t ẽ2
it

)∥∥∥∥∥
∥∥∥∥∥∥
(

1
T − p

T∑
t=p+1

ζ̂F
t ζ̂

F ′

t ẽ2
it

)−1∥∥∥∥∥∥
= Op(1)op(1)Op(1) (B.7)

Combining Equations (B.6) and (B.7), we have wi − w∗
i = op(1) and wi →d χ2

qF
for i ∈ S.

(ii) Define W ∗ ≡
∑

i∈S e
′
iζ

F (
∑T

t=p+1
∑

i∈S ζ
F
t ζ

F ′

t e2
it)−1ζF ′ ∑

i∈S ei, and it can be rewritten as

W ∗ ≡
∑

i∈S e
′
iζ

FHζF√
(T − p)NS

(∑T
t=p+1

∑
i∈S H

′
ζF ζ

F
t ζ

F ′

t HζF e2
it

(T − p)NS

)−1
H ′

ζF ζ
F ′ ∑

i∈S ei√
(T − p)NS

→d χ2
qF

by Assumption 8(b). Note that Lemma B1(ii) and the condition that
√
T/N → 0 imply that

1√
(T − p)NS

(
∑
i∈S

H ′
ζF ζ

F ′
ei −

∑
i∈S

ζ̂F ′
X̃i) = Op

(√
T

δ2
NT

)
= op(1) (B.8)

Also, since (T − p)−1N−1
S

∑T
t=p+1

∑
i∈S ζ

F
t ζ

F ′

t e2
it →p Ω, HζF is non-singular asymptotically, and (T −

p)−1N−1
S

∑T
t=p+1

∑
i∈S

(
ζ̂F

t ζ̂
F ′

t ẽ2
it −H ′

ζF ζ
F
t ζ

F ′

t HζF e2
it

)
→p 0 by Lemma B3(ii), we have

(
1

(T − p)NS

T∑
t=p+1

∑
i∈S

ζ̂F
t ζ̂

F ′

t ẽ2
it

)−1

−

(
1

(T − p)NS

T∑
t=p+1

∑
i∈S

H ′
ζF ζ

F
t ζ

F ′

t HζF e2
it

)−1

= op(1) (B.9)
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by the same argument for proving Equation (B.7). Combining Equations (B.8) and (B.9), we have W−W ∗ =
op(1) and W →d χ2

qF
. Q.E.D.

C Proof of Theorem 2
Let us re-consider X̂S :

X̂S = MF̂X
S = ζSΓSS′

+ eS − PF̂ (ζSΓSS′
+ eS) +MF̂ FΠS′

(C.1)

Recall that the estimator ζ̂S is equal to
√
T − p times the eigenvectors corresponding to the κS = q − κF

largest eigenvalues of the (T − p) × (T − p) matrix X̂SX̂S′ . Under the alternative hypothesis, κS < qS , ζ̂S is
(T − p) × κS , so it can only span the subspace of ζS , which is (T − p) × qS . Let ζ̄S equal

√
T − p times the

eigenvectors corresponding to the qS largest eigenvalues of X̂SX̂S′ and V̄S be the diagonal matrix consisting
of the first qS largest eigenvalues of (1/NST )X̂SX̂S′ in decreasing order. Hence, we have

(1/NST )X̂SX̂S′
ζ̄S = ζ̄S V̄S (C.2)

Recall that H̄ζS = (ΓSS′ΓSS/NS)(ζS′
ζ̄S/T )V̄ −1

S . Similar to HζS , H̄ζS is also Op(1). Since ζ̄S is (T −p) × qS ,
Lemmas A5 and A8 in Appendix A.2 are directly applicable to ζ̄S , which is summarized by the following
Lemma.

Lemma C1: Under Assumptions 1 - 6,
(i) T−1∑T

t=p+1 ∥ζ̄S
t − H̄ ′

ζSζ
S
t ∥2 = Op(δ−2

NT ).
(ii) T−1(ζ̄S − ζSH̄ζS )′ζ = Op(δ−2

NT ).
(iii) H̄ζS is non-singular as N and T → ∞.
Proof:
The same as the proof of Lemmas A5 and A8. Q.E.D.
By the definition of ζ̂S , ζ̂S is equal to the first κS columns of ζ̄S . Let ζ̄S be partitioned as ζ̄S =

[ζ̄S
1:κS

...ζ̄S
κS+1:qS

], where ζ̄S
1:κS

is a (T − p) × κS matrix consisting of the first κS columns of ζ̄S and ζ̄S
κS+1:qS

is
a (T − p) × κF matrix consisting of the last κF = qS − κS columns of ζ̄S . Thus, we have ζ̂S = ζ̄S

1:κS
. Define

H̄S
1:κS

= (ΓSS′ΓSS/NS)(ζS′
ζ̄S

1:κS
/T )V̄ −1

S,1:κS
and H̄S

κS+1:qS
= (ΓSS′ΓSS/NS)(ζS′

ζ̄S
κS+1:qS

/T )V̄ −1
S,κS+1:qS

, where
V̄S,1:κS is a diagonal matrix consisting of the first κS largest eigenvalues of (1/NST )X̂SX̂S′ in descending
order, and V̄S,κS+1:qS

is a is a diagonal matrix consisting of the (κS + 1)th through the qS largest eigenvalues

of (1/NST )X̂SX̂S′ in descending order. Hence, H̄ζS = [H̄S
1:κS

...H̄S
κS+1:qS

] and V̄S =

[
V̄S,1:κS 0

0 V̄S,κS+1:qS

]
.

Now, re-write Equation (A.7) as

X̃ = Mζ̂SMF̂X = Mζ̂SMF̂ (FΠ′ + ζSΓS′
+ ζF ΓF ′

+ e)

= Mζ̂SMF̂ (FΠ′ + ζSH̄ζS H̄−1
ζS ΓS′

+ ζF ΓF ′
+ e)

= Mζ̂SMF̂ (FΠ′ + [ζSH̄S
1:κS

...ζSH̄S
κS+1:qS

]ΞS′
+ ζF ΓF ′

+ e) (C.3)
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where we use the definition that ΞS′ ≡ H̄−1
ζS ΓS′ . Recall that ΞS = [ΞS

1:κS

...ΞS
κS+1:qS

], where ΞS
1:κS

is the first

κS columns of ΞS and ΞS
κS+1:qS

is the last qS −κS columns of ΞS . Let υS ≡ ζSH̄S
1:κS

, υF = [ζSH̄S
κS+1:qS

...ζF ],

ΨS = ΞS
1:κS

, ΨF = [ΞS
κS+1:qS

...ΓF ], and Ψ = [ΨS
...ΨF ], so Equation (C.4) reduces to

X̃ = Mζ̂SMF̂ (FΠ′ + υSΨS′
+ υF ΨF ′

+ e) (C.4)

Note that ζ̂S is an estimate for υS = ζSH̄S
1:κS

and that

T−1
T∑

t=p+1
∥ζ̂S

t − υS
t ∥2 = T−1

T∑
t=p+1

∥ζ̂S
t − H̄S′

1:κS
ζS

t ∥2 ≤ T−1
T∑

t=p+1
∥ζ̄S

t − H̄ ′
ζSζ

S
t ∥2 = Op(δ−2

NT ) (C.5)

by Lemma C1(i) and the fact that ζ̄S
1:κS

≡ ζ̂S . Let Ĝ = [F̂
...ζ̂S ], G = [F

...υS ], and L = [Π
...ΨS ]. Note that

F̂ ′ζ̂S = 0, so Mζ̂SMF̂ = MĜ . Hence, X̃ can be rewritten as

X̃ = Mζ̂SMF̂ (FΠ′ + υSΨS′
+ υF ΨF ′

+ e)

= υF ΨF ′
+ e− PĜ(υF ΨF ′

+ e) +MĜGL′ (C.6)

Lemma C2: Under Assumption 2, ΨF ′ΨF /N →p a κF × κF positive definite matrix.
Proof:

Note that Ψ = [ΨS
...ΨF ] = [ΓSH̄−1′

ζS

...ΓF ] = ΓD = ΛGA−1D, where D =

[
H̄−1′

ζS 0
0 IqF

]
is a non-singular

matrix asymptotically. Hence,
N−1Ψ′Ψ = N−1D′A−1′

G′Λ′ΛGA−1D

Since Λ′Λ/N →p a r×r positive definite matrix ΣΛ, rank(G) = q, and A is non-singular, N−1Ψ′Ψ is positive
definite asymptotically. Since ΨF ′ΨF /N is a principal submatrix of N−1Ψ′Ψ, it must be positive definite
asymptotically. Q.E.D.

Lemma C3: Under Assumptions 1 - 6,

(i) Define HG =

[
HF 0
0 IκS

]
. HG is non-singular and T−1∑T

t=p+1 ∥Ĝt −H ′
GGt∥2 = Op(δ−2

NT ), where Ĝt

and Gt are transposes of the tth row of Ĝ and G, respectively.
(ii) T−1υS′

υF = Op(δ−2
NT ) +Op(T−1/2).

Proof:
(i) HG is non-singular because HF is non-singular by Lemma A2(ii). Also, note that T−1∑T

t=p+1 ∥F̂t −
H ′

F Ft∥2 = Op(δ−2
NT ) by Lemma A2(i) and that T−1∑T

t=p+1 ∥ζ̂S
t − υS

t ∥2 = Op(δ−2
NT ) by Lemma C1 (see

Equation (C.5)). Since Ĝ = [F̂
...ζ̂S ] and G = [F

...υS ], it follows that T−1∑T
t=p+1 ∥Ĝt −H ′

GGt∥2 = Op(δ−2
NT ).

(ii) Since υS ≡ ζSH̄S
1:κS

and υF = [ζSH̄S
κS+1:qS

...ζF ].

∥T−1υS′
υF ∥ ≤ ∥T−1H̄S′

1:κS
ζS′

ζSH̄S
κS+1:qS

∥ + ∥T−1H̄S′

1:κS
ζS′

ζF ∥

where the second term is Op(T−1/2) by Assumption 1(c). For the first term, note that T−1ζ̄S′

1:κS
ζ̄S

κS+1:qS
= 0
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by the orthogonality of eigenvectors, so we have

∥T−1H̄S′

1:κS
ζS′

ζSH̄S
κS+1:qS

∥

≤ ∥T−1(ζSH̄S
1:κS

− ζ̄S
1:κS

)′ζSH̄S
κS+1:qS

∥ + ∥T−1ζ̄S′

1:κS
(ζSH̄S

κS+1:qS
− ζ̄S

κS+1:qS
)∥ + ∥T−1ζ̄S′

1:κS
ζ̄S

κS+1:qS
∥

≤ ∥T−1(ζSH̄S − ζ̄S)′ζSH̄ζS ∥ + ∥T−1ζ̄S′
(ζSH̄ζS − ζ̄S)∥

≤ 2∥T−1(ζSH̄ζS − ζ̄S)′ζSH̄ζS ∥ + ∥T−1(ζ̄S − ζSH̄ζS )′(ζSH̄ζS − ζ̄S)∥

= Op(δ−2
NT )

by Lemma C1. Q.E.D.
Now, let us consider the estimator ζ̂F under the alternative hypothesis. Recall that ζ̂F is equal to

√
T − p

times the eigenvectors corresponding to the κF largest eigenvalues of the (T − p) × (T − p) matrix X̃X̃ ′, so
we have

(1/NT )X̃X̃ ′ζ̂F = ζ̂F ÛF (C.7)

where ÛF is the diagonal matrix consisting of the first κF largest eigenvalues of (1/NT )X̃X̃ ′ in decreasing
order. Let UF be the diagonal matrix consisting of the first κF largest eigenvalues of (υF ΨF ′ + e)(υF ΨF ′ +
e)′/NT in decreasing order. We have

∥Û−1
F ∥ = Op(1) (C.8)

To see this, first note that υF ′
υF /T has full rank asymptotically because υF = [ζSH̄S

κS+1:qS

...ζF ] is of full
column rank (note that H̄ζS is non-singular asymptotically, so its submatrixH̄S

κS+1:qS
has rank equal to qS −

κS). By Lemma C2, ΨF ′ΨF /N also has full rank asymptotically, so Lemma A1(ii) is applicable to UF , i.e. UF

converges to a non-singular diagonal matrix consisting of the eigenvalues of limN,T →∞(υF ′
υF /T )(ΨF ′ΨF /N).

Additionally, the difference between X̃ and υF ΨF ′ + e is that X̃ contains some additional estimation error
terms defined in Equation (C.6). Again, by Amengual and Watson’s (2007) results, we know that such
estimation errors will not affect the limits of the first κF largest eigenvalues of X̃X̃ ′/NT , i.e. ÛF −UF →p 0.
Hence, ÛF is non-singular asymptotically and ∥Û−1

F ∥ = Op(1).
Now, substituting Equation (C.6) into Equation (C.7) gives

1
NT

[
υF ΨF ′

+ e− PĜ(υF ΨF ′
+ e) +MĜGL′

] [
υF ΨF ′

+ e− PĜ(υF ΨF ′
+ e) +MĜGL′

]′
ζ̂F Û−1

F = ζ̂F

Note that T−1∑T
t=p+1 ∥ζ̂F

t ∥ isOp(1) because ζ̂F ′
ζ̂F /(T−p) = IqF . DefineHυF = (ΨF ′ΨF /N)(υF ′

ζ̂F /T )Û−1
F .

We have HυF = Op(1) because ∥HυF ∥ ≤ ∥ζ̂F ′
ζ̂F /T∥ 1

2 ∥υF ′
υF /T∥ 1

2 ∥ΨF ′ΨF /N∥∥Û−1
F ∥ = Op(1) by Lemma

C2 and (C.8). Analogous to Lemmas A1(i), A5 and A9, the following lemma shows that ζ̂F
t is a consistent

estimate for H ′
υF υ

F
t and that the convergence rate is the same as in Lemmas A1(i), A5, and A9.

Lemma C4: Under Assumptions 1 - 6, T−1∑T
t=p+1 ∥ζ̂t

F
−H ′

υF υ
F
t ∥2 = Op

(
δ−2

NT

)
.

Proof:
Note that Equation (C.4) has almost the same structure as (A.7). The only difference is that Equation(A.7)

deals with structural shock ζ, whereas Equation (C.4) deals with υ, which is a rotation of ζ. Note that
Assumptions 1 - 6 are stated in terms of ζ and Γ. To prove Lemma C4, it is sufficient to show that
these assumptions hold if ζ and Γ are replaced by υ and Ψ. Assumptions 1(a), 2(a), 2(b), 3, 4, and 5 are
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the same whether the model is expressed in terms of ζ or υ. Also, since υ = [ζSH̄ζS

...ζF ] = ζD−1′ and

Ψ = [ΓSH̄−1′

ζS

...ΓF ] = ΓD, where D =

[
H̄−1′

ζS 0
0 IqF

]
is a asymptotically non-singular by Lemma C1 and

D = Op(1), the boundedness conditions in Assumption 6 still hold if we replace ζt with υt. For the same
reason, Assumption 2(b) can be rewritten as “E∥υt∥4 < M , E(υsυ

′
t) = 0 for any s ̸= t, and T−1∑T

p+1 υtυ
′
t

is a q × q positive definite matrix as T → ∞”. Furthermore, the role of Assumption 1(c) for the proof of
Lemma 9 is that T−1ζS′

ζF can be bounded by O(T−1/2) ≤ Op(δ−1
NT ), but we have already proved that

T−1υS′
υF = Op(δ−2

NT ) + Op(T−1/2) ≤ Op(δ−1
NT ), which can serve to play the same role as Assumption 1(c).

For Assumption 2(c), the role of ΓF F ′ΓF F /NF →p ΣΓF F is to ensure that ΓF ′ΓF /N is positive definite
asymptotically, and Lemma C2 shows that ΨF ′ΨF /N →p a κF × κF positive definite matrix. Lastly, the
analog of ΓSS in (C.4) is the first NS rows of ΨS = ΞS

1:κS
corresponding to the slow variables. Let ΨSS

and ΞSS denote the first NS rows of ΨS and ΞS , respectively. Since ΞS′ ≡ H̄−1
ζS ΓS′ and ΞSS′ ≡ H̄−1

ζS ΓSS′ ,
N−1

S ΞSS′ΞSS is positive definite asymptotically by the assumption that ΓSS′ΓSS′
/NS →p ΣΓSS and Lemma

C1(iii) that H̄ζS is non-singular. N−1
S ΨSS′ΨSS is a principal submatrix of N−1

S ΞSS′ΞSS , so it is also positive
definite asymptotically. Since all analogous assumptions in terms of υ and Ψ are satisfied, Lemma C4 holds
by Lemma A9. Q.E.D.

Proof of Theorem 2:

We will first show that HυF is non-singular as N and T → ∞. To see this, consider the bound of
T−1∥ζ̂F ′

ζ̂F −H ′
υF υ

F ′
υFHυF ∥

1
T

∥ζ̂F ′
ζ̂F −H ′

υF υ
F ′
υFHυF ∥ ≤ 1

T
∥ζ̂F ′

(ζ̂F − υFHυF )∥ + 1
T

∥(ζ̂F − υFHυF )′υFHυF ∥ = Op(δ−1
NT )

by Lemma C4 and Cauchy-Schwarz inequality. Note that υF ′
υF /T is positive definite asymptotically because

it is a principal submatrix of υ′υ/T = D−1ζ ′ζD−1′
/T , which is asymptotically positive definite by Assumption

1(b) and Lemma C1(iii). Also, since ζ̂F ′
ζ̂F /(T − p) = IκF

, it must follow that HυF is non-singular as N and
T → ∞, otherwise (ζ̂F ′

ζ̂F −H ′
υF υ

F ′
υFHυF )/T cannot converge to zero.

Furthermore, the proof of Lemma C4 has shown that the model in Equation (C.4) satisfies Assumptions
1 - 6 with ζ and Γ replaced by υ and Ψ. Thus, we have the following result analogous to Lemma B3.

(T − p)−1

[(
T∑

t=p+1
ζ̂F

t ζ̂
F ′

t ẽ2
it

)
−H ′

υF

(
T∑

t=p+1
υF

t υ
F ′

t e2
it

)
HυF

]
→p 0

(T − p)−1N−1
S

[(
T∑

t=p+1

∑
i∈S

ζ̂F
t ζ̂

F ′

t ẽ2
it

)
−H ′

υF

(
T∑

t=p+1

∑
i∈S

υF
t υ

F ′

t e2
it

)
HυF

]
→p 0

Note that (T − p)−1∑T
t=p+1 υ

F
t υ

F ′

t e2
it and [NS(T − p)]−1∑T

t=p+1
∑

i∈S υ
F
t υ

F ′

t e2
it are Op(1) by Assumptions

1 and 3, so (T − p)−1∑T
t=p+1 ζ̂

F
t ζ̂

F ′

t ẽ2
it and [NS(T − p)]−1∑T

t=p+1
∑

i∈S ζ̂
F
t ζ̂

F ′

t ẽ2
it are also Op(1).

(i) We will show that wi = X̃ ′
i ζ̂

F (
∑T

t=p+1 ζ̂
F
t ζ̂

F ′

t ẽ2
it)−1ζ̂F ′

X̃i → ∞ as N and T → ∞ for i ∈ S. First,
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consider ζ̂F ′
X̃i/(T − p), which can be rewritten as

1
T − p

ζ̂F ′
X̃i = 1

T − p
ζ̂F ′

[υFψF
i + ei − PĜ(υFψF

i + ei) +MĜGLi]

= 1
T − p

ζ̂F ′
(υFψF

i + ei + GLi)

where ψF
i and Li are the transposes of the ith rows of ΨF and L, respectively, and we use the fact that ζ̂F ′ Ĝ =

ζ̂F ′ [F̂
...ζ̂S ] = 0. Note that ∥ζ̂F ′

ei/(T − p)∥ ≤∥(ζ̂F − υFHυF )′ei/(T − p)∥ + ∥H ′
υF υ

F ′
ei/(T − p)∥ = Op(δ−1

NT ) +
Op(T−1/2) by Lemma C4, Cauchy-Schwarz inequality and Assumptions 3(a) and 6(e). Additionally, by the
fact that ζ̂F ′ Ĝ = 0, we have∥∥∥∥ 1
T − p

ζ̂F ′
GLi

∥∥∥∥ =
∥∥∥∥ 1
T − p

ζ̂F ′
(GHG − Ĝ)H−1

G Li

∥∥∥∥
≤

∥∥∥∥ 1
T − p

(ζ̂F − υFHυF )′(GHG − Ĝ)H−1
G Li

∥∥∥∥+ ∥HυF ∥
∥∥∥∥ 1
T − p

υF ′
(GHG − Ĝ)H−1

G Li

∥∥∥∥
≤

∥∥∥∥ 1
T − p

(ζ̂F − υFHυF )′(GHG − Ĝ)H−1
G Li

∥∥∥∥+ ∥HυF ∥
∥∥∥∥ 1
T − p

D−1ζ ′(GHG − Ĝ)H−1
G Li

∥∥∥∥
= Op

(
1
δ2

NT

)

by Lemmas C3(i), C4, A4(i) and C1(ii). Lastly, we consider ζ̂F ′
υFψF

i /(T − p). Recall that ΞS′ ≡ H̄−1
ζS ΓS′ ,

ΞS = [ΞS
1:κS

...ΞS
κS+1:qS

], ΨF = [ΞS
κS+1:qS

...ΓF ], and υF = [ζSH̄S
κS+1:qS

...ζF ]. Since ΓF = [ΓSF ′ ...ΓF F ′ ]′ =

[0qF ×NS

...ΓF F ′ ]′, the last qF entries in ψF
i are zeros for i ∈ S and υFψF

i = ζSH̄S
κS+1:qS

ξS
i,κS+1:qS

, where
ξS

i,κS+1:qS
is the transpose of the ith row of ΞS

κS+1:qS
. Hence, we have

1
T − p

ζ̂F ′
υFψF

i

= 1
T − p

ζ̂F ′
ζSH̄S

κS+1:qS
ξS

i,κS+1:qS

=
[

1
T − p

H ′
υF υ

F ′
ζS + 1

T − p
(ζ̂F − υFHυF )′ζS

]
H̄S

κS+1:qS
ξS

i,κS+1:qS

=
[

1
T − p

H ′
υF [ζSH̄S

κS+1:qS

...ζF ]′ζS + 1
T − p

(ζ̂F − υFHυF )′ζS

]
H̄S

κS+1:qS
ξS

i,κS+1:qS

=

H ′
υF

 (H̄S′

κS+1:qS

ζS′
ζS

T −p

)(
1

T −pζ
F ′
ζS
) + 1

T − p
(ζ̂F − υFHυF )′ζS

 H̄S
κS+1:qS

ξS
i,κS+1:qS

= H ′
υF

[
H̄S′

κS+1:qS

ζS′
ζS

T −p H̄
S
κS+1:qS

Op(1/
√
T )

]
ξS

i,κS+1:qS
+Op

(
1
δNT

)
(C.9)

where the Op(1/
√
T ) term follows from Assumption 1(c) and the op(δ−1

NT ) follows from Lemma C4 and
Cauchy-Schwarz inequality. Note that H̄S

κS+1:qS
is off full column rank by the fact that H̄ζS is non-singular,

so H̄S′

κS+1:qS

ζS′
ζS

T −p H̄
S
κS+1:qS

is of full rank asymptotically. Since ξS
i,κS+1:qS

is assumed to be non-zero and
HυF is of full rank, Equation (C.9) bounded away from zero asymptotically. Also, we have proved that
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ζ̂F ′
ei/(T−p) = op(1) and ζ̂F ′GLi/(T−p) = op(1), so ζ̂F ′

X̃i/(T−p) is bounded away from zero asymptotically.
Thus, we have the desired result:

plimN,T →∞ inf
(

wi

T − p

)
= plimN,T →∞ inf

 X̃ ′
i ζ̂

F

T − p

(∑T
t=p+1 ζ̂

F
t ζ̂

F ′

t ẽ2
it

T − p

)−1
ζ̂F ′

X̃i

T − p

 > 0

(ii) We will show that

W =

(∑
i∈S

X̃ ′
i ζ̂

F

)(
T∑

t=p+1

∑
i∈S

ζ̂F
t ζ̂

F ′

t ẽ2
it

)−1(
ζ̂F ′ ∑

i∈S

X̃i

)
→ ∞

as N and T → ∞. First, using Equation (C.6), ζ̂F ′ ∑
i∈S X̃i/[

√
NS(T − p)] can be rewritten as

1√
NS(T − p)

ζ̂F ′ ∑
i∈S

X̃i = 1√
NS(T − p)

ζ̂F ′ ∑
i∈S

[υFψF
i + ei − PĜ(υFψF

i + ei) +MĜGLi]

= 1√
NS(T − p)

ζ̂F ′ ∑
i∈S

(υFψF
i + ei + GLi)

where ψF
i and Li are the transposes of the ith rows of ΨF and L, respectively, and we use the fact that

ζ̂F ′ Ĝ = ζ̂F ′ [F̂
...ζ̂S ] = 0. Note that∥∥∥∥∥ 1√
NS(T − p)

ζ̂F ′ ∑
i∈S

ei

∥∥∥∥∥
≤

∥∥∥∥ 1
T − p

(ζ̂F − υFHυF )′
∑

i∈S ei√
NS

∥∥∥∥+
∥∥∥∥ 1
T − p

H ′
υF υ

F ′
∑

i∈S ei√
NS

∥∥∥∥
≤

[
1

T − p

T∑
t=p+1

∥ζ̂F
t −H ′

υF υ
F
t ∥2 1

T − p

T∑
t=p+1

∥∥∥∥∑i∈S eit√
NS

∥∥∥∥2] 1
2

+ ∥HυF ∥
∥∥∥∥ 1
T − p

D−1ζ ′
∑

i∈S ei√
NS

∥∥∥∥
= Op

(
1
δNT

)
+Op

(
1√
T

)
(C.10)
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by Lemma C4 and Assumptions 3(f) and 6(f). Additionally, by the fact that ζ̂F ′ Ĝ = 0, we have∥∥∥∥∥ 1√
NS(T − p)

ζ̂F ′
G
∑
i∈S

Li

∥∥∥∥∥
=

∥∥∥∥∥ 1
T − p

ζ̂F ′
(GHG − Ĝ)H−1

G
1√
NS

∑
i∈S

Li

∥∥∥∥∥
≤

∥∥∥∥∥ 1
T − p

(ζ̂F − υFHυF )′(GHG − Ĝ)H−1
G

1√
NS

∑
i∈S

Li

∥∥∥∥∥+ ∥HυF ∥

∥∥∥∥∥ 1
T − p

υF ′
(GHG − Ĝ)H−1

G
1√
NS

∑
i∈S

Li

∥∥∥∥∥
≤

∥∥∥∥∥ 1
T − p

(ζ̂F − υFHυF )′(GHG − Ĝ)H−1
G

1√
NS

∑
i∈S

Li

∥∥∥∥∥+ ∥HυF ∥

∥∥∥∥∥ 1
T − p

D−1ζ ′(GHG − Ĝ)H−1
G

1√
NS

∑
i∈S

Li

∥∥∥∥∥
= Op

(√
N

δ2
NT

)
(C.11)

by Lemmas C3(i), C4, A4(i) and C1(ii). Lastly, we consider ζ̂F ′
υF
∑

i∈S ψ
F
i /[

√
NS(T−p)]. Recall that ΞS′ ≡
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where the Op(1/
√
T ) term follows from Assumption 1(c) and the op(δ−1

NT ) follows from Lemma C4 and
Cauchy-Schwarz inequality. Using the results in (C.10), (C.11) and (C.12), we have
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Note that the Op

(
T α/2

δNT

)
term is op(1) because 0 < α ≤ 0.5 and

√
T/N → 0 as N and T → ∞,

that the Op

(
T α/2√

N
δ2

NT

)
term is op(1) because

√
N/T 1−α/2 → 0 as N and T → ∞, and that HυF and

H̄S′

κS+1:qS

ζS′
ζS

T −p H̄
S
κS+1:qS

are asymptotically non-singular, so (C.13) is bounded away from zero asymptoti-
cally. Since Ω̂ is positive definite and Op(1), we have the desired result:
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which implies that W → ∞. Q.E.D.
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D Data Description

Transformations: 1 = levels, 2 = first differences, 4 = logs, 5= first differences of logs of the original series.

S denote slow variables and F denotes fast variables.

Short Name Mnemonic Long Label F/S Trans.

PI A0M052 Personal income (AR, bil. Chain 2005$) S 5

PI less transfers A0M051 Personal income less transfer payments (AR, bil. Chain 2005$) S 5

Consumption A0M224_R Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB) S 5

M&T sales A0M057 Manufacturing and trade sales (mil. Chain 2005 $) S 5

Retail sales A0M059 Sales of retail stores (mil. Chain 2000 $) S 5

IP: total IPS10 Industrial Production Index - Total Index S 5

IP: products IPS11 Industrial Production Index - Products, Total S 5

IP: final prod IPS299 Industrial Production Index - Final Products S 5

IP: cons gds IPS12 Industrial Production Index - Consumer Goods S 5

IP: cons dble IPS13 Industrial Production Index - Durable Consumer Goods S 5

IP:cons nondble IPS18 Industrial Production Index - Nondurable Consumer Goods S 5

IP:bus eqpt IPS25 Industrial Production Index - Business Equipment S 5

IP: matls IPS32 Industrial Production Index - Materials S 5

IP: dble mats IPS34 Industrial Production Index - Durable Goods Materials S 5

IP:nondble mats IPS38 Industrial Production Index - Nondurable Goods Materials S 5

IP: mfg IPS43 Industrial Production Index - Manufacturing (Sic) S 5

IP: res util IPS307 Industrial Production Index - Residential Utilities S 5

IP: fuels IPS306 Industrial Production Index - Fuels S 5

NAPM prodn PMP Napm Production Index (Percent) S 1

Cap util B00004 Capacity Utilization S 2

Emp CPS total LHEM Civilian Labor Force: Employed, Total (Thous.,Sa) S 5

Emp CPS nonag LHNAG Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa) S 5

U: all LHUR Unemployment Rate: All Workers, 16 Years & Over (%,Sa) S 2

U: mean duration LHU680 Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa) S 2

U < 5 wks LHU5 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa) S 5

U 5-14 wks LHU14 Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa) S 5

U 15+ wks LHU15 Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa) S 5

U 15-26 wks LHU26 Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa) S 5

U 27+ wks LHU27 Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa) S 5

UI claims A0M005 Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB) S 5

Emp: total CES002 Employees On Nonfarm Payrolls: Total Private S 5

Emp: gds prod CES003 Employees On Nonfarm Payrolls - Goods-Producing S 5

Emp: mining CES006 Employees On Nonfarm Payrolls - Mining S 5

Emp: const CES011 Employees On Nonfarm Payrolls - Construction S 5

Emp: mfg CES015 Employees On Nonfarm Payrolls - Manufacturing S 5

Emp: dble gds CES017 Employees On Nonfarm Payrolls - Durable Goods S 5

Emp: nondbles CES033 Employees On Nonfarm Payrolls - Nondurable Goods S 5

Emp: services CES046 Employees On Nonfarm Payrolls - Service-Providing S 5

Emp: TTU CES048 Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities S 5

Emp: wholesale CES049 Employees On Nonfarm Payrolls - Wholesale Trade S 5

Emp: retail CES053 Employees On Nonfarm Payrolls - Retail Trade S 5

Emp: FIRE CES088 Employees On Nonfarm Payrolls - Financial Activities S 5

Emp: Govt CES140 Employees On Nonfarm Payrolls - Government S 5
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Avg hrs CES151 Avg Weekly Hrs: Private Nonfarm - Goods-Producing S 1

Overtime: mfg CES155 Avg Weekly Hrs: Private Nonfarm Payrolls - Mfg Overtime Hours S 2

Avg hrs: mfg A0M001 Average Weekly Hours, Mfg. (Hours) (TCB) S 1

NAPM empl PMEMP Napm Employment Index (Percent) S 1

CPI-U: all PUNEW CPI-U: All Items (82-84=100,Sa) S 5

CPI-U: apparel PU83 Cpi-U: Apparel & Upkeep (82-84=100,Sa) S 5

CPI-U: transp PU84 Cpi-U: Transportation (82-84=100,Sa) S 5

CPI-U: medical PU85 Cpi-U: Medical Care (82-84=100,Sa) S 5

CPI-U: comm. PUC Cpi-U: Commodities (82-84=100,Sa) S 5

CPI-U: dbles PUCD Cpi-U: Durables (82-84=100,Sa) S 5

CPI-U: services PUS Cpi-U: Services (82-84=100,Sa) S 5

CPI-U: ex food PUXF Cpi-U: All Items Less Food (82-84=100,Sa) S 5

CPI-U: ex shelter PUXHS Cpi-U: All Items Less Shelter (82-84=100,Sa) S 5

CPI-U: ex med PUXM Cpi-U: All Items Less Medical Care (82-84=100,Sa) S 5

PCE defl JPC Pce, Impl Pr Defl:Pce (1987=100) S 5

PCE defl: dlbes JPCD Pce, Impl Pr Defl:Pce; Durables (1987=100) S 5

PCE defl: nondble JPCN Pce, Impl Pr Defl:Pce; Nondurables (1996=100) S 5

PCE defl: services JPCSV Pce, Impl Pr Defl:Pce; Services (1987=100) S 5

AHE: goods CES275 Avg Hourly Earnings: Private Nonfarm Payrolls - Goods-Producing S 5

AHE: const CES277 Avg Hourly Earnings: Private Nonfarm Payrolls - Construction S 5

AHE: mfg CES278 Avg Hourly Earnings: Private Nonfarm Payrolls - Manufacturing S 5

HStarts: Total HSFR Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar) F 4

HStarts: NE HSNE Housing Starts:Northeast (Thous.U.)S.A. F 4

HStarts: MW HSMW Housing Starts:Midwest(Thous.U.)S.A. F 4

HStarts: South HSSOU Housing Starts:South (Thous.U.)S.A. F 4

HStarts: West HSWST Housing Starts:West (Thous.U.)S.A. F 4

BP: total HSBR Housing Authorized: Total New Priv Housing Units (Thous.,Saar) F 4

BP: NE HSBNE Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A F 4

BP: MW HSBMW Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. F 4

BP: South HSBSOU Houses Authorized By Build. Permits:South(Thou.U.)S.A. F 4

BP: West HSBWST Houses Authorized By Build. Permits:West(Thou.U.)S.A. F 4

PMI PMI Purchasing Managers’ Index (Sa) F 1

PMNO NAPM new ordrs Napm New Orders Index (Percent) F 1

PMDEL NAPM vendor del Napm Vendor Deliveries Index (Percent) F 1

PMNV NAPM Invent Napm Inventories Index (Percent) F 1

A0M008 Orders: cons gds Mfrs’ New Orders, Consumer Goods And Materials (Bil. Chain 1982 $) (TCB) F 5

A0M007 Orders: dble gds Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB) F 5

A0M027 Orders: cap gds Mfrs’ New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB) F 5

A1M092 Unf orders: dble Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB) F 5

A0M070 M&T invent Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB) F 5

A0M077 M&T invent/sales Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB) F 2

FM1 M1 Money Stock: M1 (Bil$,Sa) F 5

FM2 M2 Money Stock: M2 (Bil$,Sa) F 5

A0M106 M2 (real) Money Supply - M2 In 1996 Dollars (Bci) F 5

FMFBA MB Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa) F 5

FMRRA Reserves tot Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa) F 5

FMRNBA Reserves nonbor Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa) F 5

A0M101 C&I loans Commercial and Industrial Loans Outstanding (mil. Chain 2005$) F 5

CCINRV Cons credit Consumer Credit Outstanding - Nonrevolving(G19) F 5

A0M095 Inst cred/PI Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB) F 2

FSPCOM S&P 500 S&P’s Common Stock Price Index: Composite (1941-43=10) F 5

FSPIN S&P: indust S&P’s Common Stock Price Index: Industrials (1941-43=10) F 5
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FSDXP S&P div yield S&P’s Composite Common Stock: Dividend Yield (% Per Annum) F 2

FSPXE S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio (%,Nsa) F 5

FYFF FedFunds Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa) F 2

CP90/RMCP3 Commpaper Cmmercial Paper Rate (AC) F 2

FYGM3 3 mo T-bill Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa) F 2

FYGM6 6 mo T-bill Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa) F 2

FYGT1 1 yr T-bond Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa) F 2

FYGT5 5 yr T-bond Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa) F 2

FYGT10 10 yr T-bond Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa) F 2

FYAAAC Aaabond Bond Yield: Moody’s Aaa Corporate (% Per Annum) F 2

FYBAAC Baabond Bond Yield: Moody’s Baa Corporate (% Per Annum) F 2

SCP90(AC) CP-FF spread cp90-fyff (AC) F 1

sFYGM3 3 mo-FF spread fygm3-fyff (AC) F 1

sFYGM6 6 mo-FF spread fygm6-fyff (AC) F 1

sFYGT1 1 yr-FF spread fygt1-fyff (AC) F 1

sFYGT5 5 yr-FFspread fygt5-fyff (AC) F 1

sFYGT10 10yr-FF spread fygt10-fyff (AC) F 1

sFYAAAC Aaa-FF spread fyaaac-fyff (AC) F 1

sFYBAAC Baa-FF spread fybaac-fyff (AC) F 1

EXRSW Ex rate: Switz Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) F 5

EXRJAN Ex rate: Japan Foreign Exchange Rate: Japan (Yen Per U.S.$) F 5

EXRUK Ex rate: UK Foreign Exchange Rate: United Kingdom (Cents Per Pound) F 5

EXRCAN EX rate: Canada Foreign Exchange Rate: Canada (Canadian $ Per U.S.$) F 5

PWFSA PPI: fin gds Producer Price Index: Finished Goods (82=100,Sa) F 5

PWFCSA PPI: cons gds Producer Price Index: Finished Consumer Goods (82=100,Sa) F 5

PWIMSA PPI: int mat’ls Producer Price Index:I ntermed Mat.Supplies & Components(82=100,Sa) F 5

PWCMSA PPI: crude mat’ls Producer Price Index: Crude Materials (82=100,Sa) F 5

PSCCOM Commod: spot price Spot market price index: bls & crb: all commodities(1967=100) F 5

PMCP NAPM com price Napm Commodity Prices Index (Percent) F 1

U0M083 Consumer expect U. Of Mich. Index Of Consumer Expectations(Bcd-83) F 2
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Table 1: Size of Tests for the Overidentifying Restrictions under DGP N1 with 5000 Replications

NS = 0.5N

r = 5, q = 3, qF = 1
Individual Tests Bonferroni&Pooled Onatski New Joint Tests

N T swi wi lmi Bw Pw Rdyn Rstat W LM
200 200 0.131 0.086 0.077 0.241 0.478 0.067 0.061 0.080 0.077
200 300 0.124 0.078 0.072 0.178 0.365 0.053 0.058 0.079 0.078
200 500 0.127 0.073 0.070 0.157 0.308 0.057 0.063 0.072 0.072
300 200 0.109 0.078 0.070 0.209 0.476 0.052 0.051 0.074 0.072
300 300 0.096 0.070 0.065 0.154 0.331 0.056 0.051 0.068 0.067
300 500 0.096 0.065 0.062 0.127 0.239 0.051 0.053 0.067 0.066
500 200 0.590 0.074 0.066 0.220 0.552 0.054 0.051 0.073 0.070
500 300 0.084 0.067 0.062 0.149 0.358 0.055 0.053 0.064 0.063
500 500 0.077 0.061 0.058 0.106 0.230 0.054 0.047 0.063 0.062

r = 5, q = 4, qF = 3
Individual Tests Bonferroni&Pooled Onatski New Joint Tests

N T swi wi lmi Bw Pw Rdyn Rstat W LM
200 200 0.126 0.101 0.073 0.312 0.713 0.066 0.079 0.087 0.080
200 300 0.117 0.088 0.071 0.231 0.540 0.067 0.089 0.075 0.069
200 500 0.115 0.079 0.069 0.162 0.403 0.065 0.134 0.073 0.070
300 200 0.113 0.092 0.065 0.284 0.752 0.059 0.067 0.074 0.068
300 300 0.099 0.080 0.063 0.209 0.543 0.064 0.072 0.066 0.061
300 500 0.091 0.070 0.060 0.144 0.344 0.066 0.098 0.059 0.057
500 200 0.648 0.088 0.062 0.302 0.863 0.059 0.056 0.072 0.067
500 300 0.090 0.076 0.059 0.198 0.623 0.061 0.060 0.070 0.065
500 500 0.077 0.066 0.057 0.131 0.350 0.059 0.066 0.062 0.060

Note: The nominal size is 5%. The first two columns are the numbers of observations in cross section and

time dimensions. The numbers in columns 3 – 5 are the means of individual tests’ rejection rates from 5000

simulated samples. Columns 6 – 11 are the rejection rates of Bonferroni, Pooled, Onatski, and our new joint

test statistics. The upper panel of Table 1 summarizes the results based on the setup where r = 5, q = 3, and

qF = 1, whereas the lower panel of Table 1 summarizes the results based on the setup where r = 5, q = 4,

and qF = 3.
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Table 2: Size of Tests for the Overidentifying Restrictions under DGP N2 with 5000 Replications

NS = 0.5N

r = 5, q = 3, qF = 1
Individual Tests Bonferroni&Pooled Onatski New Joint Tests

N T swi wi lmi Bw Pw Rdyn Rstat W LM
200 200 0.077 0.083 0.075 0.248 0.470 0.054 0.074 0.080 0.076
200 300 0.073 0.083 0.077 0.217 0.460 0.059 0.107 0.081 0.080
200 500 0.070 0.086 0.082 0.229 0.500 0.067 0.175 0.087 0.086
300 200 0.075 0.074 0.066 0.212 0.400 0.054 0.058 0.064 0.063
300 300 0.068 0.071 0.065 0.173 0.353 0.055 0.069 0.073 0.070
300 500 0.064 0.070 0.067 0.156 0.329 0.050 0.129 0.076 0.074
500 200 0.577 0.067 0.060 0.190 0.367 0.053 0.054 0.069 0.067
500 300 0.066 0.064 0.059 0.149 0.272 0.050 0.064 0.058 0.057
500 500 0.060 0.062 0.059 0.123 0.228 0.051 0.076 0.060 0.059

r = 5, q = 4, qF = 3
Individual Tests Bonferroni&Pooled Onatski New Joint Tests

N T swi wi lmi Bw Pw Rdyn Rstat W LM
200 200 0.089 0.101 0.073 0.359 0.719 0.101 0.320 0.081 0.073
200 300 0.077 0.094 0.075 0.273 0.615 0.135 0.551 0.084 0.078
200 500 0.069 0.093 0.082 0.256 0.596 0.174 0.846 0.089 0.087
300 200 0.088 0.090 0.064 0.325 0.714 0.080 0.204 0.078 0.069
300 300 0.074 0.081 0.064 0.234 0.552 0.088 0.406 0.078 0.075
300 500 0.066 0.076 0.066 0.174 0.461 0.121 0.754 0.070 0.068
500 200 0.625 0.083 0.058 0.324 0.764 0.056 0.122 0.061 0.056
500 300 0.075 0.074 0.057 0.215 0.536 0.065 0.228 0.059 0.055
500 500 0.064 0.067 0.058 0.154 0.358 0.073 0.580 0.062 0.060

Note: The nominal size is 5%. The first two columns are the numbers of observations in cross section and

time dimensions. The numbers in columns 3 – 5 are the means of individual tests’ rejection rates from 5000

simulated samples. Columns 6 – 11 are the rejection rates of Bonferroni, Pooled, Onatski, and our new joint

test statistics. The upper panel of Table 2 summarizes the results based on the setup where r = 5, q = 3, and

qF = 1, whereas the lower panel of Table 2 summarizes the results based on the setup where r = 5, q = 4,

and qF = 3.
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Table 3: Power of Tests for the Overidentifying Restrictions under DGP A1 with 5000 Replications

NS = 0.5N

r = 5, q = 3, κF = 1 r = 5, q = 4, κF = 3

Individual Onatski New Individual Onatski New

a N T wi lmi Rdyn Rstat W LM wi lmi Rdyn Rstat W LM

0.2 200 200 0.242 0.236 0.056 0.059 0.470 0.444 0.313 0.284 0.056 0.080 0.798 0.751

0.2 300 300 0.239 0.233 0.058 0.107 0.549 0.526 0.293 0.276 0.060 0.121 0.859 0.832

0.2 500 500 0.243 0.239 0.055 0.594 0.624 0.612 0.281 0.271 0.060 0.218 0.927 0.911

0.4 200 200 0.409 0.399 0.060 0.160 0.590 0.555 0.530 0.504 0.059 0.103 0.899 0.848

0.4 300 300 0.420 0.413 0.065 0.607 0.655 0.626 0.516 0.500 0.074 0.264 0.948 0.917

0.4 500 500 0.434 0.431 0.137 0.999 0.729 0.704 0.509 0.500 0.097 0.972 0.972 0.955

0.6 200 200 0.566 0.556 0.078 0.406 0.642 0.597 0.738 0.719 0.077 0.169 0.937 0.898

0.6 300 300 0.596 0.590 0.145 0.936 0.711 0.677 0.737 0.726 0.086 0.753 0.961 0.934

0.6 500 500 0.624 0.621 0.499 1.000 0.770 0.741 0.737 0.730 0.240 1.000 0.980 0.967

0.8 200 200 0.674 0.665 0.116 0.641 0.685 0.634 0.888 0.877 0.083 0.400 0.959 0.916

0.8 300 300 0.723 0.718 0.292 0.994 0.736 0.701 0.904 0.898 0.151 0.967 0.976 0.954

0.8 500 500 0.770 0.768 0.816 1.000 0.798 0.764 0.915 0.912 0.620 1.000 0.988 0.977

1 200 200 0.710 0.702 0.146 0.753 0.698 0.651 0.965 0.958 0.114 0.624 0.968 0.934

1 300 300 0.762 0.757 0.392 0.999 0.753 0.706 0.980 0.978 0.283 0.995 0.977 0.956

1 500 500 0.817 0.815 0.922 1.000 0.813 0.775 0.990 0.990 0.863 1.000 0.991 0.977

Note: The parameter a controls the fraction of slow variables that violate the zero restrictions in their

loadings on the fast shocks. The numbers in columns 3 – 4 and 9 –10 are the means of rejection rates of our

individual tests from 5000 simulated samples. Columns 5 – 8 and 11 – 14 are the rejection rates of Onatski

and our new joint test statistics. The left panel of Table 3 summarizes the results based on the setup where

r = 5, q = 3, and κF = 1, whereas the right panel of Table 3 summarizes the results based on the setup

where r = 5, q = 4, and κF = 3. The true number of fast shocks qF = 0.
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Table 4: Power of Tests for the Overidentifying Restrictions under DGP A2 with 5000 Replications

NS = 0.5N

r = 5, q = 3, κF = 1 r = 5, q = 4, κF = 3

Individual Onatski New Individual Onatski New

b N T wi lmi Rdyn Rstat W LM wi lmi Rdyn Rstat W LM

0.2 200 200 0.246 0.232 0.057 0.059 0.212 0.202 0.441 0.389 0.060 0.064 0.372 0.344

0.2 300 300 0.292 0.283 0.060 0.052 0.253 0.245 0.515 0.482 0.056 0.055 0.456 0.434

0.2 500 500 0.368 0.363 0.055 0.049 0.336 0.328 0.634 0.617 0.053 0.054 0.592 0.576

0.4 200 200 0.455 0.443 0.057 0.054 0.426 0.406 0.762 0.728 0.057 0.058 0.737 0.693

0.4 300 300 0.525 0.517 0.056 0.053 0.494 0.477 0.830 0.814 0.057 0.070 0.809 0.780

0.4 500 500 0.609 0.605 0.053 0.299 0.604 0.588 0.900 0.893 0.051 0.124 0.894 0.878

0.6 200 200 0.592 0.581 0.052 0.112 0.570 0.540 0.892 0.874 0.061 0.079 0.892 0.844

0.6 300 300 0.655 0.649 0.058 0.493 0.629 0.601 0.931 0.923 0.059 0.227 0.926 0.895

0.6 500 500 0.724 0.721 0.091 0.999 0.718 0.697 0.963 0.961 0.066 0.975 0.960 0.944

0.8 200 200 0.674 0.664 0.081 0.462 0.661 0.620 0.944 0.934 0.074 0.236 0.945 0.905

0.8 300 300 0.729 0.724 0.166 0.968 0.710 0.673 0.966 0.962 0.090 0.864 0.967 0.940

0.8 500 500 0.788 0.785 0.581 1.000 0.783 0.751 0.983 0.982 0.343 1.000 0.982 0.969

1 200 200 0.710 0.702 0.146 0.753 0.698 0.651 0.965 0.958 0.114 0.624 0.968 0.934

1 300 300 0.762 0.757 0.392 0.999 0.753 0.706 0.980 0.978 0.283 0.995 0.977 0.956

1 500 500 0.817 0.815 0.922 1.000 0.813 0.775 0.990 0.990 0.863 1.000 0.991 0.977

Note: The parameter b controls the standard deviation of the loadings that are assumed to be zeros by

the identification restrictions. The numbers in columns 3 – 4 and 9 –10 are the means of rejection rates of our

individual tests from 5000 simulated samples. Columns 5 – 8 and 11 – 14 are the rejection rates of Onatski

and our new joint test statistics. The left panel of Table 3 summarizes the results based on the setup where

r = 5, q = 3, and κF = 1, whereas the right panel of Table 3 summarizes the results based on the setup

where r = 5, q = 4, and κF = 3. The true number of fast shocks qF = 0.
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Table 5: p-values for testing H0: qF = κF against H1: qF < κF

W LM

q = 4 q = 5 q = 6 q = 7 q = 8 q = 4 q = 5 q = 6 q = 7 q = 8

κF = 1 0.933 0.755 0.385 0.053 0.363 κF = 1 0.934 0.759 0.388 0.055 0.368

(0.810) (0.858) (0.293) (0.263) (0.438) (0.814) (0.861) (0.300) (0.265) (0.440)

κF = 2 0.000 0.000 0.020 0.017 0.063 κF = 2 0.000 0.000 0.025 0.022 0.069

(0.029) (0.160) (0.025) (0.027) (0.020) (0.035) (0.172) (0.030) (0.032) (0.023)

κF = 3 0.000 0.000 0.000 0.000 0.000 κF = 3 0.000 0.000 0.000 0.000 0.000

(0.000) (0.059) (0.000) (0.000) (0.000) (0.000) (0.082) (0.000) (0.000) (0.000)

Rdyn Rstat

q = 4 q = 5 q = 6 q = 7 q = 8 q = 4 q = 5 q = 6 q = 7 q = 8

κF = 1 0.346 0.749 0.819 0.668 0.384 κF = 1 0.791 0.870 0.854 0.706 0.499

(0.912) (0.971) (0.992) (0.926) (0.705) (0.222) (0.189) (0.151) (0.110) (0.843)

κF = 2 0.392 0.346 0.749 0.819 0.668 κF = 2 0.841 0.791 0.870 0.854 0.706

(0.459) (0.912) (0.971) (0.992) (0.926) (0.255) (0.222) (0.189) (0.151) (0.110)

κF = 3 0.043 0.392 0.346 0.749 0.819 κF = 3 0.288 0.841 0.791 0.870 0.854

(0.505) (0.459) (0.912) (0.971) (0.992) (0.184) (0.255) (0.222) (0.189) (0.151)

Note: W and LM are our new statistics, and Rdyn and Rstat are the dynamic and static versions Onatski’s

(2009) statistics, respectively. The numbers outside the parentheses are the p-values when the number of

lags of F̂t is equal to 2, and the numbers inside the parentheses are the p-values when the number of lags is

equal to 4.
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