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Cryptographic algorithms of the past millennia were formulated under a
single model by Claude Shannon in 1948, marking the beginning of mod-
ern cryptography. His clarification of cryptographic security allowed the
banking and finance industry to establish secure communication between
geographically distributed branches. The second phase of modern cryptog-
raphy called public key cryptography started with Diffie-Helman and RSA
algorithms in 1977, which made secure communication between server
and client computers possible. Moreover, the theoretical introduction of
quantum computers in 1994 by Peter Shor and subsequent technical devel-
opments required researchers to upgrade public-key cryptography for the
post-quantum world, giving birth to research efforts for post-quantum cryp-
tography. The third and current phase of cryptographic revolution will be
made possible by homomorphic encryption and its applications in privacy.
Various types of homomorphic encryption allow us to encrypt everything
and work with encrypted data so that neither the computers nor the network
need to be trusted.

1.1 INTRODUCTION

Shannon’s work [83] was a turning point and marked the closure of
classical cryptography and the beginning of modern cryptography. In-
deed, starting from 1949, cryptography theory and applications have gone
through significant progress, certainly much faster than the previous several
centuries.

Humans’ interest in cryptography is as old as the invention of writing.
While we have good information and insights about cryptographic methods
in the past 2 millennia, we surmise that older algorithms like their more
recent successors were all letter- or word-based “codes” in which one sub-
stitutes each letter or word with the corresponding code-letter or code-word
found in the codebook, according to a selection algorithm. Sender and re-
ceiver must share the codebook to “encode” or “decode” the messages.
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On the other hand, based on the frequencies of the code-letters, cryptana-
lysts attempted to make sense of the encoded (encrypted) message without
having access to the codebook. The competition between the cryptogra-
phers and cryptanalysts has been real and fierce, especially when appli-
cations involved state or military data. We do get into history of classical
cryptography due to the lack of space in this paper and recommend a new
and well-written book for interested readers, History of Cryptography and
Cryptanalysis [34].

The interplay between cryptographic theory and applications opened up
new areas of applications and also motivated the practitioners of the theory
to develop new methods and algorithms. There is much to write about cryp-
tography, but given the space, we will limit our focus to secret-key cryp-
tography, public-key cryptography, post-quantum cryptography and homo-
morphic encryption, which are also section headers in this paper.

The development of secret-key cryptography started soon after Shan-
non’s insights how one builds complex, usable and efficient secret-key
cryptographic algorithms. Horst Feistel’s [39, 38, 56] at IBM, followed up
by US NIST Data Encryption Standard [66], and a plethora of academic,
commercial, cyberpunk algorithms and standards, to finally [67] which is
another US standard. These algorithms were all built upon Shannon’s ideas.
The driving factor comes from banking application, which is for our need
to relay confidential financial information. This is an ongoing work, and
the academic, industrial and government bodies will continue to develop
newer secret-key cryptographic algorithms.

A second revolution in cryptography happened somewhere between
1976 and 1978, interestingly right around time when the secret-key cryp-
tographic algorithm was standardized by the US. While trying to address
the problem of how to share secret keys between two or more parties, re-
searchers at Stanford and MIT invented public-key cryptography. The
Diffie-Hellman key exchange algorithm [33] and the RSA public-key cryp-
tographic algorithm [79] have indeed changed cryptography as significantly
as Shannon’s contribution. In the ensuing years, practical solutions to key
exchange between parties, digital signatures, and methods allowed us to
build trust architectures into Internet-connected servers, desktop and mo-
bile computers. The public-key cryptography provided techniques, mecha-
nisms and tools for private and authenticated communication, and for per-
forming secure and authenticated transactions over the Internet as well as
other open networks. This infrastructure was needed to carry over the legal
and contractual certainty from our paper-based offices to our virtual offices
existing in cyberspace. The timing of the invention of public-key cryptog-
raphy was near perfect!
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The first two decades of the 21st century presented two challenges
for cryptographers. The first and formidable challenge was that quantum
computers were becoming feasible. Experimental quantum computers de-
veloped or sponsored by two major companies (IBM and Microsoft) and
several research institutes in major research universities are available for
researchers to test their quantum algorithms [91]. It has already been estab-
lished by Peter Shor [84, 86] that a quantum computer (if available) with
several thousands of quantum bits (qubits) can be programmed to break
public-key almost all of the public-key cryptographic algorithms. There-
fore academic and governmental efforts started to design public-key cryp-
tographic algorithms that would be resistant to quantum computing attacks,
which gave birth to post-quantum cryptography. In April 2015, the US
NIST held a “Workshop on Cybersecurity in a Post-Quantum World” to
discuss cryptographic algorithms for public-key-based key agreement and
digital signatures that are not susceptible to cryptanalysis by quantum al-
gorithms. In this direction, NIST recently launched the so-called “Post-
Quantum Cryptography Standardization” process, a multiyear effort aimed
at selecting the next generation of quantum-resistant public-key crypto-
graphic algorithms for standardization.

Another formidable challenge has been the desire to compute with the
encrypted text without decrypting, which is termed as homomorphic en-
cryption. The potential applications of homomorphic encryption were rec-
ognized and appreciated almost about the same time as the first public-key
cryptographic algorithm RSA was invented, which is multiplicatively ho-
momorphic. The ensuing 30 years have brought on several additively or
multiplicatively homomorphic encryption functions with increasing algo-
rithmic complexity. In 2009, Craig Gentry and several other authors later
on proposed fully (both additively and multiplicatively) homomorphic en-
cryption algorithms and addressed issues related to their formulation, arith-
metic and security. We now have a variety of fully homomorphic encryption
algorithms that can be applied to various private computation problems in
healthcare, finance and national security.

We start with Shannon’s ideas in Section 1.2 and show how Feistel used
them to create his seminal cryptographic algorithm LUCIFER. In this pa-
per, we focus only on the DES and AES, the US standardized algorithms
since the first was the chosen algorithm for applications ranging from bank-
ing to Internet for 2 decades, while latter has been in use as its replacement
for more than 2 decades, going into the 3rd.

Section 1.3 covers public-key cryptography which tackles key man-
agement, public-key encryption and digital signatures, providing au-
thentication and nonrepudiation properties for the exchanged data and
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communicating parties. We will cover the basic ideas and algorithms of
public-key cryptography briefly, and move into post-quantum cryptogra-
phy in Section 1.4. The advent of quantum computing is bound to change
public-key cryptography, and the changes have already started. We will
give an overview of post-quantum cryptography in this section.

Finally, Section 1.5 covers homomorphic encryption which will bring a
kind of luxury to data science such that we can keep everything encrypted
and still accomplish the necessary computations for maintaining the data
as well as inferring from it. This will indeed be a revolution and will bring
nearly-absolute security for our precious data.

1.2 SECRET-KEY CRYPTOGRAPHY

Claude Shannon wrote his “secrecy” paper in 1945; however, it was declas-
sified and published only in 1949 [83]. Shannon suggested that cryptanal-
ysis using statistical methods might be defeated by the mixing or iteration
of non-commutative operations. Shannon refers to these operations as con-
fusion (or substitution) and diffusion (transposition). His ideas were used
in the design of the top 3 encryption algorithms in the following 5 decades.
The LUCIFER [39, 38] and DES S-boxes and P-boxes [65, 66] are Feis-
tel’s interpretation of Shannon’s confusion and diffusion. Similarly, AES
or Rinjdael also uses many rounds to mix confusion and diffusion [67, 30].

1.2.1 LUCIFER

Horst Feistel changed cryptology. Historically (pre-Shannon days), en-
cryption algorithms have been dictated by the hardware available. The
pinwheels of the 1934 Hagelin machine, the rotors of the 1918 German
Enigma machine, the telephone dial switches used in the 1937 Japanese
Purple machine and nonlinear versions of the linear feedback shift reg-
ister were subsequently based on the 1947 transistor breakthrough [56].
Horst knew about some of these, but he realized that hardware was a limi-
tation; a program could directly implement encryption, and so he started in
the reverse direction. When asked by about the idea behind his algorithm
LUCIFER, Horst said “The Shannon secrecy paper [10] reveals all” [56].
He understood the power of Shannon’s idea, followed the master’s advice,
leading to LUCIFER and DES.

LUCIFER was the very first encryption algorithm designed for soft-
ware. In fact, LUCIFER is the name for the software implementation of the
block cipher described in the 1971 patent designated by Feistel. Coded in
the APL language, LUCIFER originally was stored in the APL directory
(folder) with the intended name DEMONSTRATION. Early versions of
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APL limited the character length of a file name, and a colleague suggested
the name DEMON, modified by Horst to LUCIFER. Shannon’s secrecy
paper alone may have provided the real inspiration for a person of Horst’s
creative genius. Still, Horst Feistel went in his own cryptographic direction,
providing a fresh point of view. A modified LUCIFER became the Data En-
cryption Standard (DES), affirmed in 1976 as a Federal Information Pro-
cessing Standard (FIPS 46-1). AES became the new FIPS, replacing DES
in 2000 as a standard. The Triple DES-variant (3DES) continues to be used
for authenticated transactions in banking [54, 55].

1.2.2 DES

The Data Encryption Standard is a US standard that provided confidential-
ity for financial transactions from the 1970s till to the end of the 1990s. It
was developed by IBM, based on ideas of Horst Feistel, and submitted to
the National Bureau of Standards (the precursor of the National Institute of
Standards and Technology) following an invitation to propose a candidate
for the protection of sensitive, unclassified electronic data. After consulting
with the National Security Agency (NSA), the NBS eventually selected a
slightly modified version, which was published as an official Federal Infor-
mation Processing Standard (FIPS) for the United States in 1977, with the
number FIPS 46. It quickly became an international standard and enjoyed
widespread deployment.

However, there was also some controversy about the DES for several
years. The design philosophy of certain elements (S-boxes) was never ex-
plained (classified), and its key length was unnaturally short (56 bits) while
it could have been 64 bits. The NSA involvement was found suspicious by
some researchers, especially on its key length [49]. There were also con-
spiracy theories about the DES having a “backdoor” for easy decryption
(which was never proven to-day). Academic community approached the
DES with caution; however, in the end, it significantly contributed to the
development of modern cryptography for our communication and comput-
ing systems.

The fundamental building block in DES is a substitution followed by a
permutation on the text based on the key. This is called a round function.
DES has 16 rounds.

A cryptographic algorithm should be a good pseudorandom generator
in order to foil key clustering attacks. DES was designed so that all dis-
tributions were as uniform as possible. For example, changing 1 bit of the
plaintext or the key causes the ciphertext to change in approximately 32 of
its 64 bits in a seemingly unpredictable and random manner.
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Figure 1.1 The 16 rounds of DES.
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Figure 1.2 The round function of DES.

However, Biham and Shamir [8] observed that with a fixed key, the dif-
ferential behavior of DES does not exhibit pseudorandomness. If we fix the
XOR of two plaintexts P and P* at P', then T’ (which is equal to T & T*)
is not uniformly distributed. In contrast, the XOR of two uniformly dis-
tributed random numbers would itself be uniformly distributed. The attack
(called differential cryptanalysis) based on the nonrandom behavior of the
DES still could not break DES, primarily due to the fact that 16 rounds
made the tracing of the differences of the plaintexts and ciphertexts very
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difficult. Biham and Shamir showed that DES reduced to 6 rounds can be
broken by a chosen plaintext attack in less 0.3 seconds on a PC using 240
ciphertexts; the known plaintext version requires 236 ciphertexts. On the
other hand, DES reduced to 8 rounds can be broken by a chosen plaintext
attack in less than 2 minutes on a PC by analyzing about 2'# ciphertexts;
the known plaintext attack needs about 238 ciphertexts. Yet, the full DES
(16 rounds) can only be broken by analyzing 23 ciphertexts from a larger
pool of 2%7 chosen plaintexts using 237 times. The differential cryptanaly-
sis confirmed the importance of the number of rounds and the method by
which the S-boxes are constructed.

On the other hand, the variations on DES turn out to be easier to crypt-
analyze than the original DES. Most importantly, certain changes in the
structure of DES have catastrophic results, as shown in Table 1.1.

Table 1.1
Effectiveness of differential cryptanalysis.

Modified Operation Chosen Plaintexts
Full DES (no change) 247
Random P permutation 247
Identity P permutation 219
Order of S-boxes 238
Change XOR by addition 231
Random S-boxes 221
Random permutation 244 248
One Entry S-box 233
Uniform S-boxes 226
Eliminate expansion E 226
Order of E and subkey XOR 244

Feistel ciphers take an important part in secret key cryptography from
both theoretical and practical point of view. After DES, new schemes have
been published, like GOST in Russia, IDEA, and RC-6 in the United States.
From a practical point of view, Feistel ciphers had their days of glory with
the DES algorithm and its variants (3DES with two or three keys, XDES,
etc.) that were the most widely used secret key algorithms around the world
between 1977 and 2000. After 2000, the AES algorithm, which is not a di-
rect Feistel cipher, but still based on Shannon’s ideas (confusion and diffu-
sion) which were very effectively utilized by Feistel, has become the stan-
dard for secret key encryption.
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1.2.3 AES

AES is a key-alternating block cipher, with plaintext encrypted in blocks
of 128 bits. The key sizes in AES can be 128, 192 or 256 bits. It is an
iterated block cipher because a fixed encryption process, usually called a
round, is applied a number of times to the block of bits. Finally, we mean
by key-alternating that the cipher key is XORed to the state (the running
version of the block of input bits) alternately with the application of the
round transformation. The original Rijndael design allows for any choice
of block length and key size between 128 and 256 in multiples of 32 bits.
In this sense, Rijndael is a superset of AES; the two are not identical, but
the difference is only in these configurations initially put into Rijndael but
not used in AES [30].

The state matrix of AES is formed from the input dataas a4 x 4,4 x 6
and 4 x 8 matrices, for 128, 192 or 256 bits, respectively. Given the 128-bit
data (ApAjA;---A14A;5) such that each of A; is 8 bits (1 byte), the 4 x 4
state matrix is formed as

Ap Ay As Anp
A As Ay Az
Ay Ag A Anp
Az A7 An Ags

The 8-bit (1-byte) binary data is usually represented in hexadecimal, such
as (a3) = (1010 0011). While the 8-bit input data block is a binary num-
ber in its most generic form, the Rijndael/AES treats each one of the
bytes in the state matrix as elements of the Galois field GF(2%). The ir-
reducible polynomial of the field GF(2%) is p(x) = x® +x* + x> +x+ 1. A
field element a(x) € GF(2®) is represented using a polynomial of degree
at most 7 with coefficients a; € GF(2) such that 21-7:0 aix' = a7x” + xx® +
asx® +agx* + azx® + axx® + ayx + ap. For example, (a3) = (1010 0011) =
x’ +x°+x+ 1. AES has 4 sub-rounds, named as AddRoundKey, SubBytes,
ShiftRows, MixColumn. Except the ShiftRows operation, all of them in-
volve finite field addition, inversion and linear and nonlinear operations in
the field GF(28).

Here we describe only the MixColumn operation which multiplies a
fixed 4 x 4 matrix with every 4 x 1 column vector of the 4 x 4 state matrix.
The MixColumn matrix M in hex and polynomial representation is

02 03 01 o1 X x+1 1 1
01 02 03 01 - 1 X x+1 1
01 01 02 03 a 1 1 X x+1

03 01 01 02 x+1 1 1 X
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Figure 1.3 The 10 rounds of AES and the round function.

AddRoundKey

Given a 4 x 1 column vector u of the state matrix, such that each vector en-
try is an element of the finite field GF(2%), we perform a matrix-vector
multiplication operation Mu using field multiplications and additions to
compute the new column vector of the state matrix. We give an example
of the MixColumn operation example below:

02 03 01 01 d4 04
01 02 03 01 bf . 66
01 01 02 03 5d o 81
03 01 01 02 30 eb

We show the computation of the first entry of the resulting vector, in other
words, the computation of

(020301 01] = (04)

By representing the column vector [d4 bf 5d 30]” as a polynomial vector,
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we can write this MixColumn operation in polynomial representation as
x4 x84 2

AR x+1

O3 +x2+1
x5+x4

x x+1 1 1]

To compute the inner product, we perform polynomial multiplications, ad-
ditions and reductions modulo p(x) whenever necessary:

x- (7 x84+ x +x%) +
(x+1)- (7 +0 A+ 2 x+1) +
L+t + 3 +x2+1) +
1- (3 +x%)

The first product x - (x7 4+ x° 4+ x* +x?) needs to be computed and reduced

if necessary. Here, we need reduction modulo the irreducible polynomial
p(x) since the resulting polynomial would be of degree 8

x- (04t = S 04+0
= (PP Hx+ D)+ +0+5°
= x4+ 4+x 4x+1
= (1011 0011) = (b3)

After the polynomial multiplication, we reduced the highest degree term
(which is x®) by substituting it with x* 4+ x> 4+ x+ 1, which is the lower half
of the irreducible polynomial p(x) = x® +x* +x% + x4 1.
The second product, after the multiplication gives
R DR L e o A e SR o) B L L A
We also need to reduce it modulo p(x) since its degree is larger than 8. By
substituting x3 with x* + x> +x+ 1, we obtain

(P +Hx+ D2 +24+1 = X 2042+ 0 +x

which is equal to (1101 1010) = (da). However, we do not need reductions
for the third and fourth products:

- (O 3 +24+1) = O+ 43422 +1
-+t = O+t = (30)

I
—

ol

Q.
=
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Finally, adding all 4 resulting polynomials, we obtain the top entry as

(02) - (d4) = (b3) x40 x4+ x+1
(03)-(bf) = (da)  x7+x0+x*+ 27 +x
(01)-(5d) = (5d)  x0+x*+x3+x2+1
(01)-(30) = (30) x4t

(04) x?

The remaining 3 entries are obtained by repeating the above operations
by multiplying the second, third, and fourth rows of the fixed MixColumn
matrix with the same state column.

1.3 PUBLIC-KEY CRYPTOGRAPHY

In public-key cryptography, the encryption Eg,(M) and the decryption
Dk, (C) functions are inverses of one another, and use different keys

C:E[(E(M) and MZD](d(C) .

These processes are asymmetric, and the keys are not equal, i.e., K, # Kj.
The naming conventions are

* K, is the public key, which is expected to be known by anyone;
* K is the private key, known only to the user;

* K, may be easily deduced from K;;

* However, K is not easily deduced from K.

The User publishes his own public key K., so that anyone can obtain
it and can encrypt a message M, and send the resulting ciphertext to the
User C = Ek,(M). The private key K, is known only to the User and only
the User can decrypt the ciphertext to get the message M = Dk, (C). The
adversary may be able to block the ciphertext, but it cannot decrypt. A
public-key cryptographic algorithm is based on a function y = f(x) such
that given x, computing y is easy; while, given y, computing x is hard:

Such functions are called one-way functions. In order to decide which
function is hard according to this criteria, we can resort to the theory of
complexity. However, a one-way function is difficult for anyone to invert,
including the receiver of the encrypted text. Instead, we need a function
that is easy to invert for the legitimate receiver of the encrypted message,
but hard for everyone else. Such functions are called one-way trapdoor
functions.

In order to build a public-key encryption algorithm, we need a one-way
trapdoor function. As this fact is understood around 1975-1976, researchers
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177Ket PK Directory
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User3
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Figure 1.4 The general concept of public-key encryption.

easy
T » Y= f(iﬂ)

e fﬁl(y) < hard Y

Figure 1.5 The general concept of a one-way function.

at Stanford and MIT ([79], [33]) were looking for such special functions
which are either based on the known one-way functions or some other “un-
known” constructions. Since then the following one-way functions have
been identified, allowing us to build public-key encryption algorithms with
the help of trapdoor mechanisms:

* Discrete Logarithm:
Given p, g, and x, computing y iny = g* (mod p) is EASY
Given p, g, y, computing x in y = g* (mod p) is HARD
* Factoring:
Given p and ¢, computing ninn = p- g is EASY
Given n, computing p or g inn = p-q is HARD
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* Discrete Square Root:
Given x and y, computing y in y = x> (mod n) is EASY
Given y and n, computing x in y = x> (mod #n) is HARD

* Discrete eth Root:
Given x, n and e, computing y in y = x¢ (mod n) is EASY
Given y, n and e, computing x in y = x¢ (mod n) is HARD

1.3.1 THE DIFFIE-HELLMAN KEY EXCHANGE METHOD

The first one-way function in this list gave birth to the Diffie-Hellman Key
Exchange Method, whose trapdoor mechanism is based on the commuta-
tivity of exponentiation (g%)? = (g?)¢. It was invented by Martin Hellman
and Whitfield Diffie who published their paper “New Directions in Cryp-
tography” in 1976 [33], introducing a radically new method of distributing
cryptographic keys, and thus solving one of the fundamental problems of

cryptography.

* A and B agree on a prime p and a primitive element g of 2. This
is accomplished in public: p and g are known to the adversary

* Aselects a € 2, computes r = g* (mod p), and sends r to B

* Bselects b € 2, computes s = g” (mod p), and sends s to A

* A (having received s) computes K = s¢ (mod p)

» B (having received ) computes K = r* (mod p)

* These two quantities are equal since

K=r"=(g")" =g (modp),
K=s"=(g")"=¢g" (mod p).

At the end of these computation and communication steps, the parties
A and B have the key value K, which is known to them but computing K is
hard by anyone who sees and records all communicated values. The diffi-
culty of computing the key K depends on the Discrete Logarithm Problem,
whose general definition is given as: The computation of x € 2 iny = g*
(mod p), given p, g, and y.

For example, given p =23 and g = 5, can we find x such that 7 = 5*
(mod 23)? The answer in this case easy x = 19 since we can find it by
trying all possible values in 255 = {1,2,...,22}. However, the difficulty
of computing the discrete logarithm for a larger p will significantly higher;
consider p = 158(28%0 4+ 25) 41 =

105354628039501697530461658293395873194887181492591348934
260873425871788357518586730038628773770557793738292587376
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245199045043066135085968269741025626827114728303489756321
430023716636917406661590717647254947008311310713818992128
0884003892629359

and g = 17, and the computation of x € 2" such that 2 = 17* (mod p).
Such x exists since 17 is a primitive root of p; however, the number of trials
to find it will require insurmountable time and energy.

If the Discrete Logarithm Problem is difficult in a group (such as Z7),
we can use it to implement not only the Diffie-Hellman key exchange
method, but also several other public-key cryptographic algorithms, such
as the ElGamal public-key encryption method and the Digital Signature
Algorithm. As we described, we can resort to the exhaustive search of the
unknown value by trying all possible values of x € Q’},* iteratively.

=8
fori=2top—1
z=g-z (mod p)
ify=z
returnx =i
This algorithm requires p — 2 multiplications. However, it is an exponen-
tial algorithm in terms of the input size, which is the number of bits in
the prime p. Since, the multiplications of two k-bit operands are of order
O(k?*), the search complexity is exponential in k, as O(pk?) = O(2k?).
There are better algorithms, such as Shanks Algorithm, Pollard Rho algo-
rithm, Pohlig-Hellman algorithm, and the Index Calculus Algorithm; the
first three algorithms are still of exponential complexity. The analysis is of
the Index Calculus Algorithm is more complicated and is estimated to be

0 (ec-(logp)1/3(loglogp)2/3) .

This time complexity is sub-exponential since it is faster than exponential
(in log p) but slower than polynomial. Therefore, the Discrete Logarithm
Problem remains to be a hard problem on a digital computer, making the
Diffie-Hellman key exchange method a strong public-key cryptographic al-
gorithm. Currently, much of wireless communication and internet security
depends on it.

1.3.2 THE RSA ALGORITHM

The second important algorithm in the search for one-way trapdoor func-
tions came from the 3 MIT professors, Ronald Rivest, Adi Shamir, and
Leonard Adleman in the Summer and Fall of 1976. Their paper was pub-
lished in 1978 [79], and MIT patented the method 1983 (which ended in
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2000). The Rivest-Shamir-Adleman Algorithm or briefly as the RSA Al-
gorithm constructs public and private keys for the User as follows:

* The User generates 2 large, about same size random primes: p and
q

* The modulus 7 is the product of these two primes: n = p-q

+ Euler’s totient function of nis given by ¢(n) = (p—1)-(¢—1)

* The User selects e as 1 < e < ¢(n) such that gcd(e,¢(n)) = 1
and computes d = e~! (mod ¢ (n)) using the extended Euclidean
algorithm.

* The public key: The modulus n and the public exponent e.

* The private key: The private exponent d, the primes p and ¢, and

¢(n)=(p—1)-(g—1)

Once the keys are available, the encryption and decryption operations are
performed by computing

C = M° (modn),
M = ¢¢ (modn),

where M, C are the plaintext and ciphertext such that 0 < M,C < n.

The security of the RSA Algorithm depends on the discrete eth root
problem, i.e., given y, n and e, computing x in y = x° (mod 7) is known to
be a hard problem. One can attempt to break the RSA algorithm in several
ways:

* Compute eth Root of M°¢ (mod n) and obtain M
« Factor n = pq, compute d = e~ ! mod (p—1)(g—1)
» Obtain ¢ (n) by some method, and compute d = e~ mod ¢ (n)

There is no known algorithm for computing discrete eth root mod n directly,
and it is obvious factoring n indeed breaks the RSA encryption algorithm.
However, “Breaking RSA” does not mean that we can factor n. There is no
general proof for such a claim.

1.3.3 DIGITAL SIGNATURES

A digital signature or digital signature algorithm is a mathematical method
for demonstrating the authenticity of a digital message or document. A
valid digital signature gives a recipient reason to believe that the mes-
sage was created by a known sender (authentication) such that he cannot
deny sending it (non-repudiation) and that the message was not altered
in transit (integrity). Digital signatures are commonly used for software
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Figure 1.6 The general concept of digital signatures.

distribution, financial transactions, and in other cases where it is impor-
tant to detect forgery or tampering. A public-key encryption algorithm is
also a digital signature algorithm, the most notable example being the RSA
algorithm.

Diffie and Hellman first described the concept of a digital signature
scheme, and they conjectured that such methods exist. The RSA algorithm
can be used as a public-key encryption method and as a digital signature
algorithm

However, the plain RSA signatures have certain security problems.
Other digital signature algorithms have been developed after the RSA:
Lamport signatures, Merkle signatures, and Rabin signatures. Several more
digital signature algorithms followed up and are in use today: ElGamal, the
Digital Signature Algorithm (DSA), the elliptic curve DSA (ECDSA).

The steps of the (plain) RSA signatures follows as:

* User A has an RSA public key (n,¢) and private key (n,d)
+ User A creates a message M < n, and encrypts the message using
the private key to obtain the signature S as

S=M? (mod n)
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and sends the message (plaintext) and the signature [M, S] to User
B

* User B receives [M,S], obtains User A’s public key from the di-
rectory, and decrypts the signature using the public key:

T=5 (modn)

If T = M, then the User B decides that the signature S on the
message M was created by User A

The plain RSA signatures have several problems to be used directly as a sig-
nature scheme in practice. First of all, the message length is limited to the
modulus length, and longer messages cannot be directly signed. A biggest
concern is that legitimate signatures can be used to create forged signa-
tures. Consider that [M,S] is a legitimate pair of message and signature,
created by the owner of the public and private key pair such that § = M?¢
(mod n) and M = §° (mod n). The pair [M? mod n, S> mod n] also veri-
fies:
(8% =(8)>=M> (mod n)

It appears that [M? mod n, S mod n] is a legitimate signature.

The solution of these problems with plain RSA signatures are avoided
by employing a hash function H(-). Instead of encrypting M with the pri-
vate key, we encrypt H(M): the hash of M

h=HM) — S=h* (modn) — [M,S]
The receiving party verifies the message and signature pair [M, S] using
h=HM) — T=5 (modn) — T=h

The cryptographic hash function H (+) is a publicly available function, and
does not involve a secret key.

The Diffie-Hellman and RSA algorithms opened up new avenues for
cryptography, particularly in internet security and wireless communication.
The next 4 decades from 1980s to now have seen their proliferation and im-
plementations. New methods and standards have been developed by NIST,
as well as banking, communication, and internet communities. Public-key
cryptography has become an household term, including the software pack-
ages and communication utilities, such as SSL and https.

1.4 POST-QUANTUM CRYPTOGRAPHY

The quantum computer was developed based on the principles of quantum
physics to perform computations. Classical computers use bits which is
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either O or 1 whereas quantum computers use quantum bits (called qubits)
which can be either in a quantum state (0 or 1) or in a superposition of these
states. A quantum computer is useful only if a quantum algorithm which
solves a particular problem exists. It is important to distinguish between
Quantum Cryptography and Post-Quantum Cryptography (PQC). Quan-
tum cryptography refers to quantum mechanical solutions to achieve com-
munication secrecy or quantum key distribution. On the other hand, post-
quantum cryptography aims to design and deploy algorithms that are secure
against classical and quantum attacks. The security proofs of current widely
used public-key cryptosystems (namely, RSA, Diffie-Hellman and ECC)
are based on the hardness of integer factorization, discrete logarithm and
elliptic curve discrete logarithm problems. Solving these problems using
classical computation technology, even with hardware accelerators, takes
hundreds of years. However, in 1994 Peter Shor [85] proposed an algo-
rithm which solves these problems in polynomial time with a large-scale
(a few thousands of qubits) quantum computer. Although the key sizes for
RSA and ECC used today are resistant against currently available small-
scale quantum computers, the transition from classical public-key cryptog-
raphy to post-quantum cryptography is needed in the near future, before any
large-scale computers are built. Compared with public-key cryptography,
symmetric cryptography is less affected by quantum attacks like Grover’s
algorithm which halves the security level.

In 2016, National Institute of Standards and Technology (NIST) re-
leased a report that announced a standardization plan for PQC and called
for new quantum-resistant cryptographic algorithms for key encapsulation
mechanisms (KEM), public-key encryption (PKE) and digital signatures.
The evaluation criteria used throughout the NIST PQC standardization pro-
cess [70] are: 1) security, 2) cost and performance, and 3) algorithm and
implementation properties.

Among the 82 received submissions by the November 2017 deadline,
69 of them were accepted into the first round of the standardization process
in December 2017 as they met the submission requirements and minimum
acceptability criteria. In January 2019, NIST selected 26 algorithms to ad-
vance to the second round, after considering the public feedback and inter-
nal reviews of candidates. 17 of them were KEMs/PKEs and 9 were digital
signatures. Four of the 26 candidates were mergers of the first round algo-
rithms. In July 2020, NIST announced the 15 candidates moved on to the
third round of the standardization process. Of the 15 advancing candidates,
seven have been selected as finalists and eight as alternate candidates. The
alternate candidates are considered as potential candidates for future stan-
dardization, most likely after another round of evaluation.
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Table 1.2
NIST 3rd round finalists (Cbh: Code-based; Lb: Lattice-based; Mv:
Multivariate).

Scheme Type Security Problem
Classic McEliece KEM, Cb Decoding Goppa codes
CRYSTALS-Kyber KEM, Lb Module-LWE
NTRU KEM, Lb NTRU problem
SABER KEM, Lb Module-LWE
CRYSTALS-Dilithium | Sign, Lb | Module-LWE & Module-SIS
FALCON Sign, Lb R-SIS over NTRU lattices
Rainbow Sign, Mv Unbalanced Oil-Vinegar
Table 1.3

NIST third round alternate (Cb: Code-based; Lb: Lattice-based;
Ib: Isogeny-based; Mv: Multivariate; Sym: Symmetric; Hb: Hash-
based).

’ Scheme ‘ Type Security Problem
BIKE KEM, Cb | Decoding QC-MDPC codes
HQC KEM, Cb | Decisional QCSD with parity

FrodoKEM | KEM, Lb LWE
NTRU Prime | KEM, Lb NTRU
SIKE KEM, Ib Isogenies of elliptic curves
GeMSS Sign, Mv | Hidden Field Equation (HFE)
Picnic Sign, Sym ZKP
SPHINCS+ Sign, Hb | Security of the hash functions

There are five competing families of PQC algorithms: Code-based en-
cryption, Isogeny-based encryption, Lattice-based encryption and signa-
tures, Multivariate signatures, and Hash-based signatures.
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1.4.1 CODE-BASED CRYPTOGRAPHY

Code-based cryptography uses error-correcting codes to build public-key
encryption algorithms. The first code-based cryptosystem was proposed by
Robert J. McEliece in 1978 [63]. Athough it is as old as RSA and has much
stronger security than RSA, due to large key sizes (large matrices as its
public and private keys), it was not deployed in practical applications so
far. However, today it is a strong candidate for PQC as it is resistant to
attacks using Shor’s algorithm.

The security of McEliece cryptosystem is based on the hardness of ef-
ficient decoding of a selected linear code. A decoding algorithm corrects
errors which might have occurred during the transmission of a message
over a communication channel. The classical decoding problem is to find
the closest codeword ¢ € C to a given y € Iy assuming that there is a
unique closest codeword. Berlekamp et al. [5] showed that the general de-
coding problem for binary linear codes (over [F,) is NP-complete. The orig-
inal McEliece cryptosystem uses secretly generated random binary Goppa
codes [47] which can be efficiently decoded with the algebraic decoding
algorithm of Patterson [75]. Before presenting the algorithms of McEliece,
we give a brief description of linear codes.

Let [F, be the finite field with g elements, where g is a prime power.
A g-ary linear code of length n and dimension k is a k-dimensional vector
subspace of Iy. The elements of the code are called codewords. The mini-
mum distance of the code is the minimum weight of its nonzero codewords,
where the weight of a codeword is the number of its nonzero coordinates.
A linear code of length n, dimension k and minimum distance d is referred
to as an [n,k,d] code. A code of minimum distance d > 2t + 1 can correct
up to ¢ errors, i.e., C is a | (d — 1)/2]-error correcting code. A vector with
more errors will likely get decoded incorrectly.

Since a linear code is a vector space, it admits a basis. Any codeword
can be expressed as the linear combination of these basis vectors. A gen-
erator matrix G of an [n,k,d] code C is a k X n matrix whose rows form a
basis for C. Namely, C = {xG : x € ]F’;} A parity-check matrix of C is an
(n—k) x n matrix H such that {¢ € F” : He” =0} where ¢ is the transpose
of ¢. If G has the form [I;|A], where I} is the k X k identity matrix, then G
is said to be in systematic form. The matrix H = [AT |I,_;] is then a parity-
check matrix for C. There are many generator matrices for a linear code,
but there is a unique one in systematic form if it exists.

The algorithms of the original McEliece cryptosystem is as follows:
KeyGen: A z-error correcting binary [n,k,d] linear code C with a genera-
tor matrix G’ is picked. Further, a k X k random binary invertible matrix §
and an n X n random binary permutation matrix P are chosen. Multiplying
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a vector by a permutation matrix, which has exactly one 1 in each row and
each column and Os elsewhere, permutes the entries of the vector. The pub-
lic key is the pair (G = SG'P,t) and the secret key is the triple (G',S,P)
with an efficient decoding algorithm for C.

Enc: To encrypt a plaintext m € ]F'ﬁ, a random vector e € [; of weight 7 is
chosen and the ciphertext is computed as

c=mG+e.

Dec: To decrypt a ciphertext ¢ € I} the legitimate receiver, who knows the
matrices S, G/, P and an efficient decoding algorithm for C, computes first

P ' =mGP ' +eP ' =mSG'PP ! +eP ! =mSG +eP .

Note that the weight of eP~! is t and since C is a t-error correcting
code, the codeword mSG’ is obtained. Using the decoding algorithm for C,
the legitimate receiver recovers mS and then covers m by multipliying the
inverse of S.

McEliece’s original parameter set with n = 1024,k = 524, = 50 were
designed for 264 security, but it was broken in 2008 [6] with approximately
260 CPU cycles. Further, the new parameters were designed to minimize
public-key size while achieving 80-bit, 128-bit, or 256-bit security against
known attacks [6]. For a detailed security analysis of these codes, we refer
the reader to [58].

1.4.2 1SOGENY-BASED CRYPTOGRAPHY

Isogeny-based cryptography uses maps between elliptic curves, called iso-
genies, to build public-key cryptography. The first such cryptosystem was
discovered by Couveignes in 1997, but became better known in 2006 [29].
This system further developed by Rostovtsev and Stolbunov in [80] and
Stolbunov in [90]. All these proposed systems are based on the difficulty
of computing isogenies between ordinary elliptic curves. This hardness as-
sumption is totally different from the hardness of the elliptic curve discrete
logarithm problem for security. Therefore, Shor’s quantum algorithm [85]
cannot break these systems. However, Couveignes—Rostovtsev—Stolbunov
(CRS) cryptosystem based on ordinary elliptic curves can be broken with
a subexponential quantum attack [24]. In 2011, Jao and De Feo [52] used
isogenies between supersingular elliptic curves rather than ordinary ones
to construct a novel key-exchange protocol, called Supersingular Isogeny
Diffie-Hellman (SIDH). The extended version of SIDH was later released
by Jao, De Feo and Plat with [40]. SIDH addressed both the performance
and security drawbacks of CRS system. Thenceforth, SIDH has attracted
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almost all research focus of isogeny-based cyrptography. SIDH resists
against the attack proposed in [24] which exploits the commutativity of
the endomorphism ring of an ordinary elliptic curve, since SIDH is con-
structed using the isogenies between supersingular elliptic curves whose
endomorphism ring is non-commutative. Currently known fastest classical
and quantum attacks against SIDH are both exponential. The SIDH algo-
rithm also provides perfect forward secrecy which improves the long-term
security of encrypted communications. Further, compromise of a key does
not affect the security of the past communication.

SIDH was used to build the key encapsulation mechanism SIKE (Su-
persingular Isogeny Key Encapsulation) [51] based on pseudo-random
walks in supersingular isogeny graphs, that was submitted to the NIST
standardization process on post-quantum cryptography and selected as a
third round alternate candidate. One of the main advantages to SIKE is that
it has the smallest public key sizes of all the encryption and KEM schemes,
as well as very small ciphertext sizes. Among all the post-quantum cryp-
tosystems, isogeny-based systems are the most recent and their security
against quantum attacks needs to be further studied.

In 2018, Castryck et al. [17] presented CSIDH (Commutative Supersin-
gular Isogeny Diffie-Hellman) which directly adopts the CRS cryptosystem
based on ordinary elliptic curves to supersingular case. CSIDH is vulner-
able to the attack proposed in [24]. On the performance side, CSIDH is
much faster than CRS while it is slower than SIDH. CSIDH has not been
submitted to NIST’s standardization process since it was designed after the
submission deadline date.

Table 1.4
Instantiations of Diffie-Hellman.
DH ECDH SIDH
elements integers g | points P in | curves & in
modulo prime | curve group isogeny class
secrets exponents x scalars k isogenies ¢
computations || g,x— g* k,P— [k|P 0,8 0(8)
hard problem || given g, g*find | given P, [k]P | given &, ¢(&)
X find k find ¢

In this section, original SIDH key-exchange protocol will be explained.
Before that, we first briefly introduce supersingular elliptic curves over
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finite fields and isogenies. For more details on elliptic curves and their use
in cryptography, we refer the interested readers to [87, 41].

1.4.2.1 Supersingular Elliptic Curves and Isogenies

Let [, be a finite field of g elements where g is a prime power, namely
g = p" for n >0 and p > 3. An elliptic curve & defined over F,, denoted
as & /F,, is given by an equation in short Weierstrass form

&E:y* =x>+ax+b, a,bel, and 44> +27b* #£ 0.

The set of points on & over IF, are the set of pairs (x,y) € IFLZI satisfying
the curve equation

& (Fg) ={(x,y) € Fg:y* =x’ +ax+b}U{Os},

where Og = (o0, 00) is the point at infinity , which is also considered to be a
solution to the Weierstrass equation. The set of points on an elliptic curve
& is an abelian group with the identity element &» under the “chord and
tangent rule”. The number of points on & /F, is #&'(F,;) = g+ 1 —1 for
an integer ¢ lying in the interval [-2,/g,2,/q]. An elliptic curve is called
supersingular if 7 = 0 mod p, or equivalently #& (F;) = 1 mod ¢ and is
called ordinary otherwise.

For k € Nand P € &(F,), we define [k]P = P+ P+---+ P (n times).
The order of P is k if [k]P = 0. Since &(IF,) is a finite group, the order of
any point P € & (IF,) is finite and divides the group order #&'(IF,)).

Let &1 and &> be two elliptic curves over IF,. An isogeny ¢ : &1 — &>
is a non-constant rational function which is a group homomorphism (i.e.,
compatible with the group operations) satisfying ¢ (0, ) = O,. Two ellip-
tic curves are isogenous if there is an isogeny between them. Endomor-
phisms are a special class of isogenies where the domain and co-domain
are the same curve. The endomorphism ring of & is the set of isogenies
from & to itself, along with the zero map 0 : & — & given by 0(P) = O
for all points P on &. In a set notation, End(E) = {¢ : & — &} U{0}. Iso-
morphisms also forms special class of isogenies where the kernel is trivial.
If there is a pair of isogenies ¢ : &1 — & and y : & — &) such that both
¢ oy and yo ¢ are the identity, then ¢ and y are isomorphisms and so &}
and & are isomorphic curves. Elliptic curves up to isomorphism forms the
isomorphism classes. The typical representation for isomorphism classes is
the j-invariant which is

443

(&) =1728— 4
J(&) 4a3 12702
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for elliptic curves in short Weierstrass form. The SIDH algorithm estab-
lishes the secret key by computing the j-invariant of two isomorphic super-
singular elliptic curves generated by the two communicating parties that
happens to be isogenous to an initial supersingular curve.

A theorem of Tate states that &1 and &3 are isogenous if and only if they
have the same number of points over [, (indeed over any finite extension
of Fy), i.e., #61(IF,) = #&>(F,) [93]. The set of curves that are isogenous
to an elliptic curve & is called the isogeny class of &. Note that if & is su-
persingular then all curves in its isogeny class are supersingular; similarly,
isogeny class of an ordinary curve consists of ordinary curves. It is well
known that every supersingular curve is isomorphic to one defined over
[F ». From now on, we consider the supersingular curves only.

The cryptography community is interested in separable isogenies,
which does not factor through Frobenius map (x,y) — (x9,y9) over F,.
The degree of a separable isogeny is the number of points in its kernel. An
isogeny is defined by its kernel in the sense that for every finite subgroup
G of &, there is a unique & (up to isomorphism) and a separable isogeny
¢ : &1 — &, such that Ker ¢ = G. Instead of &5, we sometimes write &} /G.
Given a finite subgroup G of &1, an isogeny ¢ : &1 — & with kernel G
can be constructed by Vélu’s formulas [95]. Notice that the number of dis-
tinct isogenies of degree ¢, called as ¢-isogenies, is equal to the number of
distinct subgroups of &} of order 4.

As an example, for each m € Z such that p { m and an elliptic curve &
over I, consider the following separable isogeny

m: & —&
P — [m]P.

The kernel of this isogeny is the m-torsion subgroup of &, denoted by
&[m], which is the set of points on & of order m,

Em={Pe&:[mP=0Cg} =7Z/mLx7Z/mL.

The degree of the above isogeny is equal to #& [m] = m>.

1.4.2.2 Supersingular Isogeny Diffie-Hellman (SIDH)

First, the domain (public) parameters are fixed. Let p be a prime of the form
L4 0p°B f + 1, where ¢4 and ¢p are small primes, e¢4 and ep are positive
integers and f is a small cofactor such that p is a prime. A supersingular
elliptic curve & defined over Fy = F » is constructed (this can be done
via an efficient algorithm due to Broker [16]) such that it has cardinality
(4“4 £5°8 £)?. Elliptic curve points Py, 04 € &[(5] are chosen such that
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the group (P4,0a) generated by P4 and Q4 is the entire group &[¢5'], i.e.,
{Ps,04} form a basis for &[¢;!]. In a similar way, elliptic curve points
Pg,Qp € &[(F] are chosen such that the group (Pg,Qp) generated by Pg
and Qg is the entire group &[(57].

The SIDH key exchange protocol between two parties A and B works
as follows:

* A picks two random integers 0 < mgy,n4 < EZA such that £4 1 ma,np
and computes [m4]Ps + [n4]Q4. Similarly, B picks two random
integers 0 < mp,np < {3 such that {5 { mp,ng and computes
[mp]Pp + [np]QOp.

* A creates a secret isogeny ¢4 : & — &4 with kernel generated
by the point [ms]Ps + [n4]0a by using Vélu’s formulas. Then
= ¢A(c§)) = éa/KA where K4 = <[mA]PA + [I’lA]QA> is the ker-
nel. Similarly, B creates a secret isogeny ¢p : & — &3 for which
the kernel is Kp = ([mp|Pg + [np]Qp) and &3 = ¢p(&) = & /K.

* In the exchange step of the protocol, A and B publishes the
messages (64,94 (Ps), ¢4 (Qp)) and (&5, 9p(Pa), $5(Qa)), respec-
tively.

* Upon receiving B’s message, A computes an isogeny ¢ : & —
&xp with kernel ([ma]¢p(Pa) + [na]95(Qa)) = (95([malPa +
[n4]04) = ¢B(K4). Here, Exp = &/ Pp(Ka). Similarly, having
received A’s message, B computes an isogeny @y : 4 — &pa
with kernel <[mB]¢A(PB) + [n3]¢A(QB)> = ¢A(KB)~ Here, &pp =
&p/0a(Kp).

* The elliptic curves &35 and &p4 computed by A and B are iso-
morphic as they are both isomorphic to &/(Ky,Kg), so they have
the same j-invariant. This common j-invariant is the shared secret
key.

Given the curves &4, &5 and the points ¢4 (Pg), 94(Op), 95(Pa), 95(04)
as described in the above protocol, finding the j-invariant of & /(Kys,Kp) is
called as supersingular computational Diffie-Hellman (SSCDH) problem.
The security of SIDH is based on this problem. SSCDH is more special
(due to auxiliary information) than the main problem in this area known
as supersingular isogeny problem which is described as follows: Given a
finite field K and two supersingular elliptic curves &}, &, defined over K
such that || = |£|, compute an isogeny ¢ : & — &,. The best known
classical algorithm for this problem is due to Delfs and Galbraith [32] and
requires O( p'/ 2) bit operations. The best known quantum algorithm is due
to Biasse et al [7] and requires O(p'/*) bit operations. However, SSCDH
problem can be regarded as an instance of the claw problem for which the
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best known classical and quantum attacks requires O(p'/*) and O(p'/®) bit
operations, respectively [98, 92].

Note that the number of possible secret isogenies that A can create is
equal to the number of possible distinct kernels, which is éf{‘_l (L4 +1) and
the number of possible isogeny choices for B is /7’ “eg+1).

Further note that the time needed to compute an isogeny grows linearly
with the degree of the isogeny. Representing a large degree isogeny as a
composition of small prime degree isogenies makes isogeny crypto feasi-
ble. For example, SIDH decomposes a degree Ef(‘ isogeny into a sequence
of e4 isogenies of degree ¢4 instead of computing the isogeny in a single
step using Vélu’s formulas. while the computation cost of the latter one is
O(EZA ), the cost to compute the former one is proportional to £4. To reduce
the cost of the computation of sequences of isogenies and speed the com-
putation up, Jao and De Feo proposed a new method. For further details,
we refer the readers to [52].

The selection of the primes, the selection of the curve equation and
the elliptic curve point representation (affine vs projective) together yield
efficient implementations of the SIDH algorithm. For the fast arithmetic
computation inside the SIDH protocol, it is more convenient to use the
primes of the form p = 2°43¢ + 1. For an initial curve &/ Fp: V=x4x
where p = 29438 4 1, the 751-bit prime p = 23723%3% — [ provides 125-bit
post-quantum security level matching security of AES-192 and the 964-
bit prime p = 24363391 _ | provides 161-bit post-quantum security level
matching AES-256.

1.5 HOMOMORPHIC ENCRYPTION

Cloud computing offers many services to users, including storage of and
computation with large amounts of data. To take the advantage of the cloud
computing, users must share their data with the service provider. These
data might be sensitive (for example, financial data or patients’ medical re-
ords). A simple solution to ensure data privacy is to encrypt the data that
is sent to the cloud. However, a user cannot compute on the encrypted data
in the cloud. To perform computations, the data must be downloaded and
decrypted, or the secret key must be shared with the service provider. The
former process nullifies the major advantage of using cloud services while
the later process sacrifices privacy. This is where homomorphic encryption
(HE) comes into play. While the conventional encryption schemes does not
allow operations to be performed on the encrypted data without decrypting
it first, HE allows the cloud servers to compute on encrypted data with-
out decrypting it in advance. This concept was first introduced in 1978,
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shortly after the invention of RSA cryptosystem [79], by Rivest, Adleman
and Dertouzous [78], in their work entitled “On data banks and privacy
homomorphism”.

A homomorphic (public-key) encryption scheme & consists of four ef-
ficient algorithms: KeyGeng, Encg, Decs and Eval g, where the first three
algorithms are the usual 3-tuples of any conventional public-key encrption
scheme whereas the fourth one is an HE-specific algorithm which is asso-
ciated to a set of permitted functions .#¢. These algorithms are efficient in
the sense that their computational complexity must be polynomial in secu-
rity parameter A that specifies the bit-length of the keys. KeyGeng takes
a security parameter A as input, and outputs a pair of keys (pk, sk), where
pk denotes the public key and sk denotes the secret key. Ence takes the
public key pk, a plaintext m from the underlying plaintext space .# and
some randomness as inputs, and outputs a ciphertext ¢ € € where € is the
ciphertext space. Decs takes the secret key sk and a ciphertext ¢ as inputs,
and outputs a plaintext m. Correct decryption is required to be able to call
& an encryption scheme, i.e., the equality

Decs (sk,Encg(pk,m)) = m

should be satisfied. Evalg takes the public key pk, any ciphertexts
ct,.--,¢ € € with Encg (pk,m;) = ¢; and any permitted function f in Fg
as inputs. It outputs an evaluated ciphertext that encrypts f(my,...,m;).
Correct evaluation is satisfied if the following holds:

Decs (sk,Evale(pk, f,c1,...,¢:)) = f(my,...,my),

i.e., the evaluated ciphertext decrypts to the computation of the plaintexts
through f € F. If f is not in Fg, with an overwhelming probability,
Eval s algorithm will not produce a meaningful output.

If & has the properties of both correct decryption and correct evaluation
for the functions in .Z, then it is called an .%¢-homomorphic scheme.
However, mere correctness does not rule out trivial schemes where the eval-
uation algorithm just output (f,c;...,c;) without processing the cipher-
texts at all, and the decryption function decrypts the ciphertexts cy,...,¢
and then apply f to the resulting plaintexts. Further important attribute of
an homomorphic encryption scheme, which is referred as compactness (or
compact ciphertext requirement), excludes this trivial case. Compactness
property requires the ciphertext size and decryption time to be completely
independent of the homomorphically evaluated function f but only depen-
dent on the security parameter A. For example, decryption of an evalu-
ated ciphertext takes the same amount of computation as decryption of a
fresh ciphertext ¢ = Encg(pk,m). More formally, & is compact if there
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exists a polynomial g such that, for every value of the security parameter
A, Decg can be expressed as a circuit of size at most g(4). Note that an
Z g-homomorphic scheme is not necessarily compact.

An arithmetic function f can also be represented as a circuit which
breaks the computation of f down into AND, OR and NOT gates. Ad-
dition, subtraction and multiplication operations (in fact, these operations
modulo 2) are enough to evaluate these gates. For x,y € {0,1}, we have
AND(x,y) =xy, NOT(x) = 1 —x and OR(x,y) =1 — (1 —x)(1 —y).

Homomorphic encryption schemes are categorized into three classes
according to the set of permitted functions. If an encryption scheme per-
mits only one type of operation (either addition or multiplication) with an
unlimited number of times, then it is called a partially homomorphic en-
cryption (PHE) scheme; if it allows one type of operation with a limited
number of times while allowing another infinitely many times, it is called
a somewhat homomorphic encryption (SWHE) scheme. In PHE and
SWHE schemes, there is no compactness requirement, i.e., the ciphertexts
can get quite larger with each homomorphic operation. If an encryption
scheme can handle all functions (i.e., allows both addition and multiplica-
tion infinitely many times) and fulfill the compactness requirement then it
is called as fully homomorphic encryption (FHE) scheme.

PHE schemes are deployed in some particular real-life applications like
electronic voting [3] and Private Information Retrieval (PIR) [57] whose al-
gorithms support only addition operation. Although, SWHE schemes sup-
port both addition and multiplication, the maximum number of operations
performed homomorphically is limited since each operation contributes
“noise” to the ciphertext and after a threshold decryption fails. However,
explosion in demand for cloud computing platforms accelerated the con-
struction of FHE schemes which enables arbitrary computation on en-
crypted data.

1.5.1 PARTIALLY HOMOMORPHIC ENCRYPTION

There are several PHE schemes [79, 46, 36, 2, 64, 72, 74, 31], supporting
either addition or multiplication operation, in the literature . In this section,
we focus on three of them. It is worth noting that Paillier and ElGamal
algorithms are standardized in ISO (ISO/IEC 18033-6:2019).

1.5.1.1 Goldwasser-Micali Algorithm

The Goldwasser—Micali (GM) algorithm [46], developed by Shafi Gold-
wasser and Silvio Micali in 1982, has the distinction of being the first
probabilistic public-key encryption scheme, where each plaintext has
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several corresponding ciphertexts. The security of the GM algorithm is
based on the Quadratic Residuosity Problem modulon = p-gq.

An integer a € Z;, is called a quadratic residue modulo n if there exists
an integer x € Z such that @ = x> (mod 7). If there is no solution to this
congruence, then a is called a quadratic non-residue modulo n.

There is a special number-theoretic tool associated with quadratic

residues, the Jacobi symbol, denoted by (a) , which is defined for alla > 0
n

and all odd positive integers n. To understand the GM algorithm in detail,
we refer the reader to Section 2.1.10 (Quadratic Residues) in [73]. If n > 3
is an odd composite integer, the problem of determining whether a non-
negative integer a with Jacobi symbol 1 is a quadratic residue modulo 7 is
called the Quadratic Residuosity Problem.

KeyGen: Two random large primes p and g are chosen, and n = p - ¢
is computed. Then a quadratic non-residue x € Z; with Jacobi symbol

x) = 1 is chosen. This choice is accomplished by finding x € Z;, such
n

that (x) = (%) =1 By choosing p and ¢ as Blum integers, i.e.
p q
p=3 (mod 4) and ¢ =3 (mod 4), the integer n — 1 is guaranteed to be a

-1 -1

quadratic non-residue with (n ) = () = 1. The public key pair is
n n

(n,x) and the private key pair is (p,q).

Enc: After converting the message into a plaintext which is a string of bits

(my1,my,...,my), the sender picks uniformly at random y; € Z;; for each bit

m; and encrypts each bit by computing

ci=E(m)=y?-x" (mod n).
via the encryption function

E:({0,1},0) — (Z,,)
m o yrx",

where & denotes addition modulo 2, - denotes modular multiplication and
Z;, denotes the set of positive integers that are less than n and relatively
prime to n. The ciphertext generated is (c1, ¢z, ..., ck), such that ¢; € Z, for
i=1,2,... .k

Dec: The legitimate receiver knows the private key pair (p,q) and can de-
cide the quadratic residuosity of ¢; modulo p and modulo ¢. To decrypt the
message and get the plaintext back, she determines whether c; is a quadratic
residue modulo n for i = 1,... k. If ¢; is a quadratic residue modulo both
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p and g, then ¢; is a quadratic residue modulo n, which necessarily yields
m; = 0. Otherwise, ¢; is a quadratic non-residue modulo » which implies
m; = 1. Eval: Let y; and y, be randomly selected integers in Z;;. For bits
my and my,

E(m)-E(m) = (n>-2™)-(y2”-x™) (mod n)
= (vi-3)>- "™ (mod n)
= E(m &m),
which yields

D(E(ml) E(I’H2)) =m1 Dmy.

The randomness in the encryption of m; @ my is y1 - y2, which is neither uni-
formly distributed in Z;; nor independent of the randomness in E(m;) and
E(my). However this can be addressed by the re-randomization property of
GM algorithm. Let r € Z be a random number. Then,

2 E(m)=r*-y*-x¥" (mod n)=(r-y)>-¥" (mod n),

which is a valid encryption of m with the randomness r-y € Z;,.

1.5.1.2 ElGamal Algorithm

The ElGamal cryptosystem [36], which is a public-key encryption scheme
proposed by Taher ElGamal in 1985, improves the Diffie-Hellman key ex-
change method [33] into an encryption algorithm. There are two number
theoretic versions of this algorithm; one is multiplicatively homomorphic
and the other is additively homomorphic. Additively homomorphic ver-
sion is not practical in use since it forces the legitimate receiver to solve
a discrete logarithm problem, which is intractable, to decrpyt a ciphertext.
Therefore, we focus our attention on the multiplicatively homomorphic ver-
sion of ElGamal. Its security is based on the hardness of both the Computa-
tional Diffie-Hellman Problem and the Decisional Diffie-Hellman Problem
in the underlying group G,.

KeyGen: Two random large primes p and g satisfying g | (p — 1) are cho-
sen. Next, a cyclic subgroup G, of Z,, of order g with generator g is cho-
sen. This choice is accomplished by selecting some y € Z;, and comput-
ing g = y(»~1/4 (mod p). Finally a random x € Zyg is selected an h = g*
(mod p) is computed. The public key quadruple is (p,q,g,h) and the pri-
vate key is x.

Enc: The plaintext is m € G,. The sender generates a random number
r € Z4 and computes the ciphertext pair

E(m) = (c1,¢2) = (¢"  (mod p),m-h"  (mod p))
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via the encryption function

E5(an') - (GQXG%’)
m = (g m-),

For encryption of each message, a new r is chosen to be a uniformly
random integer in order to ensure security.
Dec: The legitimate receiver who holds the private key x can decrypt the
ciphertext (¢, ¢z ), without knowing the value of r, by computing u; and u,
as

w = (¢ =(g) = (modp)
w = w l-ca=h"-(m-K)=m (mod p),

where u; ! is the multiplicative inverse of u; in the group G,. This inverse
can be computed using the Extended Euclidean Algorithm in number the-
ory.

Eval: Let m; and m, be two plaintexts with accompanying random num-
bers r and ¥/, respectively. Then the pairwise products of the ciphertext
pairs are

E(my)-E(mp) (c1+ cl,cz )
= (¢-¢" (mod p),(mi-h")-(my-H") (mod p))
= (g’+’ (mod p),ml'm2~hr+’l (mod p))
= E(m -mp)

where the randomness in the encryption of m - my is r+r/, which is neither
uniformly distributed in Z, nor independent of the randomness in E(m;)
and E (m;). However this can be addressed by the re-randomization prop-
erty of the multiplicative ElGamal algorithm.

Let E(m) =c = (c1,c2) = (¢",m-h") (mod p) for random r € Z, and
1’ € Z, be another chosen random number. Then

(c1-g 2 i) = (¢ ,m-W-1") (mod p)

= (¢ .m-W*")  (mod p),

which is a re-randomized ciphertext of the original message m where r +

= Zy.

1.5.1.3 Paillier Algorithm

The Paillier algorithm was developed by Pascal Paillier [74] in 1999. Its
security is based on the Composite Residuosity Class Problem.
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KeyGen: Two distinct large primes p and g are chosen such that ged(p,q —
1) =ged(g,p—1) =1. Then A(n) =lem(p — 1,q — 1) is computed, where
n = p-q.Next, a semi-random base g € Z", with n|ord(g) is chosen, where
ord(g) denotes the multiplicative order of g in the cyclic group Z:,. The
public key pair is (n,g) and private key is A (n).

Enc: After converting the message into a plaintext m, where 0 < m < n, the
sender chooses a random u € Z7, such that 0 < u < n. Then the ciphertext
is computed as

c=g"-u" (mod n?)

via the encryption function

Ey: ZnxZy —7Zy
(mu) —g"-u".

Note that during key generation process, the condition on g (namely,
n|ord(g)) ensures that the encryption function Ej is bijective. More clearly,
given any w € Z,, with n fixed, the pair (m,u) is the unique pair satisfy-
ing the equation Eg(m,u) =w (mod n?). For the proof, see Lemma 14,
Chapter 9 in [73].

The nth residuosity class of w € Z~, with respect to g, denoted by Wl
is the unique integer m € Z, for which there exists u € Z;; such that

Eg(m,u) =g"-u" =w.
Given g,w € Z, such that n|ord(n), computing the class [w], is called
Composite Residuosity Class Problem of base g on which the security of
Paillier’s algorithm is based. For more details about this problem, see Sec-
tion 2.1.12 in [73].
Dec: The legitimate receiver decrypts the encrypted message ¢ by using the
private key A (n) as follows:

m=L(*"  (mod n?))- (L(g*"™ (mod n?)))"" (mod n).

Here, L(x) = (x — 1)/n (mod n). To see the correctness proof of the de-
cryption algorithm, the reader is referred to Chapter 9 in [73].

Eval: Consider the messages m; and m, with their accompanying random
u-values u; and uy, respectively. Then the product of corresponding cipher-
texts 1s

Eg(mi,u1)-Eg(ma,uz) = (g™ -(u1)")- (" (u2)") (mod n?)
= g™ (y;-up)"  (mod n?)

= E,(mi+mp,u;-up),
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where the randomness in the encryption of m; + my is uj - up, which
is neither uniformly distributed in Z*, nor independent of the random-
ness in E,(my,u;) and E,(mo,uz). However, this can be addressed by re-
randomization property of the additively homomorphic Paillier algorithm.

For randomly chosen u,u’ € Z};, the ciphertext ¢ = E4(m,u) can be re-
randomized by calculating

Ey(mu)-(u)" = c-()" (mod n?)
= (¢"-u")-(u)" (mod n?)
= ¢"-(u-u)" (mod n?)
Eg(m, w-u').

1.5.2 SOMEWHAT HOMOMORPHIC ENCRYPTION

Until 2005, all proposed encryption schemes had partial (either additive
or multiplicative) homomorphic property. In 2005, Boneh, Goh and Nis-
sim constructed BGN cryptosystem based on bilinear pairings on elliptic
curves that can support arbitrarily many additions and a single multipli-
cation by keeping the ciphertext size constant. While BGN scheme meets
the compactness requirement, allowing only one multiplication makes it
somewhat homomorphic. After the first plausible FHE published in 2009
[42], some SWHE versions of FHE schemes were also proposed due to the
performance issues associated with FHE schemes.

1.5.3 FULLY HOMOMORPHIC ENCRYPTION

Fully Homomorphic Encryption (FHE) is a special type of encryption
which is both additively and multiplicatively homomorphic. Since addi-
tion and multiplication form a complete set of operations, an FHE scheme
allows any polynomial-time computation on encrypted data. In 1978,
Rivest, Adleman and Dertouzos [78] first proposed theoretic possibility of
a scheme supporting arbitrarily complex computation in their paper titled
“On Data Banks and Privacy Homomorphisms”. However, for more than
30 years, this theoretic possibility could not be put into practice and so it
has been regarded as a “holy grail” of cryptography. Craig Gentry proposed
the first plausible way of obtaining an FHE scheme based on ideal lattices
in his seminal Stanford PhD thesis [42].

Gentry’s scheme is not only an FHE scheme but also a blueprint to
obtain an FHE scheme from an SWHE scheme. Although this scheme
was considered as a major breakthrough, it was not efficient and hard
to implement. Since the release of this blueprint, significant progress has
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been made in the direction of finding efficient and simpler FHE schemes
([88,94, 89, 15, 14, 12]). His construction has three components: an SWHE
scheme that can support a limited number of operations (a few multiplica-
tions and arbitrarily many additions), squashing method which converts the
SWHE scheme into a bootstrappable one and finally a method of bootstrap-
ping which turns the (bootstrappable) SWHE scheme into an FHE scheme.

Encryption functions of all existing SWHE schemes works by adding
a small amount of noise to the plaintext. Homomorphic evaluations on ci-
phertexts increase this noise and once it exceeds a certain threshold, the
decryption fails. Bootstrapping refreshes a ciphertext by running the de-
cryption function on it homomorphically. An SWHE scheme & is called
bootstrappable if it can evaluate its own decryption function, plus one addi-
tion or multiplication gate modulo 2. When these augmented circuits are in
the permitted set of functions (or circuits) %, one can construct a fully ho-
momorphic encryption scheme from &. A bootstrappable scheme refreshes
the evaluated ciphertext for more homomorphic computations by reducing
the noise in the ciphertext via the following Recrypts algorithm.

Recrypt,(pky,Dg,sky,c)

* Generate ¢7 via Encrypts (pka,ci;) over the bits of ¢
* Output ¢ = Evalye (pkz,Dg,Skl ,a)

First, it is supposed that two different public and secret key pairs are
generated, (pky,sk;) and (pky,sky). Let ¢ be the encryption of the message
bit m with pk; and let sk; be a vector of ciphertexts encrypted with pk, over
the bits of sk;. The public key pks, the decryption circuit D, sk; and ¢
are taken as inputs by the Recrypts function. First, ¢7 is generated as a
bitwise encryption of ¢; with the key pk, using the encryption function. It
is easy to recognize that ¢7 is doubly-encrypted. Since the SWHE scheme &
can evaluate its own decryption function homomorphically, the noisy inner
ciphertext is decrypted homomorphically with sk;. After the evaluation, a
new encryption of m but under pk; is obtained. While the noise is decreased
by eliminating the noise from the inner ciphertext, additional noise is added
during the homomorphic evaluation of the decryption function. As long as
the new noise added is less than the old noise removed, there is a progress.
Further homomorphic operations can be done repeatedly on the obtained
“fresh” ciphertext until reaching again a threshold point.

Gentry’s bootstrapping technique can be applied only if the decryption
function is simple enough. Otherwise, first squashing method should be
applied in order to reduce the complexity of the decryption function so that
itis in the set of permitted functions. In brief, squashing converts an SWHE
scheme into a bootstrappable one.
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The development of FHE since the release of Gentry’s work [42] can
be roughly divided into four generations according to the techniques used
in constructing the FHE schemes.

1.5.3.1 First-Generation FHE

This starts with Gentry’s original scheme using ideal lattices [42]. The
security of the underlying SWHE scheme is based on the hardness of an
average-case decision problem over ideal lattices, namely a variant of the
“bounded distance decoding problem (BDDP)” on ideal lattices. The se-
mantic security of the achieved FHE scheme is based on an additional
assumption called “sparse subset sum assumption”. Subsequently, Gentry
[43] showed a worst-case to average-case reduction for BDDP over ideal
lattices. In the same year, van Dijk et al. [94] presented the second FHE
scheme based on the Gentry’s idea, but the ideal lattice computations were
replaced by simple integer aritmetic operations. The security of this fully
homomorphic DGHYV scheme is based on the “approximate gcd (AGCD)
problem” and “sparse subset sum problem (SSSP)”. Then, Smart and Ver-
cauteren [88] introduced a third variant of Gentry’s scheme which uses
both relatively small key and ciphertext size. Afterward, a series of articles
[71, 45, 82] presented optimized the key generation algorithms in order to
implement Gentry’s FHE scheme efficiently.

These first-generation schemes have several bottlenecks in terms of ap-
plicability in real life. Firstly, they have limited homomorphic capacity due
to very rapid noise growth. Squashing the decryption circuit to make the
underlying SWHE schemes bootstrappable comes at the expense of addi-
tional and fairly strong security assumption namely the sparse subset sum
assumption. Moreover, the schemes that follow Gentry’s blueprint have in-
herent efficiency limitations. The efficiency of an FHE scheme is measured
by the ciphertext and key size, the time it takes to encrypt and decrypt, and
more importantly per-gate computation overhead. The per-gate computa-
tion overhead is defined as the ratio between the time it takes to compute a
circuit homomorphically on encrypted inputs to the time it takes to compute
it on clear inputs. The first-generation FHE schemes that follow Gentry’s
blueprint have a quite poor performance so that their per-gate computation
overhead is p(1), a large polynomial in the security parameter.

In 2011, Gentry and Halevi [44] constructed a new approach which is
one of the first major deviations from Gentry’s blueprint. Their construc-
tion still relies on ideal lattices and on bootstrapping but eliminates the need
for squashing and thereby does not rely on the hardness of the SSSP. How-
ever, there is no noteworthy improvement on the efficiency aside from the
optimization that reduces the ciphertext length.
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1.5.3.2 Second-Generation FHE

The second generation began in 2011 with the work of Brakerski and
Vaikuntanathan [14]. They introduced re-linearization technique to con-
trol ciphertext dimension in homomorphic multiplications. Further, they
showed how to construct a bootstrappable scheme without using squashing,
instead using a new technique to simplify the decryption algorithm. This
technique, named as dimension-modulus reduction, does not require sparse
subset sum assumption for security. The security of BV scheme is based
solely on the hardness of much more standard “learning with error (LWE)”
problem introduced by Regev [77] as a generalization of “learning parity
with noise” problem. Compared with the previous schemes using squash-
ing method, BV scheme [14] (as well as GH scheme [44]) has no notewor-
thy efficiency improvement because of costly bootstrapping operation. The
real cost of bootstrapping for FHE schemes that follow Gentry’s blueprint
is much worse than quadratic (see [12] for a detailed analysis). Braker-
ski, Gentry and Vaikuntanathan leveraged the techniques in [14] and con-
structed a leveled-FHE scheme [12]. Leveled-FHE is a relaxation of FHE,
in which the parameters depend (polynomially) on the depth of the circuits
that the scheme is capable of evaluating. The depth here referred to the mul-
tiplicative depth which is the maximal number of sequential multiplications
that can be performed on ciphertexts. The re-linearization and dimension-
modulus reduction techniques in [14] were enhanced as the key switch-
ing and modulus switching techniques in BGV scheme. Modulus switching
is a powerful noise management technique that control the noise without
bootstrapping and it is computationally cheaper than bootstrapping. This
technique sacrifices modulus size without jeopardizing the correctness of
decryption. In other words, a ciphertext modulo ¢ is replaced with a ci-
phertext modulo a smaller modulus p which decrypts to the same plaintext.
Although BGV scheme does not requires bootstrapping, they used it as
an optimization to reduce the per-gate computation overhead. The secu-
rity of BGV scheme is based on RLWE (ring learning with error) problem
[62] with quasi-polynomial approximation factors whereas all the previous
schemes relies on the hardness of problems with sub-exponential approxi-
mation factors. BGV scheme can also be instantiated with LWE rather than
RLWE, albeit with worse performance. After BGV scheme, Brakerski [11],
introduced a new scale-invariant FHE without modulus switching. In this
scheme, the same modulus is used throughout the homomorphic evalua-
tion process. Compared with previous LWE-based FHE schemes, in [11]
the ciphertext noise grows only linearly with the homomorphic operations
rather than exponentially. Then, Fan and Vercauteren [37] optimized the
Brakerski’s scheme by changing the based assumption from LWE problem
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to RLWE problem. Another improvements of Brakerski’s scheme was re-
ducing the computational overhead of key switching, faster execution of
homomorphic operations and efficiency improvement [96]. Later Zhang et
al. modified and improved Brakerski’s scheme [99].

It is also worth noting that in 2012 a NTRU-based multikey FHE
scheme was proposed by Lopez-Alt, Tromer and Vaikuntanathan (LTV)
[61] for its promising efficiency and standardization properties. However,
to allow homomorphic operations and prove its security, a non-standard as-
sumption is required in LTV scheme. In the following year, Bos, Lauter,
Loftus, and Naehrig [9] showed how to remove this non-standard assump-
tion via Brakerski’s scale invariant technique [11].

In second-generation FHE schemes, noise growth is slower during
homomorphic evaluations compared with first-generation FHE schemes.
Moreover, although second generation follows Gentry’s blueprint in the
sense that they first construct a SWHE scheme and then transform it into a
FHE scheme using bootstrapping, they can even be operated in the leveled-
FHE mode without bootstrapping and this makes them more efficient. How-
ever, the complex process of key-switching (or re-linearization) still intro-
duces a huge computational cost which is a main bottleneck for practicality.

1.5.3.3 Third-Generation FHE

In 2013, Gentry, Sahai and Waters proposed a new LWE-based FHE
scheme, known as GSW, which uses approximate eigenvector method in-
stead of the expensive relinearization (or key switching) technique. Since
the ciphertexts of GSW scheme are matrices that are added and multiplied
homomorphically in a natural way, the ciphertext dimension is kept con-
stant. GSW scheme is simpler and asymptotically faster than the previous
LWE-based FHE schemes. In the following years, two efficient ring vari-
ants of the GSW cryptosystem known as FHEW [35] and TFHE [25] were
introduced by Ducas and Micciancio and by Chillotti et al, respectively.

1.5.3.4 Fourth-Generation FHE

All three generation FHE schemes mentioned above support the exact
arithmetic operations over some discrete spaces like rings or finite fields.
However, majority of real-world applications require computations in a
continuous space such as R or C. To address this issue, Cheon et al.
proposed CKKS algorithm [22] which provides a natural setting for per-
forming operations on approximate numbers. The CKKS algorithm is
particularly suitable for implementing prediction and machine learning
methods. The name of the algorithm originally went by the name HEAAN,
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but later the authors changed it to CKKS in order to distinguish it from the
homomorphic encryption library HEAAN (https://github.com/snucrypto/
HEAAN) which implements CKKS. After the release of the CKKS
scheme, a full residue number system (RNS) variant was introduced
in [21].

Bootstrapping to extend the original leveled encryption scheme CKKS
to a fully homomorphic encryption was first proposed by Cheon et al [20].
Subsequently, several newer and better algorithms have been presented for
bootstrapping CKKS and its full-RNS variants [18, 48, 10, 53, 59].

1.5.4 IMPLEMENTATION ISSUES

Several open-source FHE libraries exist today. Below we list the most pop-
ular ones with the authors (developers) created them, the schemes they sup-
port and the languages they are implemented in.

SEAL : Authored by Microsoft; includes BFV, CKKS and written in C++
(https://github.com/Microsoft/SEAL)

PALISADE : Authored by a consortium of DARPA-funded defense con-
tractors; includes BGV, BFV, CKKS, TFHE, FHEW and written in
C++ (https://palisade-crypto.org/)

HELib : Authored by Halevi and Shoup; includes BGV, CKKS and writ-
ten in C++ (https://github.com/homenc/HElib)

HEAAN : Authored by Cheon, Kim, Kim, and Song; includes CKKS and
written in C++ (https://github.com/snucrypto/HEAAN)

FHEW : Authored by Ducas and Micciancio; includes FHEW and written
in C++ (https://github.com/lducas/FHEW)

TFHE : Authored by Chillotti et al; includes TFHE and written in C++
(https://github.com/tfhe/tthe)

FV-NFLIib : Authored by CryptoExperts; includes BFV and written in
C++ (https://github.com/CryptoExperts/FV-NFLIib)

Lattigo : Authored by EPFL-LDS; includes BFV, CKKS and written in
Go (https://github.com/tuneinsight/lattigo)

With the rapid development of FHE schemes and libraries, and frame-
works, it is important that the cryptography community has a standard for
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how to safely set the security parameters. In order for homomorphic en-
cryption to be adopted in medical, health, and financial sectors, an impor-
tant part of the standardization process is the agreement on security levels
for varying parameter sets. HomomorphicEncryption.org has undertaken
the task of this standardization [1].

In the remainder of this section, we describe the ideas behind Gen-
try’s lattice-based original construction forming the first generation with
the conceptually simpler DGHV scheme [94]. Then, BGV scheme will be
presented to describe the ideas behind the second-generation FHE. Finally,
the fourth-generation CKKS scheme will be explained.

1.5.5 THE DGHV SCHEME

In [94], van Dijk et al. described a remarkably simple SWHE scheme using
only modular arithmetic and used Gentry’s techniques to convert it into a
fully homomorphic scheme. The construction is based on the hardness of
the Approximate Greatest Common Divisor (AGCD) problem formulated
by Howgrave-Graham [50]. It is easy to compute the greatest common di-
visor of a given set of integers by Euclidean Algorithm. However, given
polynomially many near-multiples x; = s; + p - g; of a number p, where s; is
much smaller than p - g;, it is hard to compute p. In fact, AGCD assumption
states that when the multiples are “noisy”, it is not possible to compute p
efficiently. AGCD problem can be reduced to the security of the scheme of
van Dijk et al.

A secret-key SWHE scheme will be described first. Then a public-key
version will be obtained by invoking the result of Ron Rothblum [81] that
shows how to transform any secret-key homomorphic encryption scheme
into a public-key one.

DGHYV construction uses a number of parameters (all polynomial in the
security parameter A) adapted from AGCD problem and they are set under
some constraints. As a convenient parameter setting, set N = A,P = A2 and

0=2°.

KeyGeng: A random P-bit odd integer p (not necessarily prime) is gener-
ated.

Encg: To encrypt a bit m € {0,1}, a random N-bit number u is chosen
such that 4 = m mod 2 and a random Q-bit number ¢ is chosen. Write
U =m+2rfor r < p. The output is a fresh ciphertext c = E(m) = .+ pg =
m—+ 2r+ pq with a small “noise” y which masks the actual message.

Decs: The ciphertext is decrypted as m = D(c¢) = (¢ mod p) mod 2. De-
cryption works properly as long as the noise ¢ mod p is in the range
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(—p/2,p/2) such that p divides ¢ — ¢’. This condition put a limit on the
number of homomorphic operations performed on the ciphertexts. As
the noise of the system grows over p/2, the decryption no longer returns
the correct result.

Evals: Consider the ciphertexts c; = m + 2r; + pq and ¢y = my +2rp +
Ppq2, where ¢;’s noise is m; + 2r;. Then homomorphic addition computes

E(mi)+E(mp) = (m1 +m) +2(r1 +12) + p(q1 + q2)

which is a valid ciphertext of m| +m; as long as the noises are small enough

so that |(m| +my) +2(r1 +r2)| < p/2. It is possible to perform various

number of homomorphic additions before noise goes beyond p/2.
Homomorphic multiplication computes

E(ml)E(mz) =mymy +2(2r1r2—|—r1m2—|—r2m1)+pq/

for some integer ¢'. This is a valid ciphertext of mm; and can be decryted
as long as the noises are small enough so that | = mymy +2(2r1ry + rimy +
ramy)| < p/2. 1t is clear that multiplication increases the noise faster than
addition.

After performing many multiplications and additions, the noise can go
beyond p/2 and the decryption function of the scheme & no longer out-
puts the correct plaintext. Hence, this somewhat homomorphic encryption
scheme is not fully homomorphic. But still & is homomorphic enough. It
can handle an elementary symmetric polynomial in ¢ variables of degree
(roughly) d < P/(N -logt) as long as 2V¢ - (£) < p/2.

The scheme described so far was the secret-key version of the homo-
morphic encryption. A public-key version is presented in [94]. The secret
key of the scheme is p as before. The public key is a list of encryptions of
zero under the secret-key version: {x; = 2r; + pqi}fzo where r; and g; are
chosen as before. Here the x; are sampled so that xg is the largest, xg is odd
and xo mod p is even. To encrypt a bit m, a random subset S C {1,2,...,k}
and a random integer in a certain range are chosen. The encryption is

c= m+2r+22x,~ mod xg
=

The ciphertext is decrypted as (¢ mod p) mod 2 as long as ¢ has a small
noise (which is possible only if the encyptions of zero in the public key have
small noises).

Now it is time to ask this question: Is the somewhat homomorphic
scheme & described above “bootstrappable” ? The answer is “yes” only
if & is capable of evaluating its own decryption circuit (plus some)
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For the bootsrapping analysis, consider the decryption function
m = (¢ mod p) mod 2.

Since ¢ mod p=c—p-|¢/p], where || rounds to the neraest integer, and
also p is odd, decryption function can be written more simply as

c¢—lc¢/p] mod 2= (c mod2)®([c/p] mod 2).

This is just the XOR of the least significant bits of ¢ and |¢/p].

Computing the least significant bit and XOR is immediate. However,
computing |¢/p] is complicated. Because, each large integer ¢ and 1/p
need to be expressed with at least P ~ log p bits of precision to guarantee
that |¢/p] is computed correctly. As two P-bit numbers are multiplied, a
bit of the result may be a high-degree polynomial of the input bits. This
degree is also roughly P. Since & can handle an elementary symmetric
polynomial in 7 variables of approximate degree d < P/(N -logt), it is not
possible for & to handle even a single monomial of degree P, where the
noise of output ciphertext is upper-bounded by (2V¥)” ~ pV >> p/2. It turns
out that & cannot handle its decryption function, which means it is not
bootstrappable.

However, it is possible to transform the scheme, by using Gentry’s in-
genious squashing technique, into a bootstrappable one with the same ho-
momorphic capacity but a decryption function that is simple enough. This
transformation is accomplished by augmenting the public key with a “hint”
about the secret key. The hint is a large set of rational numbers that has
a secret sparse subset which sums to the original secret key. The “post-
processed” ciphertext via this hint, which contains a sum of a small set of
nonzero terms instead of the multiplication of large integers ¢ and 1/p, is
decrypted more efficiently than the original ciphertext. In order to guaran-
tee that the hint in the public key does not reveal any adversary information
about the secret key, an additional security assumption is required, namely
“sparse subset sum’ assumption. This assumption is based on the difficulty
of sparse subset sum problem (SSSP) used by Gentry [42] and studied pre-
viously in the context of server-aided cryptography [68]. For more details
on this, we refer the reader to [94].

DGHYV scheme is conceptually very simple but less efficient than the
lattice-based scheme. Several optimizations and new variants over integers
was introduced to address the efficiency problem [27, 28, 97, 19, 26, 76,
69, 23, 4].
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1.5.6 THE BGV SCHEME

We will describe here the RLWE instantiation of the BGV scheme [12]
which has a considerably better performance compared to the LWE in-
stantiation. Let A and pu be security parameters. In the setup procedure,
a 4-tuple of parameters params = (q,d,N, ) is chosen, where g = g(1)
is a u-bit odd modulus, d = d(A) is a power of 2, N > [3logg| and
X is a discrete Gaussian distribution over Z. The underlying ring of this
scheme is the ring of polynomials of degree less than d with integer coeffi-
cients denoted as R = Z[x]/(x? 4 1). R, is used to denote the quotient ring
R/gR = Z4[x]/(x? + 1) where the coefficients of polynomials are integers
modulo q.

Vectors will be written in bold lowercase letters.

SecretKeyGen: The secret key s is generated by drawing 8’ < x and setting
s=(1,s') eR>

PublicKeyGen: The public key is obtained by generating a column matrix
A’ « RY*! uniformly and an error vector e <= ", and then setting b +
A’s’ +2e. The public key A is an N x 2 matrix over R, whose first column
is b and the second column is -A’.

Enc: A message m € R; is encrypted by setting m = (m,0) € qu, gen-
erating r < R," uniformly at random and computing the ciphertext ¢
m+A'reRr>

Dec: A ciphertext c is decrypted as m < [[(c,s)],]> which is the reduction
of the dot product of ¢ and s first modulo ¢ (into the interval (—q/2,q/2))
and then modulo 2.

In order to construct a leveled homomorphic encryption scheme from
the encryption scheme defined above, some operations must be defined,
namely BitDecomp, Powersof2, SwitchKeyGen, SwitchKey and Scale.

BitDecomp(x € R}) operation decomposes X into its bit representation

(0,1, U[jgq)) € RY" 024,
where x = Y124 2/ .y with all u; € RY.
Powersof2(x € Ry) operation outputs the vector
1 -[log
(x,2-x,...,2led .x) ERZ( al
For vectors ¢ and s of equal length, it is easy to observe that
(BitDecomp(c,q), Powersof2(s,q)) = {(¢,s) (mod gq).

Key switching method consists of two procedures described below.
SwitchKeyGen(s| € Ry',s2 € Rg?) operation starts by generating a pub-
lic key A from the secret key s, for N = n; - [logq]| as described above.
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Then it ouputs a (public key) matrix B by adding Powersof2(s;) € R’qv to
the first column of the matrix A.

SwitchKey(B, ¢) takes the ciphertext ¢; encrypted under the secret key
s1 and the output B of SwitchKeyGen, then outputs a new ciphertext ¢, that
encrypts the same message under s;, namely

¢2 = BitDecomp(c;)T -B € R7,

where n, is the dimension of s;.

Finally, for the sake of completeness, the Scale operation must be de-
fined.

Scale(x,q,p,r) outputs x' defined as the R-vector closest to (p/q) - x
that satisfies X' =x (mod r), where g > p.

Let ¢ be a valid encryption of m under the secret key s modulo g (i.e.,
m = [[(c,s)]4]2 ) and let s be a short vector. Further let ¢’ be a simple scal-
ing of ¢, that is the R-vector closest to (p/q) - ¢ such that ¢/ = ¢ mod 2. It
turns out that ¢’ is a valid encryption of m under s modulo p < ¢ using the
usual decryption equation (i.e., m = [[(¢/,s)],]). In a nutshell, it is pos-
sible to change the inner modulus in the decryption equation to a smaller
number while preserving the correctness of decrption under the same se-
cret key. An evaluator, who does not know the secret key but only knows a
bound on its length, can transform a ciphertext ¢ satisfying m = [[(¢,s)]4]2
into a ciphertext ¢’ satisfying m = [[(¢,s)],]» (see Lemma 5 in [12]). Most
interestingly, if s has coefficients that are small in relation to ¢ and p is suf-
ficiently smaller than ¢, then the magnitude of the noise in the ciphertext
essentially decreases (Corollary 1 in [12])

[{",8)]p] < [[{e,8)]q-

Given the scheme and operations described above, it is now possible to
define a leveled FHE scheme which can be transfromed into a FHE scheme
by using Gentry’s bootstrapping technique.

Let L be a parameter indicating the number of levels of arithmetic cir-
cuit that the FHE scheme is capable of evaluating. Further let u = p(4,L),
where A is the security parameter. The setup procedure defined previously
must be called from L(input level of circuit) to O (output level) in order
to obtain a ladder of parameters. Namely, params; = (gj,d,Nj,x) where
g1 > qr—1 > -+ > q1 > qo has size (j+ 1)u bits and N; > [3logg;]| for
Jj=0,1,...,L. The parameter sets params; is used to generate the secret
key s;, by executing the SecretKeyGen procedure, and the public key A ;,
by executing the PublicKeyGen procedure described earlier for ecah level
j=L,L—1,...,1,0. Then by tensoring s; with itself, set s’j =5;®s; whose
coefficients are each of the product of two coefficients of s; in R,,. After-
ward, set s’/ = BitDecomp(s’;) and perform B; = SwitchKeyGen(S’jf ,Sj—1).
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Encryption is done by carrying out the encryption operation defined before
using the public keys A ; and decryption is done by executing the decryption
operation defined before using the secret key s;. The ciphertexts in depth j
of the circuit are assumed to be encrypted under s; using the modulus ¢g;.
Homomorphic addition and multiplication operations are executed on the
ciphertexts, and after performing each operation, a function named Refresh
is called. Refresh calls the Scale function to switch the moduli and then
invokes the SwitchKey function to switch the key under which the resulting
ciphertext is encrypted. Indeed, since addition increases the noise much
more slowly than multiplication, it is not necessarily required to refresh
after additions.

1.5.7 THE CKKS SCHEME

Cheon et al. [22] proposed CKKS scheme in 2017 for efficient approximate
computation on encrypted data. The CKKS algorithm works in the ring of
polynomials with integer coefficients modulo the mth cyclotomic polyno-
mial ®,,(x) that is R = Z[x] /(P (x)). The degree of P, (x) is n = ¢ (m),
where ¢ is the Euler’s totient function. In the ring R, = Z[x] /(P (x)), the
elements are polynomials whose degree is up to n — 1 with coefficients in
the range (—q/2,q/2]. If { = e isa primitive mth root of unity, then the
mth cyclotomic polynomial is

D,(x)= J[ =¢).
1</<m
ged(j,m)=1

In CKKS, m > 2 is taken as a power of 2. Then ®,,(x) = K241 =
x" + 1. Before encryption and after decryption of CKKS scheme, encod-
ing and decoding functions are called, respectively. Consider the canonical
embedding map

o:R — C"

ax) — (a(¢?) ez,

where the second half of the complex values in the image vector ¢ (a) are
the symmetric complex conjugates of the first half. So we can project the
image vectors onto their first half via the natural projction 7 : C* — cn/2,
Then the decoding function transforms an arbitrary polynomial a(x) € R
into a complex vector z such that z = 7 o 6(a) € C"/2. The encoding func-
tion is defined as the inverse of this decoding function. Specifically, it en-
codes an input vector z € C"/? into a polynomial a(x) = 6~ o~ !(z).
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The L-infinity norm of 6(a) for a € R is denoted by ||a||e = ||0(a)]|w»
which is equal to the largest of the absolute value of the complex com-
ponents of the vector ¢(a). Following notations in [22], we define three
distributions as follows. Given a real y > 0, 29 (y*) denotes a distribution
over Z" which samples its components independently from the discrete
Gaussian distribution of variance y>. For a positive integer h, % 7 (h)
denotes uniform distribution over the set of vectors in {0,41,—1}" whose
Hamming weight is exactly . For areal o < p < 1, the distribution Z°&'(p)
draws each vector from {0,+1,—1}" with probability p /2 for each of +1
and —1, and probability of being zero is 1 — p.

The aim is to construct a leveled HE scheme for approximate arith-
metic. Let the integer L be the depth of the arithmetic circuit to be evaluated

homomorphically and p > 0 be a base. The ciphertext modulus is g; = p*
foreachlevel k=1,..., L. Parameters for level k come from Z  [x]/ (x" +1)
foreach k=1,... L. The input level of the arithmetic circuit uses the mod-

L=1"and so on. The output

ulus ¢; = p", and the next level uses g, | = p
level uses the modulus ¢; = p.
SecretKeyGen: For O(2%) security, we choose the parameters of the
scheme as a power of two m = 2n, a real value 7, an integer /, an inte-
ger P, and the base p.

Then we sample s < % 7 (h), a< R,,, a' < Rp,,, € < 99 (7?)
and ¢ < P9 (¥*) to generate the following secret key sk, the public key
pk and the evaluation key evk, respectively.

sk = (1,s)
pk (b,a) € REIL whereb=—a-s+e (mod qr)
evk = (b,a)e R,zqu where b’ = —a’-s+e +Ps> (mod P-q).

Note that vectors above also represents polynomials whose coefficients
are the components of the corresponding vector. So the vectors are multi-
plied as polynomials in the corresponding polynomial ring and then written
back as a vector.

Enc: After encoding an input message z € C"/? into the plaintext m € R
using the procedure described previously, and sampling v +— 2 ¢'(0.5) and
ey, e, < Z9(y*), we compute the ciphertext via the encryption function
Epk as

¢=Ep(m)=v-pk+ (m+eg,e;) (mod gz).

Dec: The plaintext polynomial m is computed from a ciphertext ¢ in level
k via the decryption function Dg as

m = Dg(c) = (¢,sk) (mod gy).
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The CKKS algorithm introduces an error so that the decrypted value is
not exactly the same as the input value, indeed we have

D (Epk(m)) ~ m.

During the evaluation of the arithmetic circuit, the CKKS algorithm
performs homomorphic addition, homomorphic multiplication, and rescale
operations.

The homomorphic addition of two ciphertexts ¢ = (¢g,¢;) and ¢/ =
(¢h,¢}) in the same circuit level k is performed using

Cud = c¢+¢  (mod gp)
= (C(), C]) + (C6, cll) (mOd Qk)
(do,d;) = (co+ch,e1+¢;) (mod gi).

Here the input values ¢, ¢, ¢1,¢}and the output values do,d; are the ele-
ments of the ring R, and the arithmetic is performed in this polynomial
ring.

The homomorphic multiplication of two ciphertexts ¢ = (¢g,¢;) and
¢’ = (cp,¢}) in the same circuit level k is performed using

Conulr = C@C/ (mOd qk)
= (do,d;)+|P'-dy-evk] (mod g

where (do,d;,d>) = (cp-¢p,co-€)+¢4-¢1,¢1-¢)) (mod gx) and |-] stands
for rounding to the nearest integer. The output components of ¢,,,;; are also
the elements of the ring R, and the arithmetic is performed in this ring.

Rescale operation Rescaley_.;(c) transfroms the ciphertext ¢ from level
k to level k' by computing

/

¢ = [p"*c] (modgp)
(che)) = [P (co.er)] (mod gy)
(1" o], [P *-er])  (mod gp)

Generally, k' = k— 1, and therefore, the resclae transforms ¢ from k to k— 1
(one level closer to the output level)

¢ = [p7lel (mod g 1)
/

(ch.¢)) = [p ' (co,c1)] (mod g 1)
= (leo/pl,ler/p]) (mod gx1)
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1.6 CONCLUSIONS

This paper presented an extensive summary of the evolution of cryptog-
raphy since Shannon’s seminal paper “Communication Theory of Secrecy
Systems” [83]. The first milestone point is the development of secret-key
cryptographic methods LUCIFER, DES, and AES [39, 65, 67], that started
in 1958 and continue to-day. The second milestone was the invention of
public-key cryptography, starting with Diffie-Hellman key exchange [33]
and Rivest-Shamir-Adleman [79] between 1976-1978. Followed up public-
key cryptography, a variety of post-quantum cryptographic (PQC) algo-
rithms [60] have been developed, that are expected to make us safe with the
advent of quantum computers. Then, we have partially homomorphic en-
cryption (HE) methods [73] that have been flourishing since the day public-
key cryptography was invented, and finally fully-homomorphic encryption
methods which are based on the ideas of Craig Gentry [42]. The PQC and
HE methods are the two directions cryptographic research and development
will move on in the next two decades.

Our interest in cryptography is as old as the invention of writing, and
it is doubtful this fascination will vane. There will be many information
security challenges ahead, and we will attempt to understand and bring
solutions for them using cryptographic ideas and tools.
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fmod PROTOCOL-EXAMPLE-ALGEBRAIC is
protecting PROTOCOL-EXAMPLE-SYMBOLS .

--- Overwrite this module with the algebraic
--- properties of your protocol

*x*x Encryption/Decryption Cancellation
eq pk(Ke,sk(Ke,Z)) = Z [variant]
eq sk(Ke,pk(Ke,Z)) = Z [variant]

endfm

fmod PROTOCOL-EXAMPLE-SYMBOLS is
—--- Importing sorts Msg, Fresh, Public, and GhostData
protecting DEFINITION-PROTOCOL-RULES .

—-—— Overwrite this module with the syntax of your
--— protocol

--- Notes:

--— % Sort Msg and Fresh are special and imported
--- * Every sort must be a subsort of Msg

--— * No sort can be a supersort of Msg

--— Sort Information

sorts Name Nonce Key .

subsort Name Nonce Key < Msg .
subsort Name < Key .

subsort Name < Public .

--- Encoding operators for public/private encryption
op pk : Key Msg -> Msg [frozen]
op sk : Key Msg -> Msg [frozen]

—--- Nonce operator
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op n : Name Fresh -> Nonce [frozen]

—--- Associativity operator
op _;_ : Msg Msg -> Msg [gather (e E) frozen]

3.7.2 PROTOCOL PARTICIPANTS AND SYSTEM COMPOSITION

Then we have to define honest participants (Alice and Bob) and the in-
truder. They are defined in the symbol module with types and other con-
stants and use the Name type defined above. Yet, these are not all the pos-
sible principal names. Since Maude-NPA is an unbounded session tool, the
number of possible principals is unbounded. This is achieved by using vari-
ables of type Name instead of constants.

--- Principals

op a : —> Name . -—- Alice

op b : -> Name . -—— Bob

op i : —-> Name . --- Intruder
endfm

The next step is to define the protocol, itself, by defining variables used
in the protocol description, relying on formerly defined types. And then de-
scribing the role of Alice and the role of Bob. The protocol itself and the in-
truder capabilities are both specified in the PROTOCOL-SPECIFICATION
module. They are specified using strands or processes. Here we give a
brief introduction to specifying protocol strands. The symbol + means that
the message is outputted on the network (controlled by the intruder in the
Dolev-Yao intruder model) and the symbol - means that a term is received
by the participant. A vertical bar | is used to distinguish between present
and future when the strand appears in a state description. All messages
appearing before the bar were sent/received in the past, and all messages
appearing after the bar will be sent/received in the future. When a strand
is used in a protocol specification as opposed to a state description the bar
is irrelevant, and by convention it is assumed to be at the beginning of the
strand, right after the initial nil.

fmod PROTOCOL-SPECIFICATION is
protecting PROTOCOL-EXAMPLE-SYMBOLS .
protecting DEFINITION-PROTOCOL-RULES .
protecting DEFINITION-CONSTRAINTS-INPUT .
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-—- Overwrite this module with the strands
--- of your protocol

var Ke : Key .

vars X Y Z : Msg .
vars r r' : Fresh .
vars A B : Name .

vars N N1 N2 : Nonce .

eq STRANDS-PROTOCOL

=::r ::

[ nil | +(pk(B,A; n(A,r))), -(pk(A,n(A,r); N)), +(pk(B, N)),
nil ] &

tir oo

[ nil | -(pk(B,A; N)), +(pk(A, N; n(B,r))), -(pk(B,n(B,r))),
nil ]

[nonexec]

3.7.3 INTRUDER MODEL

The intruder is also modeled by rewriting rules. the first ones are modeling
the pairing properties, after we have the encryption and decryption rules
and finally the fact that the intruder controls the network and learns all the
messages sent. As usual, the deduction rules include tuple making, left and
right projection, encryption, signature and term generation. Unlike other
existing tools, there are no built-in Dolev-Yao model in Maude-NPA. It is
possible to fully customize intruder’s behavior besides writing additional
equational theories.

eq STRANDS-DOLEVYAO
= ::nil :: [ nil | -X), -(Y), +X ; V), nil ] &

:nil :: [nil | -(X ; V), +X), nil ] &
:nil :: [nil | -(X ; V), +(Y), nil ] &
::nil :: [ nil | -(X), +(sk(i,X)), nil ] &
:: nil :: [ nil | -(X), +(pk(Ke,X)), nil ] &
::nil :: [ nil | +(CA), nil ]

[nonexec]

3.7.4 SPECIFYING PROTOCOL PROPERTIES

Finally, we have to model the secrecy properties and the authentication
properties in the Maude language as follows. Each property contains
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several sections separated by the symbol | |. Only the first two sections can
be filled in and correspond, respectively, to the attack state’s expected set of
strands and expected intruder knowledge. The other sections usually have
the symbol nil. The first section containing the attacker’s expected final
states usually corresponds to a normal execution of the protocol. Intruder’s
final knowledge is usually used in case of secrecy properties. It is also pos-
sible to include never patterns in properties. Such a pattern describes a
strand that must not be encountered during protocol execution. It is gener-
ally used for authentication properties. For example, suppose that we want
to find a state in which Alice has executed an instance of a protocol, appar-
ently with Bob, but Bob has not executed the corresponding instance with
Alice. This can be specified using the following attack pattern with a never
pattern.

eq ATTACK-STATE(0)

= . r ::

[ nil, -(pk(b,a; N)), +(pk(a,N; n(b,r))), -(pk(b,n(b,r)))
| nil ]

|l n(b,r) inI, empty

|| nil

|| nil

|| nil

[nonexec]

eq ATTACK-STATE(1)

=::r ::

[ nil, -(pk(b,a; N)), +(pk(a,N; n(b,r))), -(pk(b,n(b,r)))
| nil ]

|l empty

|| nil

|l nil

|| never *** for authentication

(:: ¢

[ nil, +(pk(b,a; M), -(pk(a,N; n(b,r))) | +(pk(b,n(b,r))),
nil ]

& S:StrandSet

|l K:IntruderKnowledge)

[nonexec]

endfm

--- THIS HAS TO BE THE LAST LOADED MODULE !!!!
select MAUDE-NPA .
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3.7.5 RESULTS

Executing input files with Maude-NPA produces attack states results show-
ing whether the queries, such as; secrecy of Nb and mutual authentication
above are satisfied. Either an attack state will be found in the execution tree
or all possible executions will end without any violating the properties. In
case of an attack, a strand visualization is produced.

L a:nla, #1Fresh

pk(i.a:n(a, #1fresh

.
.

.
.

n(b, #0:Fresh)

Figure 3.3 Strand visualization of attack given by Maude-NPA.

Figure 3.3 displays the attack found for the NSPK protocol. Following
the arrows will show the usual attack introduced in Section 3.1.1.1. Above
are the results of analysing the NSPK, indicating that the secrecy of B re-
garding the nonce Na is violated, and the injective authentication of A to B
is false. The second result shows that Bob may think that he has completed
a protocol run with Alice, while Alice has never stated a session with Bob
earlier implying the violation of the injective authentication of Alice and
Bob, and hence Lowe’s attack on the NSPK.
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