Authors:
Johannes Schneider
1
;
Bernd Schenk
1
and
Christina Niklaus
2
Affiliations:
1
Department of Computer Science and Information Systems, University of Liechtenstein, Vaduz, Liechtenstein
;
2
School of Computer Science, University of St.Gallen, St.Gallen, Switzerland
Keyword(s):
Grading Support, Autograding, Large Language Models, Trust.
Abstract:
Grading exams is an important, labor-intensive, subjective, repetitive, and frequently challenging task. The feasibility of autograding textual responses has greatly increased thanks to the availability of large language models (LLMs) such as ChatGPT and because of the substantial influx of data brought about by digitalization. However, entrusting AI models with decision-making roles raises ethical considerations, mainly stemming from potential biases and issues related to generating false information. Thus, in this manuscript we provide an evaluation of a large language model for the purpose of autograding, while also highlighting how LLMs can support educators in validating their grading procedures. Our evaluation is targeted towards automatic short textual answers grading (ASAG), spanning various languages and examinations from two distinct courses. Our findings suggest that while “out-of-the-box” LLMs provide a valuable tool to provide a complementary perspective, their readiness
for independent automated grading remains a work in progress, necessitating human oversight.
(More)