
HAL Id: hal-01186048
https://inria.hal.science/hal-01186048v1

Submitted on 24 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Transformation Language for RDF based on SPARQL
Olivier Corby, Catherine Faron Zucker

To cite this version:
Olivier Corby, Catherine Faron Zucker. A Transformation Language for RDF based on SPARQL.
van der Aalst, W.; Mylopoulos, J.; Rosemann, M.; Shaw, M.J.; Szyperski, C. Web Informa-
tion Systems and Technologies, Springer, 2015, Lecture Notes in Business Information Processing,
�10.5220/0005450604660476�. �hal-01186048�

https://inria.hal.science/hal-01186048v1
https://hal.archives-ouvertes.fr

A Transformation Language for RDF based on
SPARQL

Olivier Corby1 and Catherine Faron-Zucker2

1 Inria, France
2 Univ. Nice Sophia Antipolis, CNRS, I3S, France

Abstract. XSLT is a language for transforming XML documents into
other XML documents. Despite its 16 years long life, the RDF Semantic
Web language still waits its transformation language. Some propositions
have been done, relying on and extending XSLT, but none of them be-
came widely used. In this paper, we present a radically new transforma-
tion language for RDF, called STTL. It enables to transform RDF into
RDF as well as any other text format. The originality and power of STTL
is that it is based on SPARQL. We designed it as a lightweight exten-
sion to SPARQL and we compile it into standard SPARQL. We present a
generic transformation rule engine implementing STTL and several RDF
transformers we defined for various output languages, showing STTL’s
expressive power.

1 Introduction

The read-write Web is now providing us with a world-wide blackboard where
a hybrid society of users and software agents exchange digital inscriptions. The
RDF standard [7] provides us with a general purpose graph-oriented data model
recommended by the W3C to represent and interchange data on the Web. While
the potential of a world-wide Semantic Web of Linked Data and schemas is now
widely recognized, the transformation and presentation of RDF data is still an
open issue. Among the initiatives to answer this question there are extensive
works for providing RDF with several and varied syntaxes: XML, N-Triples,
Turtle, RDFa, TriG, N-Quads, JSON-LD, CSV-LD, etc. But this is still a partial
view of the above problem.

Just like the structured Web has been provided with the XSLT transforma-
tion language to present XML data to the user into HTML pages or to transform
XML data from one XML schema into another one or from an XML schema into
any non XML specific text format, for XML data interchange between agents
and therefore interoperability, the Web of data now requires a transformation
language to present RDF data to users and transform RDF data from one RDF
schema into another or transform data from its RDF syntax into another one.
Indeed, a special case of RDF data holds a very special potential: RDF data en-
coding other formal languages. In computer science, formal languages have been
used for instance to define programming languages, query languages, data mod-
els and formats, knowledge formalisms, inference rules, etc. Among them, in the

early 2000’s, XML has gained the status of a meta-language or syntax enabling
to define so-called XML languages. In the same way, we are now assisting to the
advent of RDF that will likely be more and more used as an abstract syntax
to represent other languages. For instance in the domain of the Semantic Web
alone, this is the case of three W3C standards: OWL 2 [14] is provided with sev-
eral syntaxes, among which the functional syntax, the Manchester syntax used
in several ontology editors and RDF; the Rule Interchange Format (RIF) [18] is
provided with several syntaxes among which a verbose XML syntax, two compact
syntaxes for RIF-BLD and RIF-PRD and an RDF syntax; SPARQL Inference
Notation (SPIN) is a W3C member submission [12] to represent SPARQL rules
in RDF, to facilitate storage and maintenance. Many other languages can (and
will) be “serialized” into RDF. For instance [8] is an attempt to represent SQL
expressions in RDF.

As a result of this emerging trend to use RDF as a “syntax” or a meta-
language for other Web languages, just like XML ten years earlier, the trans-
formation of RDF data into various output formats, various concrete syntaxes,
becomes a major issue. Regarding the RDF/XML syntax of RDF, one could
think that XSLT is a good candidate to declaratively express RDF transforma-
tions. However, writing XSLT templates for RDF would be based on its XML
syntax and not on the graph structure and semantics of RDF model — the trans-
formation rules would depend on the concrete XML syntax of RDF instead of its
graph structure and semantics—, which would make the writing of the transfor-
mation quite difficult. Moreover, the many potential serializations of any given
RDF statement would make the writing XSLT templates for RDF even more
complex.

In this paper we address the latter problem of transforming RDF data, i.e.,
generating the concrete syntax of expressions of a given language from their
RDF representation. More generally, the research question addressed in this
paper is How to transform RDF data into other languages? We answer two sub-
questions: (1) How to write declarative transformation rules from RDF to RDF
and other languages? (2) How to make the approach generic, i.e the rule language
independent from the output language?

We show how SPARQL [9] can be used as a generic transformation rule
language for RDF, independent from the output languages. We define an RDF
transformer as a set of transformation rules processed by a generic transfor-
mation rule engine. We present SPARQL Template Transformation Language
(STTL), a lightweight extension to SPARQL enabling the writing of transfor-
mation rules.

In section 2 we present existing transformation languages for RDF. In section
3 we present STTL, an extension of SPARQL enabling the writing of RDF
transformation rules. In section 4 we present the generic transformation rule
engine we developed to implement STTL. In section 5 we show the expressive
power of STTL through several RDF transformers we defined for various output
languages.

2 Related Work

XSLT [11] is a pioneer rule-based transformation language for XML. An XSLT
stylesheet is a set of transformation rules, called templates, which enables to
transform any XML document conform to a given model, i.e., to which the tem-
plates apply. An XPath expression identifies the XML subtrees (their roots) for
which a template applies, and the content of the template describes the transfor-
mation and its output. XSLT could be used to process and display RDF/XML
data in any output format. For instance the following XSLT template could be
used to transform RDF triples into an HTML table.

<xsl:template match=’rdf:Description[@rdf:about]’>

<xsl:for-each select=’./*’>

<tr> <td>

<xsl:value-of select=’../@rdf:about’/>

</td> <td>

<xsl:value-of select=’name()’/>

</td> <td>

<xsl:call-template name="value">

<xsl:with-param name=’v’ select=’.’/>

</xsl:call-template>

</td> </tr>

</xsl:for-each>

</xsl:template>

However RDF/XML syntax is extremely versatile and less and less used and,
most of all, writing XSLT templates for it would be very complex considering
the many potential serializations of an RDF statement: the transformation rules
would depend on the concrete XML syntax of RDF instead of its semantics.

GRDDL [4] is a mechanism for extracting RDF data from XML documents.
A GRDDL profile is associated to an XSLT stylesheet and can be specified in
any XML document conform to the targeted model or dialect to order GRDDL
agents to extract RDF data from it. GRDDL could then be used to extract RDF
data from RDF data in RDF/XML syntax. However this W3C recommandation
has never really been adopted and, like XSLT, this solution would rely on the
many concrete XML syntaxes of RDF instead of its semantics.

OWL-PL [3] is an extension of XSLT for transforming RDF/OWL into
XHTML. It provides an adaptation of XSLT processing of XML trees to RDF
graphs. In particular, it matches properties of resources instead of XML nodes
through XPath. OWL-PL is both tied to its RDF/XML input format, like XSLT.
Xenon [16] is another ontology for specifying in RDF how RDF resources should
be presented to the user. It reuses many of the key ideas of XSLT, among which
templates, and defines a so-called RDF Stylesheet language. Xenon’s two foun-
dational concepts are lenses and views. Lenses specify which properties of an
RDF resource are displayed and how these properties are ordered; views specify
how they are displayed. Both OWL-PL and Xenon are tied to a specific display
paradigm and an XHTML-like output format.

PersonLens a fresnel:Lens ;

fresnel:classLensDomain foaf:Person ;

fresnel:showProperties

(foaf:name foaf:mbox foaf:depiction).

:nameFormat a fresnel:Format ;

fresnel:label "Name" ;

fresnel:propertyFormatDomain foaf:name .

Fig. 1: Fresnel RDF graph

Fresnel [15] is an RDF vocabulary for specifying in RDF which data contained
in an RDF graph should be displayed and how. Fresnel’s two foundational con-
cepts are lenses and formats. Fresnel’s formats generalize Xenon’s views. Figure
1 presents a Fresnel RDF graph describing a presentation format for RDF data
on persons: a lense specifies that for each person, her name, mbox and picture
should be displayed and a format specifies how to display her name.

SPARQL is provided with a construct query form which enables to extract
and transform RDF data into RDF. A construct query returns an RDF graph
specified by a graph template in the construct clause of the query and built
by substituting the variables in the graph template with the solutions to the
where clause.

[1] addresses the problem of generating XML from RDF data with an ex-
tended SPARQL query. A SPARQL query is given a template of XML document
where variables are fed with the query results. The SPARQL construct clause
is overloaded to refer to an XML template with reference to SPARQL query
variables that are bound by a standard where clause.

XSPARQL [2] is a combination of SPARQL and XQuery [17] enabling to
query both XML and RDF data and to transform data from one format into
the other. XPARQL integrates within XQuery the SPARQL where clause to
facilitate the selection of RDF data to transform it into XML and, conversely, the
SPARQL construct clause to facilitate the construction of RDF graphs from
some extracted XML data. For instance the XSPARQL statements in Figure
2 enable to select RDF data on persons and transform it into an XML tree
describing relations between persons.

[19] proposes an XML-based transformation language, inspired by XSLT,
that mainly matches types of RDF resources. [13] proposes an XML-based
stylesheet language also inspired by XLST where templates match triple pat-
terns and generate HTML.

Finally, there are quite a wide range of RDF parsers and validators3, some of
which enable to transform RDF data from one serialization format to another.
Among them, let us cite RDF Distiller4 and RDF Translator5. A review of

3 http://www.w3.org/2001/sw/wiki/Category:Tool
4 http://rdf.greggkellogg.net/distiller
5 http://rdf-translator.appspot.com/

declare foaf="http://xmlns.com/foaf/0.1/";

<relations> {

for $Person $Name from <relations.rdf>

where {$Person foaf:name $Name}

order by $Name

return

<person name = "{$Name}"> {

for $FName

where {$Person foaf:knows $Friend .

$Friend foaf:name $FName}

return <knows>{$FName}</knows> }

</person> }

</relations>

Fig. 2: XSPARQL

these RDF-to-RDF converters can be found in [20]. Another famous example of
specific-purpose RDF transformer is the RDF/XML parser in OWL API6 [10]
which enable to transform OWL 2 statements in RDF/XML into the functional
syntax of the language.

To sum up, the state-of-the-art solutions presented in this section to trans-
form RDF data are all tied to either an RDF/XML input syntax or to a specific
output format, or both — except Fresnel. But Fresnel focuses on the presenta-
tion of RDF data and does not handle the general problem of the transformation
of RDF data. In the following, we present a generic approach for writing RDF
transformers for any output language.

3 SPARQL Template Transformation Language

SPARQL Template Transformation Language (STTL) is a generic transforma-
tion rule language for RDF based on SPARQL. It relies on two extensions of
SPARQL: an additional template query form to express transformation rules
and extension functions to recursively call the processing of templates into an-
other one. Section 3.1 summerizes the key features of SPARQL and sections 3.2
and 3.3 present the extensions of SPARQL in STTL. Section 3.4 presents STTL
syntax; section 3.5 presents the compilation of STTL into standard SPARQL;
and section 3.6 presents STTL semantics. Finally, section 3.7 compares STTL
to XSLT.

3.1 SPARQL

SPARQL is the query language for RDF recommended by W3C. It has a SQL-
like syntax (select from where) and is a graph pattern matching language.

6 http://owlapi.sourceforge.net/

A SPARQL query is a set of triple patterns that are RDF triples (in Turtle
syntax) which may hold variables. A query may also have operators such as
filter, conjunction, union, optional, minus, etc. An example of SPARQL query
searching resources with name “Olivier” which are linked to other resources with
a knows property is shown below:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

?x foaf:name "Olivier" ;

foaf:knows ?y .

FILTER (?x != ?y)

}

SPARQL is also provided with a construct where query form the result of
which is a graph. The construct clause specifies a graph pattern with variables
which are replaced by the values found in the solutions of the where clause in
order to create a graph. For instance, the SPARQL query below enables to
construct the RDF graph of foaf:knows inverse relations between the resources
of the original RDF graph.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {

?y foaf:knows ?x

}

WHERE {

?x foaf:knows ?y

}

3.2 SPARQL Template Query Form

STTL relies on two extensions of SPARQL: an additional template query form
and extension functions to process a set of templates such as st:apply-templates.

A template query is made of a template clause and a standard where
clause. The where clause is the condition part of a rule, specifying the nodes
in the RDF graph to be selected for the transformation. The template clause
is the presentation part of the rule, specifying the output of the transformation
for the RDF statements matching the condition.

For instance, let us consider the OWL 2 axiom stating that the class of
men and the class of women are disjoint. Here is its expression in functional
syntax: DisjointClasses(a:Man a:Woman); and here it is in Turtle: a:Man

owl:disjointWith a:Woman.

The following template enables to transform the above RDF statement into the
corresponding statement in functional syntax.

TEMPLATE {

"DisjointClasses(" ?in " " ?c ")"

}

WHERE {

?in owl:disjointWith ?c

}

The where clause matches the RDF statement and enables to select the subject
and object of property owl:disjointWith and to bind them to variables ?in

and ?c. The template clause specifies the result that must be generated using
the solution sequence of the where clause. Variables in the template clause
are replaced by their value displayed in the Turtle syntax.

The value of a variable may be a blank node that represents another OWL
statement, e.g., a Restriction. In this case, we would like to display not the blank
node itself but the result of the transformation of the target OWL statement.
This can be done using other templates.

3.3 SPARQL Template Extension Functions

Let us now consider the OWL 2 axiom stating that the class of parents is equiv-
alent to the class of individuals having a person as child. Here are its expressions
in functional syntax and in Turtle:

EquivalentClasses(a:Parent

ObjectSomeValuesFrom(a:hasChild a:Person))

a:Parent owl:equivalentClass

[a owl:Restriction ;

owl:onProperty a:hasChild ;

owl:someValuesFrom a:Person]

The template below enables to transform the above RDF statement into the
corresponding functional statement.

TEMPLATE {

"EquivalentClasses("

st:apply-templates(?in) " "

st:apply-templates(?c)

")"

}

WHERE {

?in owl:equivalentClass ?c .

}

The value matching variable ?in is a:Parent which is expected in the transfor-
mation output (the functional syntax of the OWL 2 statement), while the value
matching variable ?c is a blank node whose property values are used to build
the expected output.

This is defined in another template to be applied on this focus node. The
st:apply-templates extension function7 enables this recursive call of tem-
plates, where st is the prefix of STTL namespace:
http://ns.inria.fr/sparql-template/

In other words, hierarchical processing is done using the st:apply-templates
function in the template clause. It returns the result of the application of
other templates to the focus nodes. The result is concatenated in the template
clause. Hence, nested templates processing is performed by dynamic calls to
st:apply-templates.

According to the definition of PrimaryExpression in SPARQL grammar,
both SPARQL functions and extension functions can be used in template
clauses. The following SPARQL extension functions have been defined to process
a transformation:

– st:apply-templates(term) calls the transformer on a focus node term and
executes one template;

– st:call-template(name, term) calls a template by its name on a focus
node term;

– st:apply-templates-with(uri, term) calls the transformation specified
by uri on a focus node term and executes one template;

– st:call-template-with(uri, name, term) calls a template by its name,
on a focus node with a specified transformation;

– st:apply-templates-all(term) calls the transformer on a focus node term
and executes all templates; it returns the concatenation of the results.

– st:turtle(term) returns the Turtle form of an RDF term;
– st:define() and st:process() enable to parameterize the transformer be-

haviour when used in a predefined template presented in section 4.4.

3.4 Syntax

Figure 3 presents STTL’s grammar. It is based on SPARQL 1.1’s grammar8. In
the definition of Template, Prologue, DatasetClause, WhereClause, Solution-
Modifier and ValuesClause are those defined in SPARQL grammar. In the def-
inition of TemplateClause, iri is a template name. In the definition of Term,
PrimaryExpression is that defined in SPARQL grammar and Group is syntac-
tic sugar for SPARQL group concat aggregate, enabling an easier writing of
aggregation with several arguments. Separator enables to define the separator
of aggregates; by default, it is the space character for Group (see Section 3.5)
and the newline character for TemplateClause (see Section 3.6).

3.5 Compilation into standard SPARQL

A template can be compiled into a standard SPARQL query of the select form.
The compilation keeps the where clause, the solution modifiers and the values

7 Named in reference to XSLT xsl:apply-templates
8 http://www.w3.org/TR/sparql11-query/#sparqlGrammar

Template ::= Prologue TemplateClause

DatasetClause* WhereClause

SolutionModifier ValuesClause

TemplateClause ::=

’TEMPLATE’ (iri VarList ?) ?

’{’ Term* Separator? ’}’

VarList ::= ’(’ Var+ ’)’

Term ::= PrimaryExpression | Group

Group ::= ’GROUP’ ’DISTINCT’? ’{’

PrimaryExpression* Separator? ’}’

Separator ::= ’;’ ’separator’ ’=’ String

Fig. 3: STTL grammar

clause of the template unchanged and the template clause is compiled into a
select clause. Here is the compilation scheme of a template clause into a
select clause:

(1) cp(TemplateClause(Term(t1), ... Term(tn), sep)) =

SELECT (concat(cp(t1), ... cp(tn)) AS ?out)

(2) cp(Group(Term(t1), ... Term(tn), sep)) =

group_concat(concat(cp(t1), ... cp(tn)), sep)

(3) cp(Var(v)) = st:process(v)

(4) cp(PrimaryExpression(if(e1, e2, e3))) =

if(e1, cp(e2), cp(e3))

(5) cp(PrimaryExpression(e)) = e

Basically, a recursive function cp compiles a template clause by concatenating
the compilation of its terms by a call to function concat (1). A group is
syntactic sugar for group concat aggregate (2); a variable v in a template
clause is compiled into the st:process(v) function call (3); if function call
arguments are compiled except the condition which is left unchanged (4); other
primary expressions are left unchanged (5). The st:process function returns
the Turtle format of the RDF term, it can be overloaded (see section 4.4).

For instance, by applying the above scheme, the following STTL expression:

TEMPLATE {

"ObjectAllValuesFrom(" ?p " " ?c ")"

}

WHERE {

?in a owl:Restriction ;

owl:onProperty ?p ;

owl:allValuesFrom ?c

}

is compiled into the following SPARQL query:

SELECT

(concat("ObjectAllValuesFrom(",

st:process(?p), " ",

st:process(?c), ")") AS ?out)

WHERE {

?in a owl:Restriction ;

owl:onProperty ?p ;

owl:allValuesFrom ?c

}

3.6 Evaluation Semantics

Since STTL can be compiled into standard SPARQL 1.1, the evaluation seman-
tics of a template is that of SPARQL9. Let Ω the solution sequence resulting
from the evaluation of the SPARQL query resulting itself from the compilation
of a template. If the solution sequence is empty, the template fails. Otherwise, we
define the result of the evaluation of a template as the result of the Aggregation
operator of SPARQL Algebra10 with the following arguments:

Aggregation((?out), group concat, scalarvals, {1 -> Ω })
where scalarvals corresponds to the sep argument in the template clause.

Matching the graph pattern in the where clause of a template may return
several solutions: Ω is a solution sequence. However, the result of the evalu-
ation of a template is unique: the solutions in Ω are aggregated with an ad-
ditional group concat aggregate. The result of the template is the result of
group concat.

3.7 Comparison of STTL and XSLT

STTL and XSLT are quite similar in their functionalities and expressiveness.
The key difference between both languages is that XSLT operates on a XML
(ordered) tree whereas STTL operates on an RDF (unordered) graph. Hence
XSLT/XPath queries such as the 3rd son of a node may not be computable

9 http://www.w3.org/TR/sparql11-query/#sparqlAlgebraEval
10 http://www.w3.org/TR/sparql11-query/#aggregateAlgebra

with STTL (and with SPARQL) in the general case because RDF edges are not
ordered. However, it is possible to simulate ordering in RDF by assigning an
explicit number to each son.

Both languages share declarative template rules and named templates as
well as apply-templates and call-template functions. Both share conditional
statement, sorting and grouping. XSLT holds explicit repetition xsl:for-each

whereas in STTL it is implicit: the template clause is implicitly applied to all
solutions. In addition, STTL also manages a group statement.

A XSLT template can match several patterns in the body whereas in a STTL
template, there is one where clause resulting in one multiset of solutions. On
an other hand, STTL inherits all SPARQL 1.1 statements, including the service
clause which enables to perform transformations on Linked Data remote graphs.

Numbering

XSLT proposes a xsl:number numbering instruction that generates numbers
according to the place of current node in the tree. We introduce in STTL a
st:number extension function that generates a number for each solution of the
where clause, taking into account the order by clause. Hence, the numbers are
generated after the sorting of the solution sequence.

TEMPLATE {

st:number() " " ?x " " ?y

}

WHERE {

?x ex:link ?y

}

ORDER BY ?x ?y

In presence of st:number, the result of the template clause is a Future
datatype value, that is a specific datatype the value of which is completely
determined later (i.e. after order by occurs). The result of the template clause
is:
Future(concat(st:number(), text))

where text represents the constant part of the result:
text = concat(" ", ?x, " ", ?y).

At the end of query processing, order by sorts solutions. At the end of
template processing, the additional aggregate operation (see sec. 3.6) concate-
nates the value of template clause for all solutions into one textual result. This
group concat aggregate eventually evaluates the Future datatype value. As
the solutions are sorted, the value of st:number() in a given solution is the
index of the solution in the solution sequence, starting at index 1. The extended
aggregate hence computes:
group concat(?out) =

group concat(concat(st:number(), text)).

4 Implementation

We implemented a SPARQL Template Transformation engine within the Corese
Semantic Web Factory11 [6],[5]. Basically, it is called by the st:apply-templates
extension function, or any other transformation functions introduced in section
3.3. Given an RDF graph with a focus node to be transformed and a list of tem-
plates, the transformation engine successively tries to apply them to the focus
node until one of them succeeds. A template succeeds if the matching of the
where clause succeeds, i.e., returns a result.

4.1 Algorithm

Here is the core algorithm of the st:apply-templates function in pseudocode:

(1) Node st:apply-templates(Node node) {

(2) for (Query q : getTemplates()) {

(3) Mappings map = eval(q, IN, node);

(4) Node res = map.getResult(OUT);

(5) if (res != null) return res;

(6) }

(7) return st:default(node);

(8) }

Templates are selected (2) and tried (3) one by one until one of them returns
a result (4-5). In other words, a template is searched whose where clause
matches the RDF graph with the binding of the focus node to variable IN.
If no template succeeds, the st:default function is applied to the node (7). Re-
cursive calls to st:apply-templates implements the graph recursive traversal
with successive focus nodes: eval (3) runs templates that recursively call the
st:apply-templates function.

In addition to the above pseudocode, the transformer checks loops in case the
RDF graph is a cyclic graph. It keeps track of the templates applied to nodes in
order to avoid recursively applying the same template on the same node twice.
If no fresh template exists for a focus node, the transformer returns the value
returned by a call to the st:default function.

A call to any other transformation functions introduced in section 3.3 triggers
a similar algorithm.

4.2 Dynamic Variable Binding

When matching the where clause of a template with the RDF graph, the
SPARQL query evaluator is called with a binding of variable in (?in in the
where clause) with the focus node to be transformed. When processing tem-
plates, the SPARQL interpreter must then be able to perfom dynamic binding
to transmit the focus node. This dynamic value binding can be implemented

11 http://wimmics.inria.fr/corese

in SPARQL with an extension function st:getFocusNode() that retrieves the
focus node from the environment and a SPARQL bind clause to bind it to the
?in variable in the where clause:
BIND(st:getFocusNode() AS ?in)

The same scheme can be used for named templates with arguments.

4.3 Template Selection

By default, the transformation engine considers templates in order: given a focus
node, in response to a call to the st:apply-templates function, it considers the
first template that matches this node. Hence, the result of the transformation of
the focus node is the result of this template. Named templates can be chosen to
be processed by a call to the st:call-template function.

In some cases, it is worth writing several templates for a type of focus node,
in particular when the node holds different graph patterns that should be trans-
formed according to several complementary rules. Executing several templates
on the focus node is done by calling the st:apply-templates-all function in
the template clause. The result of the transformation is the concatenation of
the results of the successful templates.

A transformer can be used to transform a whole RDF graph. For this pur-
pose, the st:apply-templates- with function can be called without focus node
and the transformer must then determine it. By default, the first template that
succeeds is the starting point of the transformer; or a st:start named template
can be defined to be executed first (see Section 4.4).

4.4 Transformer Setting

Our implementation of STTL enables to simply set a special default template se-
lection behavior for a set of templates defining a transformation, by defining two
special named templates: st:start and st:default. The st:start template,
if any, is selected at the beginning of the transformation process when no focus
node is available. In that case, it is the first template executed by the template
engine. The st:default template, if any, is executed when all templates fail to
match the focus node.

The default processing of a variable in the template clause consists in out-
putting its value in the Turtle format. A specific named template st:profile can
be used to overload this default transformation behaviour. For example, the def-
inition shown below specifies that processing a variable, noted st:process(?x),
consists in the application of st:apply-templates to blank nodes and st:turtle

to URIs and literals.

TEMPLATE st:profile {

st:define (st:process(?x) =

if (isBlank(?x), st:apply-templates(?x), st:turtle(?x))

)

}

WHERE { }

5 Validation

In our approach of RDF transformation based on SPARQL templates, the tem-
plate processor is completely generic: it applies to any RDF data or any language
or model provided with an RDF syntax. What is specific to each output language
or format is the set of transformation rules defined for it. In other words, each
transformer specific to an output format is a specific set of templates processed
by the generic template processor implementing STTL.

In this section we present specific transformers available online12 which val-
idate both STTL and our implementation of a generic STTL processor. The
applications of STTL are many and varied. A first family of applications deals
with the presentation of RDF data into specific syntaxes, e.g., Turtle, (see Sec-
tion 5.1), or presentation formats, e.g., HTML (see Section 5.2), or any other
format answering specific needs. As a result, STTL answers all the application
scenarii addressed in the related work. A second family of applications deals
with the transformation of statements of a given language represented in RDF
syntax, e.g., OWL (see Section 5.3), or any other special purpose language with
an RDF syntax. A third family of applications deals with the translation of RDF
into other languages, e.g., RDF-to-CSV, or any translation X-to-Y of languages
with RDF syntaxes.

5.1 RDF-to-RDF/Turtle Transformer

The following single STTL template enables to output RDF data in Turtle syn-
tax.

TEMPLATE {

?x "\n"

GROUP { ?p " " ?y ; separator = ";\n" }

"."

}

WHERE { ?x ?p ?y }

GROUP BY ?x

In a similar way, it is easy to write a transformer for each of RDF syntaxes.

5.2 RDF to HTML

We implemented a generic transformation to translate SPARQL query results
into HTML. construct query returns an RDF graph whereas select query
result is translated in RDF using W3C DAWG result-set RDF vocabulary13

which is an RDF version of SPARQL Query Results XML format.
The template below generates table cells for variable bindings:

12 http://ns.inria.fr/sparql-template
13 http://www.w3.org/2001/sw/DataAccess/tests/result-set

prefix rs:

<http://www.w3.org/2001/sw/DataAccess/tests/result-set#>

TEMPLATE {

"<td>"

coalesce(

st:call-template(st:display, ?val), " ")

"</td>" ; separator = " "

}

WHERE {

?x rs:solution ?in

?x rs:resultVariable ?var

OPTIONAL {

?in rs:binding [

rs:variable ?var ; rs:value ?val]

}

}

ORDER BY ?var

Such RDF to HTML transformation enables us to design a Linked Data Nav-
igator14 on top of a local dataset as well as remote datasets such as DBpedia.
The transformer is embedded in a Web server, that is a SPARQL endpoint aug-
mented with a transformation engine. The transformation engine is accessible at
a specific URI on the server. Given a resource URI, the transformation retrieves
a description of the resource in the dataset and generates a HTML page accord-
ingly. In the HTML page, references to related resource URI are displayed as
hypertext links to the Web server.

5.3 OWL 2 Pretty-Printer

We wrote a transformation generating OWL 2 expressions in functional syntax
from OWL 2 expressions in RDF as a set of 73 STTL templates.

We validated it on the OWL 2 Primer ontology15 containing 350 RDF triples.
To validate the result of the transformation, we loaded the output produced in
OWL functional syntax into Protégé and did a complete cycle of transformation
(save to RDF/XML, load and transform again) and we checked that the results
were equivalent. Let us note that the results are equivalent and not identical
because some statements are not printed in the same order, due to the fact that
Protégé does not save RDF/XML statements exactly in the same order and
hence blank nodes are not allocated in the same order.

We tested this OWL/RDF transformer on several real world ontologies,
among which a subset of the Galen ontology. The RDF graph representing it
contains 33080 triples, the size of the result is 0.58 MB and the (average) trans-
formation time is 1.75 seconds. We also have tested our pretty-printer on the

14 http://corese.inria.fr
15 http://www.w3.org/TR/owl2-primer

HAO ontology. The RDF graph representing it contains 38842 triples, the size
of the result is 1.63 MB, the (average) pretty-print time is 3.1 seconds.

In addition to the transformation of an RDF graph representing an OWL
ontology, this transformer can also be used when querying an OWL ontology
stored in its RDF syntax, to present the results to the user in OWL 2 functional
syntax. This is done by calling in the select clause of the query one of the ex-
tension functions executing the transformer. As an example, the following query
retrieves specific classes of the ontology and displays the results in functional
syntax:

SELECT

(st:apply-templates-with(st:owl, ?c) as ?t)

WHERE {

?c a owl:Class ;

rdfs:subClassOf* f:Human

}

5.4 SPIN Pretty-Printer

SPIN is a representation of SPARQL abstract syntax trees in RDF [12]. It can
be used to manage predefined SPARQL queries, rules as well as constaints.
When using SPIN, the problem arises of presenting SPIN results in SPARQL
syntax instead of SPIN/RDF syntax because the latter is difficult to read for
users. For this purpose, we developed a SPIN to SPARQL pretty-printer using
a transformation. The example below shows a SPARQL query and its SPIN
representation.

PREFIX ex: <http://example.org/>

SELECT * WHERE {

?x ex:name ?y

}

@prefix sp: <http://spinrdf.org/sp#> .

@prefix ex: <http://example.org/> .

[a sp:Select ; sp:star true ;

sp:where (

[sp:subject _:sb0 ;

sp:predicate ex:name ;

sp:object _:sb1])

]

_:sb0 sp:varName "x" .

_:sb1 sp:varName "y" .

The SPIN pretty-printer contains 64 templates, it processes SPARQL 1.1
Query and Update. We validated the transformation by translating W3C SPARQL
1.1 test cases queries into SPIN and back to SPARQL and then evaluate the test

cases with the resulting queries. The template below translates a SPIN triple
into SPARQL syntax.

PREFIX sp: <http://spinrdf.org/sp#> .

TEMPLATE {

?x " " ?p " " ?y " ."

}

WHERE {

?in sp:subject ?x ;

sp:predicate ?p ;

sp:object ?y

}

5.5 Example of an Entire STTL Transformation

In this section we detail the execution of the OWL transformation16 on the
following OWL/RDF statement:

a:Parent owl:equivalentClass [

a owl:Restriction ;

owl:onProperty a:hasChild ;

owl:someValuesFrom a:Person

]

The transformation engine first searches a template that matches the statement
owl:equivalentClass. Here is the retrieved template:

TEMPLATE {

if (bound(?t), "DatatypeDefinition", "EquivalentClasses")

"(" ?in " " ?y ")"

}

WHERE {

?in owl:equivalentClass ?y

OPTIONAL { ?y a ?t filter(?t = rdfs:Datatype) }

}

The template clause is compiled to:

SELECT (concat(

if (bound(?t), "DatatypeDefinition", "EquivalentClasses"),

"(", st:process(?in), " ", st:process(?y), ")"

) as ?out)

The where clause of this template succeeds with the following bindings, where
:b is the blank node of type owl:Restriction:

16 http://ns.inria.fr/sparql-template/owl

?in = a:Parent ;

?y = _:b ;

The template clause then evaluates its arguments: the ?t variable is not bound,
hence the first expression evaluates to "EquivalentClasses". The following
select clause is eventually evaluated:

SELECT (concat("EquivalentClasses",

"(", st:process(?in), " ", st:process(?y), ")")

as ?out)

st:process(?in) with ?in bound to IRI a:Parent then returns a:Parent.
st:process(?y) with ?y bound to blank node :b of type owl:Restriction,
subject of properties owl:onProperty and owl:someValuesFrom, then searches
a template that matches such statements. Here is the retrieved template:

TEMPLATE {

if (bound(?t), "DataSomeValuesFrom",

"ObjectSomeValuesFrom")

"(" ?p " " ?z ")"

}

WHERE {

?in owl:someValuesFrom ?z ;

owl:onProperty ?p

OPTIONAL {

?p a ?t

FILTER (?t = owl:DatatypeProperty) }

}

The template clause is compiled to:

SELECT

(concat(

if (bound(?t), "DataSomeValuesFrom",

"ObjectSomeValuesFrom"),

"(", st:process(?p), " ", st:process(?z), ")"

as ?out)

The where clause of this template succeeds with the following bindings:

?in = _:b ;

?z = a:Person ;

?p = a:hasChild

The template clause of the above template then evaluates its arguments: vari-
ables ?t is not bound, hence the first expression evaluates to "ObjectSomeValues-
From".
The select clause below is eventually evaluated:

SELECT (concat("ObjectSomeValuesFrom",

"(", st:process(?p), " ", st:process(?z), ")")

as ?out).

As ?p and ?z are both bound to URIs, the evaluation of st:process(?p) and
st:process(?z) eventually returns the Turtle format of these URI. The result
of the above select clause and therefore of the template is then:

"ObjectSomeValuesFrom(a:hasChild a:Person)"

As there is only one result, the final group concat(?out) aggregate does not
change it. This result is returned to the first template as the value of st:process-
(?y) in its select clause . The result of this select clause and therefore of the
first template is then:

"EquivalentClasses(a:Parent

ObjectSomeValuesFrom(a:hasChild a:Person))"

This is precisely the expression in OWL functional syntax of the example of
OWL statement chosen as input to illustrate the STTL transformation.

5.6 Design Patterns

In this section we present examples that shows some possibilities of STTL.

Recursion

Named templates can be recursively called. Hence it is possible, for example, to
generate the development of factorial function.

TEMPLATE st:fac(?n) {

if (?n = 0, 1,

concat(?n, " . ", st:call-template(st:fac, ?n - 1)))

}

WHERE {

}

Property Path

SPARQL Property Path statement can be used to enumerate and display the
elements of a list.

TEMPLATE {

?e

}

WHERE {

?in rdf:rest*/rdf:first ?e

}

Nested Query

Nested queries can be used in templates, e.g. for aggregation purpose. The ex-
ample below counts and displays the number of resources instance of classes.

TEMPLATE {

?t " : " ?c

}

WHERE {

SELECT ?t (count(?x) as ?c)

WHERE {

?x a ?t

}

GROUP BY ?t

ORDER BY desc(?c) ?t

}

Values Clause

A template can exploit the values clause. The example below, extrated from
SPIN, associate a string label to operators.

PREFIX sp: <http://spinrdf.org/sp#> .

TEMPLATE {

"(" ?f " " str(?lab) " " ?r ")"

}

WHERE {

?in a ?ope ;

sp:arg1 ?f ;

sp:arg2 ?r

}

VALUES (?ope ?lab) {

(sp:lt "<") (sp:gt ">")

(sp:le "<=") (sp:ge ">=")

(sp:eq "=") (sp:ne "!=")

}

SPARQL

Several transformations can be used in a query. In the example below, an OWL
class is displayed in functional syntax and in RDF/Turtle syntax.

SELECT ?x

(st:apply-templates-with(st:owl, ?x) as ?o)

(st:apply-templates-with(st:turtle, ?x) as ?t)

WHERE {

?x a owl:Class

}

The result of a transformation can be used in a SPARQL query, for example in
a bind or a filter clause. In the example below, the query searches occurrences
of the string ”Annotation” in the result of the functional syntax transformation.

SELECT *

WHERE {

?x a owl:Class

BIND (st:apply-templates-with(st:owl, ?x) as ?fs)

FILTER (contains(?fs, "Annotation"))

}

A transformation can be used to generate a string key for a subgraph. In the
example below, the Turtle transformation is used to recursively generate keys
for OWL Restriction statements. Then, it groups statements with the same key
and counts the statements with same key.

SELECT ?key (count(?r) as ?c)

WHERE {

?r a owl:Restriction

}

GROUP BY (st:apply-templates-with(st:turtle, ?r) as ?key)

Template Selection

The name of a template to be called can be computed and bound to a variable.
The template below binds the ?temp variable with the st:person named tem-
plate for resources of type foaf:Person and st:resource for other resources.
The st:call-template function is called with ?temp variable as argument.

TEMPLATE {

st:call-template(?temp, ?y)

}

WHERE {

?in ex:relation ?y

BIND (

if (exists { ?y a foaf:Person }, st:person, st:resource)

AS ?temp)

}

The name of transformations can be retrieved in the RDF graph if resources
are annotated with transformation names. In the example below, the transfor-
mation name is retrieved from the class of the resource using the st:transform

property. Hence, transformations may be part of a Semantic Web Knowledge
Base.

TEMPLATE {

st:apply-templates-with(?trans, ?in)

}

WHERE {

?in a ?c .

?c st:transform ?trans

}

Linked Data Transformation

In the spirit of Linked Data, a transformation can query a SPARQL endpoint to
get additional information, using the service clause. In the example below, the
template queries DBpedia to get the latitude and the longitude of a resource.

PREFIX p: <http://fr.dbpedia.org/property/>

TEMPLATE {

st:call-template(st:locate, ?in, ?lat, ?lon)

}

WHERE {

?in a ex:Place

SERVICE <http://fr.dbpedia.org/sparql> {

?in p:latitude ?lat ;

p:longitude ?long

}

}

6 Conclusion and Future Work

In this paper we considered two related problems: (1) the transformation of
RDF to present RDF data to users, e.g., into a HTML domain or application
dependant format, and (2) the transformation of RDF when it is used as a
meta-model to represent on the Web other languages and their abstract graph
structure. We addressed the general problem of transforming RDF into other
languages. We answered this question by specifying STTL, a generic and domain
independent extension to SPARQL to support the declarative representation of
any special-purpose RDF transformation as a set of transformation rules. Being
based on SPARQL, STTL inherits its expressivity and its extension mechanisms.
This specification and the algorithms we described have been implemented and
tested in a generic transformation rule engine part of the Corese Semantic Web
Factory platform [6, 5]. This means all these results are part of this open-source
platform. We demonstrated the feasibility and genericity of our approach by
providing several transformations including: RDF-to-RDF syntaxes, RDF-to-
HTML, RDF OWL 2-to-OWL 2 functional syntax.

As future work, regarding the performances of our generic transformation
rule engine, we intend to improve them by implementing heuristics to optimize

the selection of templates. We should compare in the short term the performance
of our generic transformation rule engine with that of existing tools for specific
RDF transformations. For instance, we may compare the performance of our
engine with that of the parser of the well known OWL API17 for transforming
large OWL 2 ontologies from RDF/XML syntax into functional syntax.

Regarding the exploitation of our generic transformation rule engine to im-
plement RDF transformers into specific languages, we intend to augment the
number of STTL transformations available by writing rule sets for other formats
and domains. In the cases where the template clauses of the transformation
rules produce RDF triples (as text), we define RDF-to-RDF transformations. In
particular, we envisage implementing a special case of RDF-to-RDF transforma-
tion to anonymize RDF datasets.

Acknowledgement

We would like to thank Fabien Gandon (Inria) for enlighting discussions on the
nature of SPARQL-based transformations for RDF, Fuqi Song (Inria), Alban
Gaignard (CNRS) and Eric Toguem (U. of Yaoundé, Cameroun) for the set up
of the Web server.

References

1. Faisal Alkhateeb and Sébastien Laborie. Towards Extending and Using SPARQL
for Modular Document Generation. In Proc. of the 8th ACM Symposium on Docu-
ment Engineering, pages 164–172, Sao Paulo, Brésil, September 2008. ACM Press.

2. Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno Lopes, and Axel
Polleres. Mapping between RDF and XML with XSPARQL. J. Data Semantics,
1(3):147–185, 2012.

3. Matt Brophy and Jeff Heflin. OWL-PL: A Presentation Language for Displaying
Semantic Data on the Web. Technical report, Department of Computer Science
and Engineering, Lehigh University, 2009.

4. Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages
(GRDDL). Recommendation, W3C, 2007. http://www.w3.org/TR/grddl/.

5. Olivier Corby and Catherine Faron-Zucker. The KGRAM Abstract Machine
for Knowledge Graph Querying. In IEEE/WIC/ACM International Conference,
Toronto, Canada, September 2010.

6. Olivier Corby, Alban Gaignard, Catherine Faron-Zucker, and Johan Montag-
nat. KGRAM Versatile Data Graphs Querying and Inference Engine. In Proc.
IEEE/WIC/ACM International Conference on Web Intelligence, Macau, Decem-
ber 2012.

7. Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. Recommendation, W3C, 2014. http://www.w3.org/TR/rdf11-
concepts/.

8. Corentin Follenfant, Olivier Corby, Fabien Gandon, and David Trastour. RDF
Modelling and SPARQL Processing of SQL Abstract Syntax Trees. In Program-
ming the Semantic Web, ISWC Workshop, Boston, USA, November 2012.

17 http://owlapi.sourceforge.net/

9. Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. Recommendation,
W3C, 2012. http://www.w3.org/TR/sparql11-query/.

10. Matthew Horridge and Sean Bechhofer. The OWL API: A java API for OWL
ontologies. Semantic Web, 2(1):11–21, 2011.

11. Michael Kay. XSL Transformations (XSLT) Version 2.0. Recommendation, W3C,
2007. http://www.w3.org/TR/xslt20/.

12. Holger Knublauch. SPIN - SPARQL Syntax. Member Submission, W3C, 2011.
http://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/.

13. Silvio Peroni and Fabio Vitali. RSLT: RDF Stylesheet Language Transformations.
In Proc. of 12th ESWC Developers Workshop, Portoroz, Slovenia, June 2015.

14. Peter F. Patel-Schneider and Boris Motik. OWL 2 Web Ontology Language
Mapping to RDF Graphs (Second Edition). Recommendation, W3C, 2012.
http://www.w3.org/TR/owl-mapping-to-rdf/.

15. Emmanuel Pietriga, Chris Bizer, David Karger, and Ryan Lee. Fresnel - A Browser-
Independent Presentation Vocabulary for RDF. In Lecture Notes in Computer Sci-
ence (LNCS 4273), Proceedings of the 5th International Semantic Web Conference
(ISWC 2006), pages 158–171. Springer, November 2006.

16. Dennis Quan. Xenon: An RDF Stylesheet Ontology. In Proc. WWW, 2005.
17. Jonathan Robie, Don Chamberlin, Michael Dyck, and John Snelson.

XQuery 3.0: An XML Query Language. Recommendation, W3C, 2014.
http://www.w3.org/TR/xquery-30/.

18. Axel Polleres Sandro Hawke. RIF In RDF. Working Group Note, W3C, 2012.
http://www.w3.org/TR/rif-in-rdf/.

19. Pavel Shapkin and Leonid Shumsky. A Language for Transforming the RDF Data
on the Basis of Ontologies. In Proc. of the 11th International Conference on Web
Information Systems and Technologies (WEBIST), Lisbon, Portugal, May 2015.

20. Alex Stolz, Bene Rodriguez-Castro, and Martin Hepp. RDF Translator: A RESTful
Multi-Format Data Converter for the Semantic Web. Technical report, E-Business
and Web Science Research Group, 2013.

