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Abstract. This study investigated whether the large language model (LLM) utilizes 

sufficient domain knowledge to reason about critical medical events such as 

extubation. In detail, we tested whether the LLM accurately comprehends given 
tabular data and variable importance and whether it can be used in complement to 

existing ML models such as XGBoost. 
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1. Introduction 

Explainable AI (XAI) has become increasingly important in the medical domain, as it 

helps to build trust and transparency in the decision-making process of AI models. 

However, many current medical AI models lack sufficient explainability, which hinders 

their adoption in clinical practice. Large language models (LLMs), trained with massive 

diverse texts, have the potential to enhance the explainability of medical AI models due 

to their remarkable reasoning and comprehension abilities [1].  

We aim to investigate whether LLMs possess domain-specific knowledge in critical 

care medicine and if they can offer context-aware reasoning about medical events such 

as extubation failure. However, LLMs exhibit several limitations when asked to explain 

model decisions without appropriate prompt engineering (only the clinician’s persona 

and input value). LLMs may stick to specific words (e.g., extubation failure), explain 

general medical knowledge, repeat some variables, yield columns with missing values, 

or provide false information. In this study, we aimed to overcome these limitations by 

thorough prompt engineering and leverage LLM’s inherent knowledge and reasoning 

capability in the medical domain, focusing on prediction of extubation failure.  
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2. Method 

We built an XGBoost model (accuracy 0.900, sensitivity 0.837, specificity 0.923, 

AUROC 0.966) using MIMIC-III dataset [2] for binary classification of reintubation 

within 48 hours after extubation. We quantified each variable’s contribution using 

SHapley Additive exPlanations (SHAP) [3]. Prompt engineering was tested by GPT-4. 

Initially, providing model results, SHAP values, and clinician’s persona as LLM input 

displayed some limitations mentioned above (repetition, hallucination, etc.) To address 

these issues, we employed tempered prompt engineering techniques: a) Providing 

variables terminology/descriptions, b) Instructing to choose top 3 variables based on 

SHAP, c) Avoiding generating random values for missing value variables, d) Focusing 

on specific topics instead of general medical knowledge. 

3. Results, Discussion and Conclusions 

The prompt was designed with the following criteria: to consistently understand the 

given data and task, to interpret SHAP values and medically relate the importance of 

variables, and to provide an explanation if there is a difference between the model and 

real clinical practice (details to be shared online). Through a qualitative analysis, we 

found that providing explanations of the model's decisions and processes via LLMs can 

offer the following benefits. First, it provides insights into the model's behavior, which 

is helpful when the model's decisions differ from those of clinicians. Second, even in 

similar environments, model decisions can vary, and additional explanations can help 

identify the reasoning behind such decisions, allowing experts to improve the AI model. 

We investigated LLMs to enhance the explainability of medical AI model for 

predicting extubation failure. Leveraging LLM's knowledge and reasoning capabilities 

through prompt engineering, we developed a reliable approach to improve medical AI 

models. This approach utilizes natural language to enhance human understanding of the 

model's decision-making process, making the models more trustworthy and acceptable 

to healthcare professionals and patients. Future research should focus on evaluating the 

explanations by medical experts and validating the generalizability of this approach. 
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