
Multi-Agent Path Finding with Real Robot Dynamics and
Interdependent Tasks for Automated Warehouses

Vassilissa Lehoux-Lebacque a,*,1, Tomi Silandera,2, Christelle Loiodicea, Seungjoon Leeb, Albert Wangb and
Sofia Michela

aNAVER LABS Europe, France
bNAVER LABS HQ, Korea

Abstract. Multi-Agent Path Finding (MAPF) is an important opti-
mization problem underlying the deployment of robots in automated
warehouses and factories. Despite the large body of work on this
topic, most approaches make heavy simplifications, both on the en-
vironment and the agents, which make the resulting algorithms im-
practical for real-life scenarios. In this paper, we consider a realis-
tic problem of online order delivery in a warehouse, where a fleet
of robots bring the products belonging to each order from shelves
to workstations. This creates a stream of inter-dependent pickup and
delivery tasks and the associated MAPF problem consists of comput-
ing realistic collision-free robot trajectories fulfilling these tasks. To
solve this MAPF problem, we propose an extension of the standard
Prioritized Planning algorithm to deal with the inter-dependent tasks
(Interleaved Prioritized Planning) and a novel Via-Point Star (VP*)
algorithm to compute an optimal dynamics-compliant robot trajec-
tory to visit a sequence of goal locations while avoiding moving ob-
stacles. We prove the completeness of our approach and evaluate it
in simulation as well as in a real warehouse.

1 Introduction

Multi-Agent Path Finding (MAPF) [23] is the problem of planning a
set of collision-free paths for a team of agents to reach one, or a se-
quence of goal locations, with minimal travel time. With the impres-
sive progress of AI and robotics research over the last decade, an in-
creasing number of real-world applications are based on multi-agent
systems and require solving some MAPF problem. Examples include
automated warehouses [25, 16], video games [15], UAV traffic man-
agement [10] and autonomous vehicles [5, 17]. While there exists
quite extensive literature on MAPF, most works consider a simpli-
fied setting where the environment is modeled as a 4-neighbor grid
where each agent occupies one cell at a time, and at each discrete
time step, can either move to a neighboring cell or wait in place [23].
Even in this simplified setting, MAPF is already NP-hard [26].

We target a warehouse scenario in which large robots move heavy
objects in a spatially constrained workspace. Additionally, we con-
sider that orders are received throughout the day and each order
consists of multiple products that robots need to pick up at specific
shelves and deliver to a workstation. Each workstation can process

∗ Corresponding author. Email: vassilissa.lehoux@naverlabs.com
1 Equal contribution.
2 Equal contribution.

only one order at a time. This creates a stream of inter-dependent
pickup and delivery tasks. Such a scenario, and its corresponding
lifelong MAPF variant, features several characteristics which are not
typically taken into account in previous works. Due to the weight
of the robots, accelerating (or decelerating) to full (or zero) linear
and angular speed may take many seconds (and meters). Since trans-
ported objects are heavy, the speed and acceleration depend on the
load of the robot. When path-finding is planned on a graph, a heavy
robot cannot necessarily stop from a full speed to the closest node.
Furthermore, a large robot also often occupies multiple graph nodes
and edges. Large robots have seldom space to bypass each other or
even turn in place in narrow aisles. If the robot can pick up and
drop off objects only from one side, the plan should anticipate the
turns so that the robots enter the aisles with the right orientation for
pickups/drop-offs. This more realistic setting renders the majority of
methods devised for grid-based environments ill-suited for our sce-
nario. Simplified assumptions on robot dynamics also yield trajec-
tories that can quickly lead to collisions when executed by realistic
robots (see Section 5.1.1).

In this paper, we introduce a MAPF solution taking the aforemen-
tioned characteristics into account. Our approach is based on the clas-
sical Prioritized Planning (PP) algorithm [21], which consists of or-
dering the agents in a certain priority order, then computing the short-
est path for each agent, avoiding the trajectories of the previously
planned agents (considered as moving obstacles). PP is well-suited
to our context as the shortest path computation is done for each robot
separately and can in principle accommodate kinematic constraints.
However, PP is not adapted to handle the collaboration between
robots that is needed for our interdependent tasks. We propose an ex-
tension of PP, called Interleaved Prioritized Planning, where the pri-
orities are dynamically assigned throughout the planning process. We
prove the completeness of the algorithm under simple assumptions.
Moreover we introduce a novel shortest path algorithm (named VP∗)
to compute the optimal trajectory for a robot to visit a sequence of via
points, while avoiding moving obstacles and satisfying the kinematic
constraints. Similarly to A∗ algorithms [8], VP∗ is a goal-directed
tree search algorithm that relies extensively on a heuristic evalua-
tion of the minimal cost of a subpath to the goal. We obtain this
evaluation by computing the optimal robot trajectory when ignoring
the collisions. While this simple kinematics-constrained shortest path
problem is generally NP-hard [2], by introducing a tailored routing
multi-graph and fixing the robots’ speed profiles we obtain a polyno-
mial problem and therefore an efficient evaluation heuristic for VP∗.

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA241017

4393



We evaluate our approach through extensive experiments in simula-
tion and preliminary tests in a real warehouse. Those experiments
show the necessity of accounting for the real dynamics in our setting
and confirm the relevance of the different components of our method.
In particular, we study the impact of different layout configurations
(more or less constrained environments) and a more robust version
of our method using time margins.

In summary, we propose a novel approach to address the lifelong
MAPF problem in a realistic and challenging warehouse setting: with
constrained space, interdependent tasks and complex real robot dy-
namics. Our contributions are the following:

• We introduce the Interleaved Prioritized Planning algorithm for
MAPF with inter-dependent tasks and prove its completeness un-
der simple assumptions.

• We propose the Via-Point Star (VP∗) algorithm to compute a
shortest single-robot trajectory, satisfying the kinematics con-
straints, that visits a sequence of locations while avoiding moving
obstacles.

• We evaluate our approach in simulation and provide ablations of
the main components.

• Finally we present preliminary results of applying our approach in
a real setting.

2 Related Works
MAPF and MAPD for automated warehouses. Our problem
is closely related to the lifelong Multi-Agent Pickup and Deliv-
ery (MAPD) problem [18], which is generally treated as a se-
quence of MAPF problems. There is extensive work on MAPF
[21, 22, 6, 23] with several works focusing on warehouse applica-
tions (e.g. [25, 16]). However all the above approaches use many
simplifying assumptions mentioned in Section 1.

MAPF with realistic assumptions. In order to deploy MAPF
solvers for real-world scenarios, researchers and practitioners have
developed two main strategies. The first one is to adapt existing al-
gorithms to handle specific aspects of the real applications. For ex-
ample, Zhang et al. [27] extend some MAPF algorithms to explicitly
account for turn actions but in the usual grid-world environment with
discretized time steps. Ma et al. [19] present an approach for lifelong
MAPD that takes into account the robot’s translational and rotational
speed but assumes infinite acceleration and deceleration (i.e., no in-
ertia). Li et al. [14] consider agents of arbitrary shape, but agents still
move in unitary time steps from one vertex to another of the graph,
hence not accounting for the agents’ dynamics. The second strategy
is to use so-called execution frameworks which allow to execute a
given MAPF solution and update it if necessary. These frameworks
are generally agnostic to the underlying MAPF solver. For example,
Hoenig et al. [11] and Hönig et al. [12] propose post-processing the
output of a standard MAPF solver in order to make the trajectories
satisfy the kinematics constraints. However the produced plans might
not be as effective since these constraints were not taken into account
by the planning algorithm.

MAPF in uncertain environments. Even with an accurate model
of the robots, unexpected time variations in robot actions will hap-
pen. To mitigate the effect of this uncertainty, Atzmon et al. [3] pro-
pose k-robust MAPF that guarantees the feasibility of the plan even
if the agents are delayed by up to k steps. We propose a similar ro-
bustness feature by introducing time margins that ensure robustness
of the plan to k seconds of earliness or tardiness of the agents. While
historically most of the MAPF research is evaluated on simulators

with simplistic assumptions, tests with more advanced simulators
such as ROS Gazebo are becoming more common [24]. For example,
Hönig et al. [12] conduct a mixed reality tests using iCreate robots.
However, unlike in our case, robots’ dynamics do not deviate much
from the simple assumptions under which the plans are created and
the transfer is thus quite successful. In our case, applying these sim-
plifying assumptions quickly lead to collisions (see Section 5.1.1).

3 Lifelong MAPF with Interdependent Tasks
In this section, we define more formally our setting and the MAPF
problem we want to address.

Agents. Agents (or robots) in this work refer to differential drive
robots that can move forward, backward and turn in place. Robots are
also equipped with a mechanism to pick up (or drop off) an object at
a shelf or workstation, which can only be executed when robot is
at a specific orientation and zero speed. We assume that a dynamics
model for the robots is given, so that the trajectory and travel time
to go from an initial state (e.g., position and speed) to target state, as
well as the times to perform pickups and drop-offs, can be computed.

Warehouse Graph. We represent the workspace of the warehouse
as a general directed graph Gw = (Vw, Aw). The vertices (or nodes)
are associated with the physical locations where the robot can either
stop to pick up and drop off objects (in front of shelves and work-
stations) or turn (in case there is enough space). The arcs (or edges)
represent the segments to be traveled between the vertices. Note that
we do not make the standard assumption that the graph is a regular
grid, therefore not imposing any restriction on the warehouse lay-
out nor the distance between vertices. Such generality leads to cases
where a robot may occupy multiple vertices and arcs simultaneously.
Although this graph is not used directly by our routing algorithm, it
represents the input data used to build the more sophisticated routing
graph described in Section 4.3.

Orders and Tasks. We define an order as a set of objects to be
picked up at some shelves and delivered to a (single) workstation;
or the reverse, several objects at a workstation that need to be de-
livered at specific shelves. We assume that orders arrive throughout
the day. Formally, an order o ∈ O with k objects is defined as a tu-
ple (ro, {(po1, do1) . . . , (pok, d

o
k)}) where ro is the release date, poj the

vertex corresponding to the location of the shelve where the j-th ob-
ject must be picked up or delivered and doj the duration of the corre-
sponding pickup or delivery action. A duration for the action (pickup
or delivery) performed at the workstation for each object can also be
defined, either as workstation or object specific. We define a task as
an agent picking up an object at an initial location and delivering it at
a target location. The set of tasks that correspond to a given order are
said to be interdependent because they share the same workstation as
initial or target location and must all be finished before a workstation
can be used for another order.

Lifelong MAPF with Interdependent Tasks. Given a set of
agents, a warehouse graph and a stream of orders with their asso-
ciated tasks, the goal is to find a sequence of collision-free trajecto-
ries for the agents to execute their tasks, such that only one order is
handled at a workstation at a time and the throughput is maximized.

4 Interleaved Prioritized Planning with VP*
The Lifelong MAPF problem with Interdependent Tasks defined
above includes two optimization subproblems: (i) Task Assignment:
which agent should execute each task, and which workstation should

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses4394



Figure 1. Examples of warehouse layouts with the physical warehouse
graph. Shelves are shown in gray, charging stations/waiting areas are shown

in cyan and the workstations are shown in green.

be used for each task (order)? (ii) MAPF: how should the agents
move (in space and time) to execute their tasks?

For simplicity we consider these two interdependent subproblems
separately. In addition, to deal with the stream of online orders, we
solve the subproblems at regular, user-specified, intervals. Similarly
to Receding Horizon Control [4], the idea is to compute a plan and
start executing it; then plan again, given the current state of the sys-
tem, including the newly released orders. Hence without loss of gen-
erality, in the following, we focus on one planning iteration and as-
sume that the orders are known and the objective is to minimize the
makespan, i.e., the maximum completion time of all the known tasks.

In this section, we first present our task assignment strategy, and
then our MAPF algorithm, Interleaved Prioritized Planning (IPP),
that we prove to be complete. We then describe the details of the
Via-Point Star (VP∗) algorithm that we use for routing agents without
collision, starting by the graph model and collision checking mecha-
nisms that enable us to manage the robots’ dynamics.

4.1 Task Assignment Heuristic

To optimize the task assignment, we solve the underlying idealized
scheduling problem where we assume that the robots always use
the shortest paths (i.e., ignoring potential collisions). We use a rule-
based heuristic, inspired by the classical priority dispatching rule ap-
proaches for scheduling [9]. More precisely, we decompose the sys-
tem state S into the agents’ states Sagents := {(τa, va) : a ∈ A}
where τa is the time when agent a will be available and va its posi-
tion (vertex) at τa; and the workstations’ states Sws := {τw : w ∈
W} with time τw indicating when the workstation w will be avail-
able. At the beginning of the day, agents are at their initial position
and availability times are zero. Orders are sorted in a First In First
Out (FIFO) fashion, by increasing released date. For each order, we
first assign the earliest available workstation. Then, for each task of
the order (corresponding to a pickup and delivery), we assign the ear-
liest available agent and update its state, based on the product pickup
and drop-off times and the ideal travel times. After assigning all the
tasks of an order, we update the availability time of the workstation,
and switch to the next order. To avoid congestion at the workstations,
we can limit the number of agents assigned to one order. From the
complete schedule, we extract the assignment of the orders to the
workstations and the sequence of tasks assigned to each robot.

4.2 Interleaved Prioritized Planning Algorithm

In the standard Prioritized Planning (PP) algorithm [21], agents are
given a certain priority order, then in descending priority order, we
compute the shortest path for each agent, avoiding the trajectories
of the previously planned agents (considered as moving obstacles).

While PP is well-suited to our context because the shortest path com-
putation is done for each robot separately and can accommodate the
kinematic constraints, it is not adapted to handle the interdependence
of tasks. For example, consider a simple scenario where we have 3
robots, 1 workstation and a sequence of 10 orders, each containing 3
products. To process orders as fast as possible, it is natural to divide
the tasks (products) of each order between the robots. With PP, after
planning the 10 pickups and deliveries of the 1st and 2nd robot, the
last planned robot may incur significant delays (due to the numerous
moving obstacles). In this case, one cannot guarantee that objects
from different orders are not mixed at the workstation. To avoid this
issue, we propose an extension of PP, that we call Interleaved Prior-
itized Planning (IPP), where the priorities are dynamically assigned
throughout the planning process, as follows.

Based on the task assignments, we reinitialize the agent and work-
station states, and add to each agent’s state its assigned sequence of
tasks; and for each workstation, its assigned sequence of orders. For
each order (sorted by the FIFO rule), we consider the subset of agents
assigned to (the tasks of) this order. The earliest available agent a
gets the priority for path planning. Its path should visit the sequence
of goal locations of its next task t and, optionally, finish at its waiting
location. To compute its start time, we take into account the avail-
ability time of the relevant workstation. The start time and list of goal
locations are given to the VP∗ algorithm (Sec 4.5) which computes
a trajectory that avoids collisions with previously planned trajecto-
ries. Given the trajectory, we update the availability time of the agent
and workstation, and remove t from the tasks of agent a. We update
the previously planned trajectories with the complete trajectory in-
formation, including the last part of the path (that goes to the waiting
location). We repeat until all the tasks of the order are planned and
then switch to the next order. The last part of each path is optional in
the sense that if a robot can directly depart from the delivery location
of its previous task to the pickup location of its next task then we dis-
card the go-to-waiting-spot part of its path. However, this part can be
used and is key to ensure that our algorithm always returns a feasible
solution. A detailed pseudo-code for IPP is provided in Algorithm 1.

We now state the completeness of the proposed algorithm.

Theorem 1. Assume that each robot has a designated waiting place,
where it can be idle without interfering with other robot trajectories.
If the robots are at their waiting place at the beginning of the plan-
ning, the Interleaved Prioritized Planning algorithm is complete.

Proof. To show that the algorithm is complete, we need to prove that
it always returns a feasible solution. There are two constraints to con-
sider: (i) the paths of two robots must not collide and (ii) all the tasks
of an order must be finished on its workstation before any new task
can start on that workstation. The robots are starting at their waiting
place. The planned trajectories contain, for each robot, a reservation
of its waiting place for the duration of the planning horizon and no
other information. Each robot can hence wait for an unlimited time
at its starting position without blocking the way of the other robots.
Consider the first task o1,1 of the first order o1 assigned to robot r,
that is released at time τo1 . Its assigned workstation w is either avail-
able for order o1 or will be available at a given time τw. We can com-
pute, given r’s availability time τr , the earliest instant τ at which it
can start to perform the task to respect the availability constraints, as-
suming the agent does not wait once it has left its waiting place, using
a classical shortest path algorithm or via-point search. Algorithm 1
plans the robot to wait until τ and then computes a path starting at τ
for the via-points for the task plus a return for the robot to its waiting
place. As there is no other robot for which we planned a move, a path

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses 4395



Algorithm 1 Interleaved Priority Planning based on VP∗ (Sec-
tion 4.5)

1: Data: Neighborhoods A(·)
2: Data: Precomputed duration of edges τ(·, ·, ·)
3: Data: Path lower bound function h̄(·, ·, ·)
4: Data: Penalty function p(·)
5: Data: Order list O sorted by priority
6: Data: Task list T (o) for each order o ∈ O
7: . Sorted by planning priority
8: Data: Assignment of orders to workstations aw(·)
9: Data: Assignment of tasks to robots a(·)

10: Data: Initial configuration of the robots l(·)
11: Data: Waiting place of the robots wl(·)
12: Data: R(·) Reservation table . Can be empty
13: τr(r)← 0 ∀r . Next available time for each robot
14: paths(r)← ∅ ∀r . Path for each robot
15: for each r in a given order do
16: w_path← path to the waiting place with VP*
17: . May fail depending on l
18: Update R with w_path
19: waiting_path(r)← w_path
20: end for
21: for order ∈ O do
22: ws← aw(o)
23: T ← T (o)
24: Sort T by decreasing priority
25: while T 6= ∅ do
26: task ← T.pop(0)
27: r ← a(task)
28: if task or ws is not available at τr(r) then
29: . Robot must wait
30: paths(r)← paths(r) ∪ waiting_path(r)
31: Update τr(r)
32: Estimate the necessary waiting time wt
33: Update R and paths(r) with staying at wl(r) for wt

starting at τ r(r)
34: τr(r)← τr(r) + wt
35: end if
36: V P ← V iaPoints(l(r), task, wl(r))
37: path,w_path← VP∗(A, τ, V P, h̄, p, R, τr(r))
38: if path 6= ∅ then
39: Update τr(r) . Time at task’s end location
40: paths(r)← paths(r) ∪ path
41: waiting_path(r)← w_path
42: Reserve path ∪ w_path in R
43: else
44: return ∅
45: end if
46: Update T ’s order
47: end while
48: Update ws’s available time
49: . End time of the last action of o on ws
50: end for
51: return paths

that respects constraint (i) always exists, assuming the graph is con-
nected. By definition of τ , it also respects constraint (ii). We update
the available time τr of the robot with the task’s end time, so that it
can restart from its last position. If the order has other tasks, we use
the same availability time τw for the workstation when determining
when to start from the waiting place. The time τ computed is now
an optimistic estimate based on travel times without collision from
the robot’s current location. It ensures (ii) as the robot can only ar-
rive later than τw at the workstation if it needs to avoid other robots.
If the robot needs to wait, we send it to wait at its waiting place:
if it is different from its current position, we reserved a path to go
there during the planning of the robot’s previous task. Constraint (i)
is then ensured by the existence of a feasible path: the robot can
always wait for all the planned trajectories to be finished to move.
When all tasks of an order have been planned, the availability time
of the workstation is updated with the end time of the last action of
the order, ensuring that no task of another order is able to start before
that time. Tasks of the next order can hence be planned following the
same logic and respecting the constraints.

Note that Theorem 1 also holds when the robots start at loca-
tions other than the waiting places and either a path is reserved in
the planned trajectories from their current position to their waiting
places, or such a path can be computed for each agent in a priority
order given to the algorithm for initializing the planned trajectories.

4.3 Routing Multi-Graph

In many other works, routing is performed directly in the warehouse
graph Gw as defined in Section 3. However, as a robot may occupy
several nodes in our context, cannot turn everywhere and has more
complex dynamics, we design a specific routing graph that can inte-
grate those elements in its structure. To do so, we convert the ware-
house graph Gw, to a directed routing multi-graph in which each
vertex (say node C in the Figure 2) ofGw is represented with several
vertices of different types and their associated arcs: (i) a start and a
stop node, to start planning from that position or end an itinerary at
that position (only shown for node A below); (ii) for each adjacent
node in the warehouse graph (like node D), we create two nodes:
one for arriving from that node and one for going to that node. They
are linked by an additional arc allowing for going backward without
changing direction; (iii) where it is possible to turn, we add turning
arcs for the robot to reverse its orientation (i.e., a U-turn); (iv) at the
nodes (like C) where two nonparallel edges meet, we add two turn-
ing arcs per node-triplet (two for B-C-D, and two for D-C-B), one
for turning clockwise and one for turning counter-clockwise. One of
these arcs also turns the traveling orientation of the robot.

The robot needs to stop in order to turn, to avoid sliding, tilting
and dropping its potentially heavy load. However, if the robot is go-
ing straight, we want to traverse long paths without stopping, pos-
sibly passing through several nodes. To this effect we augment the
routing graph with additional shortcut edges between nodes that are
on a straight line. With shortcuts in place, we can set the initial and
final linear and angular velocities at all the nodes to zero. We use
the robot’s dynamics to associate two travel times with each arc: one
for an empty robot and one for a loaded one. The times for each arc
traversal can now be precomputed based on accelerating the robot
to maximum linear/angular velocity within the edge-specific speed
limits and decelerating back to speed zero. As the speed at each node
is zero, and arc travel times are fixed, computing the shortest path
without moving obstacles for a single robot is polynomial (as op-

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses4396



Figure 2. Example of graph conversion. Original warehouse nodes are in
blue, new routing graph nodes are in orange, dashed lines are straight arcs,

while solid lines are turning arcs. The solid turning lines within node C
represent two arcs each: for turning clockwise and counter-clockwise.

posed to the general case of shortest path with kinematics [2]). We
use this property to rapidly compute the lower bounds on the duration
of paths that avoid collisions.

4.4 Collision Checking

In classical settings, strong hypotheses on the routing graph are
taken to avoid robot collision. Robots in adjacent nodes cannot col-
lide, and many rules on robot movement ensure that collisions are
avoided [23]. In our setting, adjacent nodes can be so close that two
robots occupying them would collide, or so far away that two robots
traveling the same edge would not collide. We hence define a more
spatially explicit collision checking method, adapted to this setting
and reminiscent to swept AABB [7].

The position xy ∈ R2 of each robot and its orientation (yaw)
θ ∈ [−π, π] is uniquely determined at each time τ . In the rout-
ing algorithm, the configuration of the robot is defined as a tuple
(τ, xy, θ, s, sθ, l), where s ∈ R is the linear velocity in direction θ,
sθ ∈ R is the angular velocity, and l = 1 if agent is loaded and l = 0
otherwise. For collision detection, the space occupied by the robot is
modeled as a connected two-dimensional set (such as a polygon) cen-
tered at its xy-position and rotated by its orientation. Such a set may
include additional padding. We check if the spaces occupied by two
different robots intersect at any given time τ . For a practical imple-
mentation, one may, for example, cut continuous time into intervals,
and model the space occupied by the robot during an interval as (a
convenient superset of) the union of the sets the robot occupies dur-
ing this interval. Checking if a robot would collide with other robots
at time τ can then be conservatively approximated by checking if the
space occupied by the robot intersects with the spaces of the other
robots occupied during the interval containing τ . One may also add
some time safety margin by reserving some neighboring intervals.

4.5 VP∗ Algorithm

To plan the displacements of the robot for a given task, classical
shortest path algorithms are inappropriate as we need to compute
paths that take into account not only the position of static obstacles
(modeled into the graph with non-existing edges) but the position of
the other robots, which are moving in the warehouse at the same time
as we plan the robot’s path.

Via points. For each task, we must plan several consecutive dis-
placements of the robot (e.g., going to an aisle to pick up an object,
going to the workstation to deliver the object, moving to a waiting
area to wait for the next task). We call via points the locations that

we have to visit sequentially. If we were to use classical shortest path
with collision avoidance sequentially for each pair of consecutive via
points, we would have no guarantee of finding a path for all the dis-
placements of the sequence (see Section 5.1.2). Indeed, taking the
shortest path for the first pair of the sequence may prevent the robot
finding any feasible path to the remaining via points.

Li et al. [16] propose a complete heuristic algorithm for a simpler
version of the shortest path with via points problem. This heuristic
however does not account for robot dynamics, actual robot load, po-
sition and orientation in space, and its collision checking is based on
vertex and swapping conflicts only. We explain below how to handle
these additional constraints and propose an improvement that guides
the search faster toward a first feasible solution.

Robot dynamics in VP∗. Even if the arc weights are precomputed,
based on the robot’s dynamics, we need precise displacement infor-
mation when checking collision for the current robot against already
planned robot paths (our moving obstacles), which impacts the speed
of the algorithm. From a practical point of view, the space occupied
by the robots along their planned paths are computed and stored in a
reservation table for later collision checking when other robots com-
pute their paths.

Robot configuration. In our context, the orientation of the robot is
important: in order to pick up or drop off objects at the shelves and
workstations, the robot must be in an specific orientation to execute
the (pickup or drop-off) action. However, due to space constraints, it
may not be possible for the robot to rotate in the aisle, so it must be
in the right orientation when entering the aisle. Orientation is hence
taken into account in the configuration of the robot, and also in the
description of the via points and in the routing multi-graph. In addi-
tion, the speed of the robot is different when loaded, so the load is
also added to the via-point information. Each via point is defined by
a node in the graph (and physical position), a partial in-configuration
indicating the required orientation (yaw) and the load when arriving
at the node, and a partial out-configuration indicating the required
orientation and the load when leaving the node, and the time required
at the via point to perform the associated action. The via points are
the only points where the robot can perform an action.

Shortest path with via points. The objective is to find an earliest
arrival path starting from the first via point and then passing by each
via point in the order of the sequence, and arriving at the last via
point while respecting the constraints imposed by the partial config-
urations of each via point, stopping at each via point for the required
time, and avoiding collision with the moving obstacles whose con-
figuration is known at each time instant from the reservation table.
Although, in our warehouse, the only moving obstacles are the other
robots, the collision checking could be performed similarly for any
kind of moving obstacle whose occupied spaces have been stored
in the reservation table. In our context, travel time must be either
continuous or discrete with high precision to avoid cumulative er-
rors over multiple paths computed sequentially during the planning.
However, to reduce the computation time, when the robot is waiting
at a given point, the waiting time is discretized to the second in our
experiments. When waiting at a node is possible, the graph contains
an additional arc from the node to itself with a duration equal to the
chosen minimum waiting time.

Notation We denote by G = (V,A) the routing graph (as ex-
plained in Section 4.3) where V is the set of nodes and A the set
of arcs between those nodes. For a given node v, A(v) denotes the
output arcs of v, i.e., the set of arcs {(v, v′) ∈ A|v′ ∈ V }. The

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses 4397



weight τ(v, v′, l) of an arc (v, v′) is the duration to traverse the
arc (v, v′) with l = 1 if the robot is loaded and 0 otherwise. The
angle θ(v, v′) is the rotation angle of the edge, when the edge allows
to turn in a given direction, and 0 otherwise. A path is a succes-
sion (v0, v1), (v1, v2), . . . (vi−1, vi) of arcs of A. The duration of a
path p is

∑
(v,v′)∈p τ(v, v′, l). To obtain a lower bound h(v, v′, l)

for the duration of a path between node v and node v′, we precom-
pute the duration of the shortest path under the assumption that there
are no moving obstacles (one duration for a loaded robot and one
for an unloaded robot), and without any requirement on orientation
at node v′, using any classical shortest path algorithm, like the one
used by Li et al. [16]. As stated before, this shortest path can be ob-
tained in polynomial time based on our routing graph. We denote
via points with nodes v with additional attributes so that v.l is the
out-configuration load of via point v and v.d is the duration to per-
form an action at via point v. When passing by k + 1 sequential via
points v̄ = (v0, v1, . . . , vk), we define the estimate of the duration
of the path to reach the last via point as as the sum of the estimates
of the subpaths, i.e., h̄(v̄) =

∑
0≤i<k (h(vi, vi+1, vi.l) + vi.d) (it

does not include the time of the action at the last via point). With
some modifications to check the required orientation at nodes, con-
figurations at start point and via points can be taken into account
to obtain a better estimate. For a partial solution where via points
(v0, v1, . . . , vvp), vp < k, have already been passed sequentially, we
can then estimate the path duration from its last node v in configura-
tion c to via point vk similarly. This duration is denoted h̄(v, c, vp, v̄)
or h̄(v, c, vp) for short.

VP∗ algorithm. The VP* algorithm plans the path from node v0 to
vk sequentially visiting via points v̄ and avoiding collisions with pre-
viously planned paths saved in the reservation table. The algorithm
iterates on a priority queue, which directs the search toward the most
promising elements. This queue contains tuples (v, c, vp, hs), where
v is a node, c a configuration at this node, vp the index of the last via
point reached and hs the heap score of the tuple.

At the beginning of the search, we initialize this queue with a
tuple (v0, c0, vp0, hs0) containing the origin node v0 (the first via
point), the initial configuration c0 (obtained from the partial out-
configuration of the first via point and the path start time), vp0 = 0
and the heap score hs0 of the element.

During a search step, the algorithm pops a heap element
(v, c, vp, hs) with the lowest heap score and explores its neighbor-
hood A(v) in the routing graph. We first check the lower bound
h̄(v, c, vp) on the duration of a path to the destination vk from
(v, c, vp). If it is larger than the duration of the best path found so
far, the search is pruned by going to the next step. If not, we check
if we have reached the next via point in the right orientation, i.e.,
if node v is the next via point and if configuration c has the same
orientation as the in-configuration of the next via point.

If we are at the next via point, we need to be able to stay at node v
without collision for the duration of the action to perform at this via
point. If we can, and we are at destination vk, we can update the
earliest known arrival time at node vk and go to the next step. If we
are not yet at final destination vk, we increase by one the index vp
of the last reached via point and update the configuration time τ with
the time spent at the via point before exploring the neighborhood
of v, as well as the load from the out-configuration of the via point.

For each neighbor v′ of node v, we verify if we can use arc (v, v′)
starting at time τ without collision, using the dynamics of the robot
to compute its position in time and space while traveling the edge.
If there is no collision, we check that the obtained configuration c′

at v′ has not already been added to the queue for via-point index vp.
If not, we compute the heap score hs′ and add the new element
(v′, c′, vp, hs′) to the queue.

The algorithm finishes when the queue is empty. Note that addi-
tional stopping criteria could be added, such as having found a first
feasible path, having popped a maximum number of elements out of
the queue, or having spent a certain amount of time. The first drops
the optimality of the algorithm, the last two leads to drop the com-
pleteness of the algorithm as it can return before finding a first feasi-
ble solution when one exists. The full version of the paper [13] con-
tains the pseudo-code of the algorithm. Note that in our experiments,
we stop the search as soon as a first solution is found. In practice, it
is much faster (as the algorithm does not need to empty the queue
completely before returning a solution) and we observed on our set-
ting good results at the level of the MAPF algorithm, sometimes even
better than with optimal paths, suggesting that optimizing locally the
path of a given robot might in some cases make it more difficult for
other agents to plan their own paths.

Heap score. The heap score of (v, c, vp), where v is a node, c a
configuration and vp a via point index, is computed as the sum of
an optimistic estimate h̄(v, c, vp) of the shortest path duration to the
destination after passing through all via points and a penalty p(vp)
that is higher when the number of remaining via points to pass is
higher, and equal to 0 when only one via point remains to be reached.
This penalty aims to favor finding a first feasible path between origin
and destination passing through all via points by making a depth-first
like search. It is hence different from the heap score used by Li et al.
[16] and of the classical A∗ algorithm as the score is not necessarily
a lower bound on the duration of a path to destination from the cur-
rent heap element. However, as we use the travel-time lower bounds
to prune the search and not the heap scores, the algorithm remains
optimal if run until the queue is empty. Section 5.1.2 compares our
heap score to the one with p(vp) = 0, and shows that the proposed
penalty is indeed an efficient way to reduce the search space.

5 Validation
5.1 In Simulation

We implement a simulator of the warehouse environment where
robot movements are modeled with simple dynamics. The robot’s
linear acceleration A is constrained to the interval [Adec, Aacc]. The
value ofAmay depend on the loading state of the robot since a heavy
robot cannot accelerate as fast as a lighter one. If we suppose that the
robot is always accelerating or decelerating as fast as it can toward
the desired speed, we can compute the shortest time ts it takes to
travel a line segment of length d when starting with velocity vi and
obeying acceleration constraints, segment-specific speed limit V and
the maximum speed at the end of the segment Vf . Identical compu-
tations can be made for pure turning arcs in which only the robot’s
orientation θ changes. In this case the same computation are per-
formed with acceleration limits [Aθdec , Aθacc ], angular distance dθ ,
and maximum angular speed Vθ . For all the arcs in the routing graph,
the initial and maximum final velocities equal zero. Under those hy-
potheses, we get highly accurate travel times, compared to the actual
measurements in the warehouse (see Section 5.5).

In the simulation experiments, the maximum linear/angular ve-
locities are 0.2[m/s; rad/s], and the constant (ac/de)celerations is
0.25[m/s2; rad/s2] when the robot is loaded, 0.5 otherwise.

We consider three generic warehouse layouts, with one to three
rows of shelves, as illustrated in Fig. 1. For each layout graph, we

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses4398



generate 100 instances with 5 orders each. For each order, the num-
ber of tasks is sampled from a max-inflated truncated geometric dis-
tribution with mean=2.5 and max=4. The order being a delivery or a
pickup is chosen uniformly between the two options and the location
of each task is sampled uniformly from all the possible positions on
the graph (in our layouts, at the nodes of the shelves).

Experiments use an Intel(R) Xeon(R) CPU E5-2680 v4 2.40GHz
x86_64 server with 56 cores, 2 threads per core, and 1.0TB of RAM.

5.1.1 The Need for Dynamics

To study the need for taking dynamics into account, we compare our
proposed method to two different baselines. The first baseline, admit-
tedly naive given our graph with edges of different length, assumes
that we can move to any neighboring node in constant time. Follow-
ing the paths planned based under this hypothesis causes collisions
in our standard warehouses after following two edges.

The second baseline, like suggested by Ma et al. [19] ignores iner-
tial dynamics and allows instantaneous switching between stopping
and constant-speed movement. This assumption, does not actually
simplify or speed-up our algorithm (since the spatially explicit col-
lision checking is still needed). We simulated 100 different scenar-
ios and the paths planned with this assumption using 4 robots. All
of them resulted in a collision within 5 minutes, half of them failed
within 1 minute, some within the first 10 seconds. Due to the in-
creased need for replanning and no significant speed-up benefit, it is
clear that dynamics should be considered in the planning process.

5.1.2 Ablation Study

In this study, we use a simple layout graph similar to the left layout in
Fig. 1, with 100 nodes and 106 arcs in the warehouse graph and 596
nodes and 1908 arcs in the routing multi-graph. We call it Layout 0.

Sequential planning vs via points. To evaluate the need for the
proposed via-point algorithm VP∗ in our IPP MAPF solver, we re-
place it by a more naive approach that sequentially plans the shortest
paths between the different via-points pairs of a task, while avoid-
ing collisions. For this sequential approach, when computing a path
between two via points, the heap score contains only an optimistic
estimate of the shortest path duration to the second via point, as in
the A* algorithm. We tested the resulting IPP with sequential plan-
ning on Layout 0, using 100 scenarios and 2 to 4 robots. It fails to
find a feasible solution for 3 instances out of 100 with 2 robots, for
6/100 instances with 3 robots and for 11/100 instances with 4 robots.
The increase in the number of failures with the number of robots is
expected as more robots in the tight environment means more con-
straints on collision avoidance. This confirms the necessity of our
via-point planning strategy.

Without reserving a path to the waiting place. Another impor-
tant factor ensuring completeness is the reservation of paths to the
waiting places of the robots in the reservation table. If those paths
are no longer reserved, but only computed when a robot needs to go
and wait there, with Layout 0, Algorithm 1 fails to find a feasible
solution in 18 instances out of 100 for 2 robots, for 48 instances for 3
robots and for 62 instances for 4 robots. As for sequential planning,
the increase of the number of failures with the number of robots is
expected. Although the robots do not always need to use the waiting
paths, reserving them ensures that the robots can actually leave their
last location, and possibly use a part of the reserved path to reach
their next destination. Without planning and reserving paths to the

next via point(s), a robot can easily find itself blocked or overrun by
other robots who can plan their routes taking advantage of the first
robot not making any reservations for its future.

Impact of the penalty function in VP∗. As explained in Sec-
tion 4.5, we change the standard heap score of states in our VP∗

algorithm by adding to the path’s duration estimate a penalty based
on the number of via points that have not been visited yet. In our
implementation, this penalty is simply the number of remaining via
points minus 1 times 1000 seconds.

Table 1 shows that this addition is fulfilling its objective: the num-
ber of states visited is significantly reduced and the algorithm run
time decreases accordingly, while the impact on the plan quality is
very low. The run time of the plans is improved by a median factor
of 3.2 (minimum is 0.73, maximum is 25.39 on our set of instances).

2 robots 3 robots 4 robots
Heap score std penalty std penalty std penalty

Visited
state nb
(K)

Q1 13 5 58 21 137 46
Q2 30 10 109 75 303 74
Q3 76 22 184 122 485 130

Run
time (s)

Q1 24 9 110 38 276 90
Q2 55 17 212 75 611 137
Q3 131 39 355 122 1009 289

Make-
span
(min)

Q1 18 18 15 15 13 13
Q2 22 22 17 17 15 15
Q3 25 25 19 19 15 15

Table 1. Quartiles of number of states visited, run-time and makespan
when using standard vs penalty augmented heap score

5.2 Impact of the Layout

In our constrained environment where robots cannot turn to reverse
their orientation or pass another robot, the layout may impact the ef-
ficiency of the planning. To measure how it influences the different
metrics, we run experiments on 3 different layouts of approximately
the same size (220 to 232 nodes and 226 to 248 arcs in the warehouse
graph), with the same number of pickup and delivery locations but
different number of corridors that are represented on Fig. 1. Layout
1, on the left, is the more constrained environment, where long aisles
do not offer any possibility for two robots to pass while Layout 3
(on the right side) has two intermediate corridors that allows for the
robots to avoid one another more easily when moving in opposite di-
rections. The total number of shelf nodes in the warehouse graph is
180 for the 3 graphs. For this experiment, we use 50 scenarios where
the positions of the pickups and drop-offs at the shelves are identi-
cal (if corridors splitting the shelves are not taken into account) on
the 3 layouts. Table 2 shows that the layout does not impact much
the makespan. To study the impact on individual orders, rather than
maximum completion time, we add a regret metric measuring the
difference between the actual processing time of the tasks and the
estimated processing time computed without collision. It measures
how much the robots need to diverge from an ideal path in order to
avoid one another. The layouts that allow for easier collision avoid-
ance have reduced regret for all number of robots, Layout 3 improv-
ing on Layout 2 and Layout 2 improving on Layout 1. As for the run
time, it is much more impacted by the number of robots than by the
layout, which is expected as the graphs have very similar sizes.

5.3 Dealing with Uncertainty

With a large robot, actuation noise is likely to make the movement
differ from the ideal trajectory. This may lead to collisions especially

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses 4399



2 robots 3 robots 4 robots
Layout 1 2 3 1 2 3 1 2 3

Make-
span
(min)

Q1 23 22 23 19 17 19 16 16 16
Q2 28 29 30 21 21 22 19 19 19
Q3 32 32 33 25 24 25 23 23 24

Regret
(%)

Q1 4.2 3.1 2.9 7.6 6.4 6.1 10.7 8.2 7.4
Q2 5.7 5.0 4.0 9.9 7.7 7.6 12.5 10.1 9.3
Q3 8.1 6.3 5.5 13.8 9.9 9.1 15.4 12.1 10.8

Run
time
(s)

Q1 51 54 25 154 129 165 596 534 524
Q2 101 95 76 326 343 403 1163 1051 1264
Q3 249 250 257 815 742 799 1679 1876 2226

Table 2. Quartiles of the makespan (in minutes), regret (in percent) and
run time (in seconds) of the IPP algorithm for Layouts 1, 2 and 3.

if the actual movement is often slower or faster than the ideal move-
ment. To reduce the problem created by such noise, we study the
efficiency of reserving neighboring time intervals around the actual
time for each position of the robots in the reservation table. When
we reserve an area for the robot for a given instant τ , we also re-
serve it for ∆ seconds before and after τ . We test the robustness of
plans computed in Layout 0 with different values of ∆ in a stochas-
tic environment where edge travel times are scaled by a factor that
is PERT-distributed with the support of [1.0, 1.1] and with mode at
1.01. For all numbers of robots, adding more time margin in plan-
ning increases the time to collision (see Table 3). Unlike makespan
that is largely unaffected by the different levels of margin, the plan-
ning time clearly increases with bigger margins. The full version of
the paper [13] contains a video featuring 3s time margins for four
robots.

2 robots 3 robots 4 robots
∆ (s) 0 2 4 0 2 4 0 2 4

Time to
failure
(min)

Q1 3 5 6 2 3 5 2 3 4
Q2 6 7 9 3 5 7 2 4 6
Q3 10 10 14 4 8 9 3 5 8

Make-
span
(min)

Q1 18 19 19 15 15 15 13 13 13
Q2 22 22 22 17 17 18 15 15 15
Q3 25 25 26 19 20 20 17 18 17

Run
time (s)

Q1 9 13 18 38 67 106 90 173 314
Q2 17 26 38 75 140 228 137 366 592
Q3 39 56 85 122 226 367 289 791 1330

Table 3. Quartiles of time to collision when applying the plans in a
stochastic environment, makespan of the plans and run time of the IPP.

5.4 Scaling to larger instances

In this section, we evaluate the performance of the algorithm on
larger instances with 10 robots. We consider the following setup
(Layout 4): a 3-rows layout (similar to Fig. 1 right) with 10 shelves
instead of 5, 5 workstations instead of 2 and 10 waiting places. We
solve 100 instances of 10 orders each for 10 robots. Having twice the
number of shelves of Layout 3, the graph is about twice as big, the
number of robots is more than doubled and the number of tickets is
doubled as well in each instance compared to previous experiments.

The results are summarized in Table 4. Compared with the results
for 4 robots, we observe that the median regret is only slightly in-
creased (from 9.3 to 11.2 percent) and the median running time is
less than doubled, which shows a reasonable sub-linear scalability of
our approach for larger instances.

Makespan Regret Run time
Q1 38 min 9.9 % 1266 s
Q2 45 min 11.2 % 2377 s
Q3 50 min 12.7 % 4939 s

Table 4. Quartiles of makespan (in minutes), regret (in percent) and run
time (in seconds) of the IPP algorithm for 10 robots in the Layout 4.

5.5 In Real Environment

To validate the proposed algorithm in realistic use-cases, we per-
formed two experiments in a real warehouse environment whose lay-
out is similar to the left-most layout in Fig. 1. Its routing graph has
668 nodes and 2103 edges. Each experiment involved two robots.

The first experiment was conducted with maximum linear speed
and maximum angular speed of 0.2m/s and 0.2rad/s, and constant
(ac/de)celerations of 0.25[m/s2; rad/s2] for loaded and unloaded
robots. It involved 4 pickups and 4 drop-offs over 10 minutes. From
the experiment, a notable discrepancy was observed between the plan
and the real trajectories. Discrepancies were mainly influenced by
the stochasticity in the duration that the robots spent picking up or
dropping off an object.

For the second experiment, the estimated pickup and drop-off
times were increased by a constant. The robot motion limits were
increased to 0.8m/s for linear speed and 0.8rad/s for angular speed,
with constant (ac/de)celerations of 0.45[m/s2; rad/s2]. The total set
of tasks involved 10 pickups and 10 drop-offs, which were performed
continuously over 13 minutes. In the second experiment, the real
robot trajectories showed significantly reduced discrepancy from the
plans compared to the first experiment. The full version of the pa-
per [13] contains videos of the two experiments, where we display
the the real trajectory data (dark color) as well as the planned trajec-
tory (lighter color) of each robot.

6 Conclusion and Future Work
In this paper, we study a lifelong MAPF problem with interdependent
tasks, to model a realistic online multi-robot pickup and delivery ser-
vice in a warehouse. We propose the Interleaved Prioritized Planning
with VP∗ algorithm that takes into account precise robot dynamics
to compute collision-free trajectories. We show the completeness of
IPP-VP∗ under simple assumptions and empirically evaluate its fea-
sibility. In particular, we compare it to an adaptation of existing meth-
ods that do not account for the dynamics and show that they fail to
provide feasible plans in our context. We conduct a precise ablation
study to demonstrate the necessity of the different components of
our approach. Finally, we successfully apply IPP-VP∗ to a simple
scenario in a real warehouse. We believe that our approach makes
an important step toward bridging the gap between the extensive lit-
erature on MAPF with simplifying assumptions and more complex
real-life scenarios.

The real warehouse experiments reveal that despite the high fi-
delity of our robots and the controlled environment of an automated
warehouse, deviation from the plan is unavoidable, and the intro-
duced time margins may not be sufficient to deal with unexpected
delays. Hence, a future work includes the ability to replan regularly
based on the latest information, which would require speeding-up
our planning algorithm. Finally, it would be interesting to consider
the joint optimization of the task assignment and trajectory planning,
extending ideas from previous literature [20, 1] to our more challeng-
ing setting.

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses4400



References
[1] Z. A. Ali and K. Yakovlev. Improved Anonymous Multi-Agent Path

Finding Algorithm. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(16):17291–17298, Mar. 2024. ISSN 2374-3468. doi:
10.1609/aaai.v38i16.29676.

[2] S. Ardizzoni, L. Consolini, M. Laurini, and M. Locatelli. Solution Al-
gorithms for the Bounded Acceleration Shortest Path Problem. IEEE
Transactions on Automatic Control, 68(3):1910–1917, Mar. 2023. ISSN
1558-2523. doi: 10.1109/TAC.2022.3172169.

[3] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Bartak, and N.-F. Zhou.
Robust Multi-Agent Path Finding. Proceedings of the International
Symposium on Combinatorial Search, 9(1):2–9, 2018. ISSN 2832-
9163. doi: 10.1609/socs.v9i1.18445.

[4] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear
and Hybrid Systems. Higher Education from Cambridge University
Press, June 2017. doi: 10.1017/9781139061759.

[5] K. Dresner and P. Stone. A Multiagent Approach to Autonomous In-
tersection Management. Journal of Artificial Intelligence Research, 31:
591–656, Mar. 2008. ISSN 1076-9757. doi: 10.1613/jair.2502.

[6] A. Felner, R. Stern, S. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. Sturtevant, G. Wagner, and P. Surynek. Search-Based
Optimal Solvers for the Multi-Agent Pathfinding Problem: Summary
and Challenges. Proceedings of the International Symposium on Com-
binatorial Search, 8(1):29–37, 2017. ISSN 2832-9163. doi: 10.1609/
socs.v8i1.18423.

[7] S. Gottschalk and M. Lin. Collision Detection between Geometric Mod-
els: A Survey. In Proceedings of IMA conference on mathematics of
surfaces, 1998.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, July 1968. ISSN
2168-2887. doi: 10.1109/TSSC.1968.300136.

[9] R. Haupt. A survey of priority rule-based scheduling. Operations-
Research-Spektrum, 11(1):3–16, Mar. 1989. ISSN 1436-6304. doi:
10.1007/BF01721162.

[10] F. Ho, A. Salta, R. Geraldes, A. Goncalves, M. Cavazza, and
H. Prendinger. Multi-Agent Path Finding for UAV Traffic Management.
In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, pages 131–139, Rich-
land, SC, May 2019. International Foundation for Autonomous Agents
and Multiagent Systems. ISBN 978-1-4503-6309-9.

[11] W. Hoenig, T. K. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and
S. Koenig. Multi-Agent Path Finding with Kinematic Constraints. Pro-
ceedings of the International Conference on Automated Planning and
Scheduling, 26:477–485, Mar. 2016. ISSN 2334-0843, 2334-0835. doi:
10.1609/icaps.v26i1.13796.

[12] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian. Persis-
tent and Robust Execution of MAPF Schedules in Warehouses. IEEE
Robotics and Automation Letters, 4(2):1125–1131, Apr. 2019. ISSN
2377-3766. doi: 10.1109/LRA.2019.2894217.

[13] V. Lehoux-Lebacque, T. Silander, C. Loiodice, S. Lee, A. Wang, and
S. Michel. Multi-agent path finding with real robot dynamics and
interdependent tasks for automated warehouses. URL https://europe.
naverlabs.com/research/publications/MAPF_IPP.

[14] J. Li, P. Surynek, A. Felner, H. Ma, T. K. S. Kumar, and S. Koenig.
Multi-Agent Path Finding for Large Agents. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):7627–7634, July 2019.
ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33017627.

[15] J. Li, K. Sun, H. Ma, A. Felner, T. K. Kumar, and S. Koenig. Mov-
ing Agents in Formation in Congested Environments. Proceedings of
the International Symposium on Combinatorial Search, 11(1):131–132,
2020. ISSN 2832-9163. doi: 10.1609/socs.v11i1.18525.

[16] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and S. Koenig.
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35, volume
No. 13: AAAI-21 Technical Tracks 13, pages 11272–11281, 2021. doi:
10.1609/aaai.v35i13.17344.

[17] J. Li, T. A. Hoang, E. Lin, H. L. Vu, and S. Koenig. Intersection Coordi-
nation with Priority-Based Search for Autonomous Vehicles. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 37(10):11578–
11585, June 2023. ISSN 2374-3468. doi: 10.1609/aaai.v37i10.26368.

[18] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig. Lifelong Multi-Agent Path
Finding for Online Pickup and Delivery Tasks. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS’17, page 837–845, Richland, SC, 2017. International Foundation
for Autonomous Agents and Multiagent Systems.

[19] H. Ma, W. Hönig, T. K. S. Kumar, N. Ayanian, and S. Koenig. Life-

long Path Planning with Kinematic Constraints for Multi-Agent Pickup
and Delivery. In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence and Thirty-First Innovative Applications of Arti-
ficial Intelligence Conference and Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19.
AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.
v33i01.33017651.

[20] K. Okumura and X. Défago. Solving simultaneous target assignment
and path planning efficiently with time-independent execution. Arti-
ficial Intelligence, 321:103946, Aug. 2023. ISSN 0004-3702. doi:
10.1016/j.artint.2023.103946.

[21] D. Silver. Cooperative Pathfinding. Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment, 1
(1):117–122, 2005. ISSN 2334-0924. doi: 10.1609/aiide.v1i1.18726.

[22] T. Standley. Finding Optimal Solutions to Cooperative Pathfinding
Problems. Proceedings of the AAAI Conference on Artificial Intelli-
gence, 24(1):173–178, July 2010. ISSN 2374-3468. doi: 10.1609/aaai.
v24i1.7564.

[23] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar, R. Barták, and E. Boyarski. Multi-
Agent Pathfinding: Definitions, Variants, and Benchmarks. Proceedings
of the International Symposium on Combinatorial Search, 10:151–158,
09 2021. doi: 10.1609/socs.v10i1.18510.

[24] S. Varambally, J. Li, and S. Koenig. Which MAPF Model Works Best
for Automated Warehousing? Proceedings of the International Sympo-
sium on Combinatorial Search, 15(1):190–198, July 2022. ISSN 2832-
9163, 2832-9171. doi: 10.1609/socs.v15i1.21767.

[25] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating Hundreds
of Cooperative, Autonomous Vehicles in Warehouses. AI Magazine, 29
(1):9–9, Mar. 2008. ISSN 2371-9621. doi: 10.1609/aimag.v29i1.2082.

[26] J. Yu and S. M. LaValle. Planning Optimal Paths for Multiple Robots
on Graphs. In Proceedings - 2013 IEEE International Conference on
Robotics and Automation, pages 3612–3617, 04 2012. doi: 10.1109/
ICRA.2013.6631084.

[27] Y. Zhang, D. Harabor, P. L. Bodic, and P. J. Stuckey. Efficient Multi
Agent Path Finding with Turn Actions. Proceedings of the International
Symposium on Combinatorial Search, 16(1):119–127, July 2023. ISSN
2832-9163. doi: 10.1609/socs.v16i1.27290.

V. Lehoux-Lebacque et al. / Multi-Agent Path Finding with Real Robot Dynamics and Interdependent Tasks for Automated Warehouses 4401


