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Abstract. Forward-only learning algorithms have recently gained
attention as alternatives to gradient backpropagation, replacing the
backward step of this latter solver with an additional contrastive for-
ward pass. Among these approaches, the so-called Forward-Forward
Algorithm (FFA) has been shown to achieve competitive levels of
performance in terms of generalization and complexity. Networks
trained using FFA learn to contrastively maximize a layer-wise de-
fined goodness score when presented with real data (denoted as posi-
tive samples) and to minimize it when processing synthetic data (corr.
negative samples). However, this algorithm still faces weaknesses
that negatively affect the model accuracy and training stability, pri-
marily due to a gradient imbalance between positive and negative
samples. To overcome this issue, in this work we propose a novel
implementation of the FFA algorithm, denoted as Polar-FFA, which
extends the original formulation by introducing a neural division (po-
larization) between positive and negative instances. Neurons in each
of these groups aim to maximize their goodness when presented with
their respective data type, thereby creating a symmetric gradient be-
havior. To empirically gauge the improved learning capabilities of
our proposed Polar-FFA, we perform several systematic experiments
using different activation and goodness functions over image classifi-
cation datasets. Our results demonstrate that Polar-FFA outperforms
FFA in terms of accuracy and convergence speed. Furthermore, its
lower reliance on hyperparameters reduces the need for hyperparam-
eter tuning to guarantee optimal generalization capabilities, thereby
allowing for a broader range of neural network configurations.

1 Introduction

Biologically plausible algorithms are emerging as alternative learn-
ing approaches focused on addressing several well-known shortcom-
ings inherent in the backpropagation algorithm (BP) [23]. Among
them, forward-only learning techniques stand out in the recent liter-
ature by leveraging error-driven local learning, thereby solving the
weight transport and update lock problems [16]. These algorithms
replace the backward pass of BP with an additional contrastive for-
ward pass, modulated by carefully crafted layer-specific loss func-
tions. Due to their local design, these algorithms allow training neu-
ral networks with a reduced memory footprint, suitable for scenarios
with non-centralized computing capabilities, such as edge computing
[13, 2].
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One of the most prominent algorithms within forward-only learn-
ing approaches is the so-called Forward-Forward Algorithm (FFA)
[4]. FFA advocates for the concept of fitness to contrastively learn
to discriminate between real (also referred to as positive) data and
synthetic (corr. negative) data. In doing so, FFA aims to maximize
a goodness score when the network processes positive data, while
minimizing this score when predicting negative data. Several works
published since its inception have shown that FFA performs compet-
itively when compared to BP. Unfortunately, FFA still faces several
downsides that hinder the ability of this algorithm to achieve opti-
mal generalization bounds. The cause of this weakness is primarily
attributed to the formulation of the probability function that deter-
mines how the fitness score modulates whether a sample belongs to
the positive set, as it has been shown to showcase vanishing gradient
behavior [11].

This work aims to advance towards addressing this issue by intro-
duces Polar-FFA, a novel forward-only learning algorithm that ex-
tends the original FFA by incorporating neural polarization within
each layer. This mechanism introduces the concept of positive and
negative neurons, which are shown to enhance the expressiveness of
the probability function mentioned previously. We assess the bene-
fits of Polar-FFA through extensive experiments over image classi-
fication datasets, showing that our approach enhances both the gen-
eralization capabilities of the trained network and the convergence
speed of the learning process. Additionally, Polar-FFA is proven to
allow for a broader set of neural configurations, thereby increasing
the flexibility to build neural architectures based on FFA-like algo-
rithms, which is critical when using bounded activation functions.

The rest of the manuscript is structured as follows: Section 2 in-
troduces relevant literature to place in context the contribution of
this work. Next, Section 3 motivates and describes the proposed
Polar-FFA, together with examples of alternative probability func-
tions. Section 4 follows by posing research questions and the exper-
imental setup used to inform their responses with evidence. Section
5 presents the obtained experimental results and discusses on the im-
provements and limitations of our method. Finally, Section 6 draws
the main conclusions of the work and outlines potential research di-
rections rooted in our findings here reported. In addition, the appen-
dices and source code needed to execute the experiments, have been
included into the supplementary material [17].
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2 Related Work

Before proceeding with the description of Polar-FFA, we briefly
overview prior work on forward-only learning and FFA, ending with
a statement of the contribution of Polar-FFA to the state of the art:

Forward-only Learning BP is arguably the most widely used al-
gorithm for training neural networks. However, a recent surge in
neuro-inspired learning algorithms has gained momentum in the Ar-
tificial Intelligence community [23]. These algorithms aim at ad-
dressing well-known algorithmic weaknesses of other learners by
studying the learning dynamics in biological brains, including the
usage of sparse latent activity and local learning rules. As a result,
neuro-inspired learning algorithms have achieved competitive gen-
eralization capabilities [7, 12]. Among them, forward-only learning
techniques present a novel credit assignment mechanism heavily in-
spired by the learning dynamics present in Hebbian update rules.
They replace the backward pass of BP with a secondary forward pass,
used in a layer-wise manner, to contrastively learn relevant features
from input data [16]. The first implementation of this technique can
be attributed to Kohan et al. [8], whose approach involved connecting
the obtained classification error with the input layer. This allows the
network to forward this error during a second forward pass, updating
the weights without employing backward connections. An alternative
forward-only approach was developed by Dellaferrera & Kreiman in
[3], where a novel error-driven update rule was proposed to modulate
the input perturbation and contrastively train each layer.

Forward-Forward Algorithm Further within the family of
forward-only learning algorithms, FFA is a recently proposed neu-
roinspired approach based on the maximization of a layer fitness [4].
In doing so, FFA resorts to a contrastive learning process, where
models are trained to distinguish between real (positive) data and
synthetic (negative) data. To this end, FFA requires the definition of
i) a goodness function, which measures the fitness of a sample to be-
long to the positive set of data; and ii) a probability function, which
is used to map the fitness scores to the range R[0, 1]. Formally, a
goodness function G : Rn �→ R[0,∞) maps a latent vector � ∈ R

n

to a non-negative fitness value. Common choices for the goodness
function in the literature include the square Euclidean norm:

G(�) = ‖�‖22 =
n∑

i=1

�2i , (1)

where � = (�1, . . . , �n). Building upon this goodness function, FFA
utilizes a probability function P : R[0,∞] �→ R[0, 1], enabling the
use of probabilistic loss functions (e.g. binary cross entropy). In his
seminal work, Hinton suggested using a sigmoidal function as this
mapping, with a hyper-parameter θ that shifts the center of the distri-
bution:

P (G(�)) = σ(G(�); θ) =
1

1 + e−G(�)+θ
. (2)

Due to its layer-wise dynamics, FFA emerges as a highly compet-
itive alternative to other learning algorithms, especially in scenarios
where memory and energy are highly constrained. For example, this
algorithm has found practical applications in two relevant edge sys-
tems: optical neural networks, achieving competitive accuracy with
a reduced number of parameters [13]; and microcontrollers, enabling
on-device training for multivariate regression tasks [2]. Some exten-
sions of the algorithm have been proposed to incorporate greater
biological plausibility, such as the integration of predictive coding
heuristics [15], and its adaptation to spiking neural networks [14].
In their work on predictive FFA (PFFA) [15], Ororbia & Mali also

highlighted an additional key property of models trained with FFA:
the resulting latent space is composed of distinct clusters consist-
ing of points of the same class. A similar effect was exposed by
Tosato et al. in [19], underscoring the apparent sparsity of latent vec-
tors and its inherent latent structure. This effect was further explored
by Yang [22], who provided a mathematical foundation for this phe-
nomenon in ReLU-based networks using squared Euclidean distance
as a goodness function.

3 Proposed Polar Forward-Forward Algorithm

Polar-FFA introduces an extension to the FFA formulation by in-
tegrating a neural division where each neuron is assigned either a
positive or negative polarization. The fundamental learning mech-
anism remains quite similar to FFA, as neurons within each set are
trained to maximize their goodness score when exposed to samples of
their corresponding polarity, and to minimize it when presented with
the opposite polarity. For example, when employing a activity based
goodness function, a positive neuron is expected to maximize its ac-
tivity when presented with positive data, and to minimize it when
presented with negative samples. However, due to this neural parti-
tioning, the probability function measuring whether sample belongs
to the positive set must be adapted from a single goodness score to a
formulation including positive and negative goodness values. To pro-
vide a formal description of our algorithm, we recall the theoretical
framework of FFA outlined in Section 2 for the sake of consistent no-
tation and conceptual clarity. Since FFA-like algorithms train models
on a layer by layer basis, the formulation of the proposed Polar-FFA
focuses on the mechanisms involved in training a single layer. We
hereafter denote the set of neurons in a given network layer as L, so
that � refers to the latent vector at the output of the layer at hand.

The definition of Polar-FFA departs from the assignment of a po-
larity to each neuron, depending on the expected goodness behav-
ior desired for this neuron. Similarly to the original FFA, we define
the subset of positive neurons as L⊕, which aims at maximizing its
goodness score when exposed to positive samples. The novel concept
introduced in Polar-FFA is the negative neural set, denoted as L�,
which, in contrast to its counterpart, aims to maximize its goodness
score when presented with negative samples. While the relative sizes
of L⊕ and L� can be arbitrarily specified whenever L⊕ ∪ L� = L,
for the sake of simplicity in this paper, we limit our discussion to sce-
narios where |L⊕| = |L�|. Under this split architecture, the good-
ness score is reformulated from a single scalar measuring the fitness
of the input within the positive data distribution, to a pair of good-
ness scores, each measuring the suitability of the input with respect to
the data distribution of their respective polarity. Since the goodness
function only processes information contained in the latent vector,
Polar-FFA can naturally consider the same set of goodness functions
as those considered for FFA in the literature. Consequently, the good-
ness function G : Rn �→ R[0,∞) × R[0,∞) evaluates each group
independently as:

G(�) = G(�⊕ ∪ ��) = (G(�⊕), G(��)) , (3)

where � = �⊕ ∪ �� ∈ R
n is the latent vector at the output of layer

L, which contains n neurons, and �⊕ (��) denote the activations
corresponding to positive (negative) neurons in L⊕ (L�).

The second step in the adaptation from FFA to Polar-FFA in-
volves replacing the scalar-based probability function with a prob-
ability function P : R[0,∞) × R[0,∞) �→ R[0, 1], which receives
a pair of goodness scores at its input. This function should maximize
its value as the discrepancy between positive and negative goodness
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Figure 1. Forward and backward propagation’s paths on (a) Backpropagation (BP); (b) Forward-Forward Algorithm (FFA); and (c) Polar-FFA. Black lines
denote the forward direction of the information flowing from the input through each of the networks. Blue lines indicate the error BP path, which has a local

behavior in FFA and Polar-FFA. Additionally, the two adapted probability functions and the normalization process are included in the plot.

scores increases. Once this probability function is defined, Polar-FFA
can be trained under the Binary Cross-Entropy (BCE) loss LCE using
an analogous training process as the standard FFA. Formally, the loss
function of any forward-like supervised learning process is given by:

LCE = –
∑
i

ρi log [P (G(�i))]+(1−ρi) log [1− P (G(�i))] , (4)

where ρi ∈ {0, 1} is a binary variable referring to the polarity of the
data, taking value 1 if the sample is positive and 0 otherwise; and �i
extends the above notation to refer to the latent vector obtained by
processing the i-th input. Using this loss function, weight updates at
each step of Polar-FFA can be manually computed by applying the
chain rule. Given a weight wij associated to a neuron that belongs to
the positive neural set L⊕, the loss gradient yields as:

∂LCE

∂wij
= −

∑
k

1

P (G(�k⊕), G(�k�))
∂P

∂G⊕
∂G⊕
∂�k⊕,j

∂�k⊕,j

∂ak
⊕,j

xk
i , (5)

where we expand the notation of the latent vector further as (�k⊕)j =
�k⊕,j to denote the activation vector obtained from forwarding the in-
put sample xk, (ak

⊕)j = ak
⊕,j refers to the preactivation latent vector,

and we employ the �j subindex to refer to the j-th coordinate of the
respective vector. Similarly, we abreviate G(�k⊕) to G⊕. An equiva-
lent expression of the loss can be obtained for the weight update rule
of neurons in L� by replacing �⊕ by ��. It is important to note the
heavy symmetry present in these expressions, as the behavior of neu-
rons in the negative neural set with negative data corresponds to the
same maximization objective as positive neurons within the positive
dataset.

Characterization of FFA and Polar-FFA As shown in Expression
(5), any update rule in a FFA-like algorithm is controlled by three key
factors: the probability function, the goodness function, and the ac-
tivation function. Therefore, understanding the behavior of any stan-
dard FFA-like model boils down to examining the specific behavior
of these three functions. We refer as network configurations to any
combination of activation, goodness and probability function used to
define and train a specific model. Within this configuration, various
choices are possible; for instance, any norm can serve as a goodness

function, whereas any within the plethora of neural activation func-
tions defined in the literature can be employed at each layer. This
categorization has been crucial in providing a comprehensive set of
neural configurations for the experimental setup, as is further detailed
in Appendix D in the supplementary material [17].

Layer normalization Given the layer-wise learning dynamics of
FFA and Polar-FFA, it is crucial to ensure that goodness information
from previous layers is not overly influential in the decision mak-
ing of subsequent layers. This issue was addressed in the original
FFA work, where Hinton proposed introducing a normalization pro-
cess between layers to equalize the goodness scores of all latent vec-
tors [4]. Since our paper explores a broader set of goodness func-
tions, this approach must be expanded to guarantee that this property
is preserved for any such choice. Since the probability function in
Polar-FFA only analyzes the relationship between positive and nega-
tive goodness values, the normalization scheme must involve updat-
ing the positive and negative latent vectors to yield equal goodness
scores. This transformation ensures that latent vectors are treated
equally by the probability function, removing any bias in subsequent
layers. To avoid additional complexity, we restrict goodness func-
tions to be absolutely homogeneous, meaning that G(λ�) = |λ|G(�)
∀� ∈ R

n and ∀λ ∈ R. Subject to this constraint, we can verify that
the following normalization function norm : Rn �→ R

n satisfies the
sought normalization properties:

norm(�⊕, ��) =
(

�⊕
G(�⊕)

,
��

G(��)

)
, (6)

namely, the latent vectors corresponding to positive and negative neu-
rons are normalized by their associated goodness value.

Definition of probability function Due to the distinct formu-
lation of the probability function in Polar-FFA, the standard sig-
moidal probability function cannot be directly employed to train the
model. As previously discussed, the probability function in Polar-
FFA must yield a probability based on the relationship between the
pair of goodness scores (G(�⊕), G(��)) at its input. High probabil-
ity scores (values close to 1) should be produced when presented with
scores satisfying G(�⊕) 	 G(��), and conversely, low probability
values (close to 0) when G(�⊕) 
 G(��).
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We present two alternative probability functions that leverage dif-
ferent relationships between positive and negative goodness scores,
thus creating two distinct learning dynamics. Our first proposal ex-
pands the original sigmoid probability to incorporate negative good-
ness. The second approach involves computing the ratio of positive
goodness to the total goodness score:

1. Polar sigmoid probability Pσ(·): The first proposed probabil-
ity function extends the original sigmoidal probability in FFA
by substituting the value G(�) with the difference in scores
G(�⊕) − G(��), thereby determining the probability based on
the disparity between positive and negative goodness values. We
denote this probability function as:

Pσ (G(�⊕), G(��);α, θ) =
1

1 + e−α·(G(�⊕)−G(��)+θ)
. (7)

Similarly to the original sigmoid probability in FFA, α scales the
difference in activity, whereas θ shifts the center of the function.
This function exhibits a learning behavior similar to its prede-
cessor, but incorporates two crucial properties. Firstly, since the
function is defined by the difference of two opposite activities, the
probability function is not biased towards the positive probability,
thereby avoiding the gradient asymmetry identified by Lee et al.
[11]. Secondly, as the split version does not directly employ the
latent activity, the model’s learning is independent of the mean
of the latent activity, increasing the flexibility of the architecture.
The effect of the mean on the learning dynamics is thoroughly
examined in Appendix A in the supplementary material [17].
Notably, our formulation of Pσ(·) is solely influenced by the vari-
ance of the sigmoidal value of the difference between the positive
and negative goodness values. Under these conditions, the mean
value of the derivative can be guaranteed to be greater than any
small number if the value of the difference in the goodness has
low variance. This theoretical result implies that models with nat-
urally low variance can learn, independently of their mean value.
These insights are mathematically stated in Proposition 1, which
is mathematically proven in Appendix B in the supplementary
material [17]:

Proposition 1. Let W ∈ R
n×m be a randomly initialized weight

matrix, containing two independent sub-matrices of weights
(W⊕,W�) connecting an input x to their respective neural
groups. Let f(·) be a continuous activation function, and let
� = (�⊕, ��) =

(
f(W⊕xT ), f(W�xT )

)
= f(WxT ) be the

output vector of the layer. Let z be a random variable defined
by z = G(�⊕) − G(��), such that Pσ(G(�⊕), G(��);α, θ) ≡
Pσ(z;α, θ). Then, for θ = 0 and α = 1:

(a) The expected value of the derivative sigmoid probability
function is determined by the variance of the sigmoid of z
as:

E

[
∂Pσ(z)

∂G(�⊕)

]
=

1

4
− Var [Pσ(z)] ≥ 0. (8)

(b) The expected value of the derivative is bounded below by the
variance of z:

E

[
∂Pσ(z)

∂G(�⊕)

]
≥ 1

4
− Var[z]. (9)

2. Symmetric probability Ps(·): The second proposed probability
function replaces the difference in goodness with the ratio be-
tween the positive goodness and the sum of the two scores:

Ps(G(�⊕), G(��)) =
G(�⊕) + ε

G(�⊕) +G(��) + 2ε
, (10)

where � follows the previously introduced notation for latent vec-
tors, and ε is a small number introduced to avoid division by zero.
The motivation behind adding ε in both the numerator and the
denominator, with the denominator being doubled, is to ensure
that the function remains symmetric for negative samples in la-
tent vectors with low activity. This symmetry is guaranteed by
the expression Ps(G(�⊕), G(��)) = 1− Ps(G(��), G(�⊕)).
Similar to the previously defined sigmoid probability function
Pσ(·), this function maintains stable initial learning dynamics,
ensuring that its gradient is nonzero during early training. Fur-
thermore, a more robust theoretical result can be attributed to
this function, as the update behavior is driven by the ratio be-
tween negative and positive activities, which is tightly related to
the model’s accuracy. For instance, the only points at which the
derivative of this function is close to zero are when the model
is remarkably accurate or when the values of the goodness score
reach large values. The second situation can be mitigated by either
clipping the goodness value or by including additional regulariza-
tion terms into the loss function. Therefore, as opposed to models
trained with FFA using the sigmoid function, models with low ac-
curacy levels are ensured not to get stuck during the forward-only
learning process regardless of their activity or variance, thereby
making this function theoretically more robust. This property is
formally expressed in Proposition 2, proven in Appendix C in the
supplementary material [17].

Proposition 2. Let � = (�⊕, ��) be a latent vector, and let G(·)
be an arbitrary goodness function. The following properties hold:

(a) Ps(G(�⊕), G(��)) is approximately scale invariant for all
G(�⊕) such that G(��) 	 ε.

(b) Given two values a, b ∈ R[0,∞) such that a < G(�⊕) +
G(��) < b, then the order of growth of the derivative is:

∂Ps(G(�⊕), G(��))
∂G(�⊕)

= O
(
G(��)
G(�⊕)

)
, (11)

where O(·) denotes asymptotic complexity.

4 Experimental Setup

To empirically assess the performance of our Polar-FFA approach,
we formulate two Research Questions (RQs) that will be analyzed
through an extensive set of experiments:

• RQ1: Does neural polarization enhance the convergence and gen-
eralization with respect to the original FFA?

• RQ2: Which insights can be obtained by analyzing the latent
space induced by neural polarization?

To ensure that the results within RQ1 are not biased towards spe-
cific network configurations, exhaustive tests have been done with
both FFA and Polar-FFA across a diverse range of architectural con-
figurations. These configurations yield from the combinations of
3 different activation functions (ReLU, Sigmoid, and Tanh), 24
goodness functions G(·) (including ‖ · ‖2 and ‖ · ‖1, among others)
and 3 probability functions, namely, the original sigmoid function
used in FFA, hereafter denoted as P FFA

σ (·), and the proposed Pσ(·)
and Ps(·). The detailed list of network configurations utilized for
experiments related to RQ1 is reported in Appendix D in the supple-
mentary material [17].

The selected datasets for the experiments include MNIST [10],
Fashion MNIST [21], KMNIST [1], and CIFAR-10 [9]. Models
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trained on MNIST-like datasets (MNIST, Fashion MNIST, or KM-
NIST) use a 2-layer architecture comprising 1000 neurons each,
whereas models trained on CIFAR-10 contain 2000 neurons per
layer. In networks trained via Polar-FFA, the first half of the neu-
rons of each layer are assigned to the positive neural group L⊕ and
the second half to the negative set L�, as this polarity distribution
can be empirically shown to be the most stable (see Appendix E in
the supplementary material [17]). All models are trained using the
ADAM optimizer with a learning rate of 0.001 for 50 epochs and a
batch size of 512, except for CIFAR-10, in which the training pro-
cess is extended to 100 epochs. Following [11], labels are embedded
into images by concatenating them to the end of the image, using
a Bernoulli distribution with probability 0.1 and a label pattern size
of 100 pixels. Furthermore, we adopt Hinton’s original approach to
generate negative data instances [4], which involved embedding in-
correct data (selected from the set of possible classes) to a real pos-
itive instance. Each (activation,goodness,probability) function com-
bination is used to train the network on each dataset using FFA and
Polar-FFA.

Each of these configurations is evaluated for accuracy and conver-
gence speed. As for the latter, we rely on what we denote as conver-
gence area (CA), defined as the area above the accuracy curve across
epochs, upper bounded by the maximum accuracy attained over all
epochs. Formally, given the accuracy levels acc = (acc1, . . . , accT )
obtained by the learning algorithm at hand over T epochs, this score
is given by:

CA(acc) =
1

T ·maxt acct

T∑
i=t

[(maxt acct)− acct] . (12)

To evaluate the statistical significance of the performance gaps be-
tween FFA and Polar-FFA, we select a diverse set of neural config-
urations and trained them using 10 different seeds over the MNIST,
KMNIST, and Fashion MNIST datasets. Accuracy measurements are
conducted for all three experiments to calculate their generalization
capability and its standard error of the mean. The selection of these
configurations is independently performed for each probability func-
tion. Specifically, we select the two goodness functions with the high-
est average accuracy on MNIST-like datasets for each of the three
activation functions.

RQ2 aims to offer deeper insights and arguments regarding the
results obtained in response to RQ1. This analysis is conducted by
exploring the latent space of models trained using the previously
defined set of neural configurations. By extracting a representative
sample of their latent space, we compute several geometric proper-
ties, primarily focusing on sparsity and separability indices. These
indices are then inspected jointly with the accuracy and convergence
speed of the trained network to analyze the relationship between the
geometric properties of the latent space and the training dynamics of
the networks. Moreover, we resort to T-SNE [20] as a dimensionality
reduction algorithm to visualize the distribution of the latent space �.

The sparsity of the latent space is quantified in terms of the Hoyer
metric [5], which is known to meet most properties expected for spar-
sity metrics [6]. Given a latent vector � ∈ R

n, this metric returns a
value between 0 and 1 measuring the sparsity of the vector, where
0 implies a uniform distribution and 1 a totally sparse vector. The
Hoyer Index HI : Rn → R[0, 1] is defined as:

HI(�) =
(√

n− (‖�‖1/‖�‖2)
)
/
(√

n− 1
)
. (13)

Based on this index, we introduce a score denoted as neural us-
age, which measures how well distributed is the contribution of the

different neurons to the latent output of the layer. We define it as the
Hoyer index of the latent vector obtained by averaging over the out-
put latent space. A highly sparse average latent vector would imply
the existence of a large set of neurons that do not actively participate
in the inference forward pass of the model, while low sparsity values
would indicate that all neurons contribute equally to the prediction
of the model. It is important to note that this score is particularly rel-
evant for FFA-like methods, where the activity of neurons directly
influences model predictions.

Similarly, separability focuses on the distance in the latent space
between clusters of different classes. In FFA, this score quantifies the
overlap between positive and negative latent vectors. To achieve this,
we use the geometric separability index [18]. This metric analyzes
the ratio of samples belonging to the same class as a given point
within their nearest neighbors. Given a dataset composed of pairs of
samples and labels, we denote the class of the k-th sample as Ck.
Similarly, we denote the polarity type of its j-th nearest neighbor as
KNNj(Ck). Values of separability closer to 1 imply that the different
classes do not overlap, while values closer to 0 imply a total overlap
of the classes. The separability index SI(�) is computed as:

SI(�) =
1

K · J
K∑

k=1

J∑
j=1

δ(Ck,KNNj(Ck)), (14)

where K represents the number of input samples, and J is the total
number of neighbors selected, which we set to J = 5 for our exper-
iments. Additionally, δ(x, y) denotes the Kronecker delta function,
which outputs 1 if x = y and 0 otherwise.

5 Results and Discussion

In this section, we present and discuss on the results obtained for
each of the previously introduced research question:

RQ1: Does neural polarization enhance the
convergence and generalization with respect to FFA?

The results of the average accuracy of the distinct models on MNIST,
Fashion MNIST and KMNIST are presented in Table 1. Due to the
large accuracy difference between these datasets and CIFAR-10, the
results corresponding to the latter are presented in Table 2. However,
the disaggregated results of all the experiments can be found in Table
F3 in Appendix F in the supplementary material [17].

Table 1. Maximum, median, average and minimum values of the accuracy
[%] of the different probability functions of FFA and Polar-FFA, averaged
over the MNIST, Fashion-MNIST and KMNIST datasets. We also present
the amount of configurations achieving an accuracy greater than 80% and

the total number of configurations. Best results for each score in bold.

Score Ps Pσ P FFA
σ

Maximum accuracy 91.60 92.89 90.76
Median accuracy 89.67 86.29 74.76
Average accuracy 86.09 77.68 58.18
Minimum accuracy 68.90 40.43 7.64

# top-80% accuracy configurations/total 30/36 20/36 13/36
Convergence area top-80% configurations 0.0122 0.0177 0.0208

The results obtained for this first research question confirm our
hypothesis regarding the improved performance of Polar-FFA com-
pared to FFA. Firstly, analyzing the accuracy scores obtained for
MNIST-like datasets in Table 1, it is evident that models trained using
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Polar-FFA outperform those trained using FFA in terms of accuracy,
especially in cases where the neural configuration renders the model
incapable of learning, as detailed in Appendix A in the supplemen-
tary material [17]. Moreover, when comparing the results between
Pσ and P FFA

σ individually, a significant number of models outperform
their FFA counterparts. In terms of robustness, Polar-FFA demon-
strates a significant advantage over FFA, with more than a 30-point
difference in average accuracy observed in the worst-performing net-
work configuration. This difference showcases the importance of en-
suring that the derivative of the probability achieves non-zero values,
as highlighted in Proposition 1 and Proposition 2. Notably, while the
highest generalization capabilities are attributed to Pσ , the symmet-
ric probability function Ps achieves the most robust results, with a
remarkable minimum average accuracy of 68.90% in MNIST-like
datasets, surpassing both sigmoidal functions by more than 28 points
of accuracy. Furthermore, this minimal accuracy value increases to
83.92% when using a lateral inhibition scheme, demonstrating high
accuracy across all configurations. This trend is also reflected on the
total number of models reaching the minimum accuracy of 80%,
where FFA models are revealed to attain poor generalization capabil-
ities. This effect highlights that the scale invariance of the probability
function significantly alleviates the activity constraints required for
sigmoid-like probability functions. Similarly, the theoretical effect
stated in Proposition 1 is also observed in these results, as the min-
imum accuracy in MNIST-like datasets is significantly higher than
random chance. In contrast, the lack of adaptability of FFA to the
different latent activity distributions hinders the network’s capacity
to learn, making FFA highly ineffective when not employing ReLU-
like networks (see Table F2 in Appendix F in the supplementary ma-
terial [17]). Additionally, when considering the median convergence
area (last row in the table), the symmetric probability Ps converges in
almost half the time compared to both sigmoidal probabilities. How-
ever, this faster convergence is outweighed by the reduced maximum
accuracy of models trained by Polar-FFA using this probability.

Similar conclusions can be drawn from the results obtained over
CIFAR-10, which are shown in Table 2. Once again, Polar-FFA with
Pσ is the best-performing approach. Likewise, using our symmetric
probability defined in Expression (10) produces very robust mod-
els, achieving a median accuracy of 40.22% in comparison with the
median accuracy of 12.70% scored by the standard FFA. When it
comes to convergence speed, in this case the naive FFA algorithm
scores best, followed by Polar-FFA with the symmetric probability
Ps. Since the stopping criterion for the learning process is the same
for all algorithms (early-stopping detailed in Appendix D in the sup-
plementary material [17]), the significantly lower median accuracy of
FFA (12.70%) compared to Polar-FFA (21.46%) suggests that FFA
undergoes premature convergence.

Table 2. Maximum, median, average and minimum values of the average
accuracy of the different probability functions of FFA and Polar-FFA over

the CIFAR-10 dataset. We also present the amount of configurations
achieving an accuracy greater than 35% and the total number of

configurations. Best results marked in bold.

Score Ps Pσ P FFA
σ

Maximum accuracy 46.39 49.92 42.81
Median accuracy 40.22 21.46 12.70
Average accuracy 37.14 25.39 20.29
Minimum accuracy 12.37 9.38 10.00

# top-35% accuracy configurations/total 26/36 10/36 7/36
Convergence area top-35% configurations 0.0651 0.0529 0.0469

We proceed by analyzing the convergence speed of the sigmoid
probability Pσ in Polar-FFA, which closely resembles the original
probability function of FFA. Figure 2 depicts the difference in ac-
curacy (horizontal axis) and convergence area (vertical axis) be-
tween Polar-FFA and FFA and the configurations using Pσ and P FFA

σ

achieving more than 70% accuracy in both cases. Differences in ac-
curacy and convergence speed are predominantly inside the same
quadrant, characterized by a positive difference in accuracy and a
negative difference in convergence area. These results imply that in-
corporating neural polarization into the learning process leads to im-
provements in both accuracy and training speed.

Figure 2. Distribution of the difference in convergence area ΔCA (vertical
axis) and accuracy ΔACC (horizontal axis) between Polar-FFA with Pσ and

FFA with P FFA
σ . The vertical axis is in square-root scale for the sake of

readability. Only models with an accuracy greater than 70% have been
plotted, filtering those achieving fast convergence due to having suboptimal

maximum accuracy.

To further investigate the impact of neural configuration on the
variability between training runs, we present the results of the two
best performing configurations for each activation function (ReLu,
Tanh and Sigmoid) over 10 different seeds in Table 3. In this
analysis, models trained using Polar-FFA (namely, those using Ps

and Pσ) exhibit a lower standard deviation across different seeds, ex-
cept when using the Sigmoid action together with Pσ . Moreover,
the results evince a clear pattern regarding the choice of the activa-
tion function in sigmoidal probability functions: models trained us-
ing ReLu and Tanh activations yield less noisy accuracy levels than
models trained with Sigmoid activations.

Table 3. Average accuracy and standard error of the mean over 10 runs of
the best performing neural configurations with ReLu, Sigmoid and Tanh

activations, over MNIST, Fashion-MNIST and KMNIST datasets. The
highest average accuracy for each probability is highlighted in bold.

Activation, configuration Ps Pσ P FFA
σ

ReLu, best conf. 90.62± 0.76 92.83 ± 0.74 90.66 ± 0.87

ReLu, 2nd best conf. 90.72± 0.75 92.81± 0.73 88.61± 0.88
Sigmoid, best conf. 91.51± 0.79 80.76± 3.22 76.01± 0.79
Sigmoid, 2nd best conf. 91.60 ± 0.80 79.18± 3.21 71.79± 0.80
Tanh, best conf. 90.27± 0.89 91.52± 0.85 86.61± 1.25
Tanh, 2nd best conf. 90.31± 0.89 90.93± 0.93 79.73± 1.85

Out of all the results, the average accuracy remained consistent
with the initial experiments, providing evidence of the robustness of
FFA-like algorithms under carefully selected neural configurations.
We note that experiments using the Sigmoid activation function
give rise to a slight decrease in accuracy compared to the initially
presented values in Table 1 when using the sigmoidal probability
function Pσ . The high variance and the accuracy decrease associated
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with the Sigmoid activation function can be attributed to a small
subset of training sessions that yielded suboptimal performance, re-
sulting in accuracy ranges between 40% and 60%. Nevertheless, the
vast majority of the training seeds produced competitive accuracy
levels. In contrast, when employing the symmetric probability this
effect is reversed, with the Sigmoid activation achieving the most
accurate results. Similarly, in addition to being the most robust when
working with different network configurations, this probability func-
tion also achieves the lowest deviation in accuracy between different
seeds.

RQ2: Which insights can be obtained by analyzing the
latent space induced by neural polarization?

To address this second research question, we pause at Figure 3, which
depicts the difference in accuracy and separability between Polar-
FFA and FFA for models attaining an accuracy higher than 20%.
Conceptually, FFA is designed to maximize the separation between
positive and negative samples through a contrastive learning process.
Our results reveal that this goal pursued by FFA is not fulfilled in
all neural configurations. For instance, a small subset of neural con-
figurations learns to contrast between positive and negative samples
by small directional perturbations driven by the embedded labels. As
shown in Appendix G in the supplementary material [17], this results
in small clusters of points grouped closely, obtained from the same
sample but with different embedded labels, but with the positive sam-
ple achieving a slightly greater goodness scores. The evidence of this
geometrical structure points to a more diverse latent representation
inherent to the algorithm, yet highly dependent on the choice of the
neural configuration. Nevertheless, the major trend points towards a
clear correlation between the distance between positive and negative
latent spaces.

Figure 3. Distribution of the difference in the separability index ΔSI
(y-axis) and accuracy ΔACC (x-axis) between Polar-FFA with Pσ and FFA

with P FFA
σ . Only models with accuracy higher than 20% are included,

thereby filtering out near-random networks.

Sparsity also reveals information about the behavior of the model.
As observed by the results in Table 4, models trained using Tanh
as activation function result in the least sparse latent spaces, affect-
ing the neural-level sparsity of most models except those trained us-
ing the symmetric probability function. As discussed in RQ1, these
models were proven to perform most robustly, suggesting that the
increased sparsity of the latent space can serve as a pivotal feature
to guarantee high generalization capabilities in forward-like algo-
rithms. In contrast, the sigmoid probability Pσ in Polar-FFA achieves
the least sparse latent spaces. This can be explained by the differ-
ence in the objectives sought by FFA and Polar-FFA. While FFA

aims at reducing the overall activity in negative samples, it tends to
drive down most neurons during the negative phase. On the contrary,
Polar-FFA aims at maximizing the activity of the negative neural set,
which involves having a high number of active neurons during the
same phase. This difference in functionality creates less sparse out-
puts, while at the same time improves the generalization capabilities
and reduces the information loss between layers. It is also impor-
tant to remark that while the sparsity of Polar-FFA is lower than that
of FFA, both achieve high sparsity ratios. Additionally, the highest
neural usage in Table 4 signifies that a highest concentration of in-
formation is confined in a small subset of neurons for models trained
using the symmetric probability Ps. This leads to enhanced learning
dynamics arising from a higher degree of neural specialization.

Table 4. Average Hoyer and neural usage of the configurations studied in
RQ1. Due to the high difference between models using Tanh activations

and those using other activation functions, we also present the average
metrics of the configurations with that specific activation function excluded.

Metric Ps Pσ P FFA
σ

Hoyer index HI(�) 0.9673 0.6430 0.7501
Neural usage 0.6219 0.2738 0.2074

Hoyer index HI(�) (no Tanh) 0.9776 0.7275 0.8766
Neural usage (no Tanh) 0.8150 0.4554 0.4630

6 Conclusions and Future Research Lines

This work has introduced Polar-FFA, a novel formulation of the
FFA that incorporates neural polarization to enhance its learning dy-
namics. Our approach involves dividing each layer into positive and
negative neurons, each aimed at maximizing their goodness score
when presented with inputs of their respective polarity. Building
upon this formulation, we propose two alternative probability func-
tions, proven to mitigate well-known limitations of the original FFA.
Through extensive experiments across a diverse set of neural con-
figurations, including various activation and goodness functions, we
provide empirical evidence of the improved generalization capabil-
ities of Polar-FFA. Significantly, our approach consistently outper-
forms FFA across all datasets and nearly all neural configurations in
terms of accuracy and convergence speed. Furthermore, we demon-
strate its ability to learn in a broader range of neural configurations,
such as models using Sigmoid or Tanh activations, where the orig-
inal FFA has been proven to perform poorly. In addition, we explore
the geometrical properties inherent to this extended set of configu-
rations, showing that the higher accuracy scores produced by Polar-
FFA result from its capacity to learn highly separated latent repre-
sentations. Similarly, our findings highlight the positive impact that
latent sparsity provides during training, leading to more robust and
stable learning dynamics.

We envision two main lines to further develop the ideas explained
in this work. First, we intend to advance in the study of goodness
and probability functions, focusing on their emerging geometrical
properties. As shown in this work, the choice of these two functions
highly impacts the properties of the latent space, which could be ben-
eficial for creating more effective networks, especially in terms of ro-
bustness against out-of-distribution data and explainability. Second,
we aim to extend the heuristics from FFA to more advanced neural
architectures (e.g., CNNs or Transformers), primarily by replacing
the supervised negative generation method for one compatible with
non-dense layers.
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