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Abstract. State-of-the-art pre-trained image models predomi-
nantly adopt a two-stage approach: initial unsupervised pre-training
on large-scale datasets followed by task-specific fine-tuning using
Cross-Entropy loss (CE). However, it has been demonstrated that
CE can compromise model generalization and stability. While recent
works employing contrastive learning address some of these limita-
tions by enhancing the quality of embeddings and producing better
decision boundaries, they often overlook the importance of hard neg-
ative mining and rely on resource intensive and slow training using
large sample batches. To counter these issues, we introduce a novel
approach named CLCE, which integrates Label-Aware Contrastive
Learning with CE. Our approach not only maintains the strengths of
both loss functions but also leverages hard negative mining in a syn-
ergistic way to enhance performance. Experimental results demon-
strate that CLCE significantly outperforms CE in Top-1 accuracy
across twelve benchmarks, achieving gains of up to 3.52% in few-
shot learning scenarios and 3.41% in transfer learning settings with
the BEiT-3 model. Importantly, our proposed CLCE approach effec-
tively mitigates the dependency of contrastive learning on large batch
sizes such as 4096 samples per batch, a limitation that has previously
constrained the application of contrastive learning in budget-limited
hardware environments.

1 Introduction

Approaches for achieving state-of-the-art performance in image
classification tasks often employ models initially pre-trained on
auxiliary tasks and then fine-tuned on a task-specific labeled dataset
with a Cross-Entropy loss (CE) [9, 56, 17, 28, 29, 31, 63]. However,
CE’s inherent limitations can impact model performance. Specifi-
cally, the measure of KL-divergence between one-hot label vectors
and model outputs can cause narrow decision margins in the feature
space. This hinders generalization [27, 3] and has been shown to
be sensitive to noisy labels [39, 27] or adversarial samples [10, 39].
Various techniques have emerged to address these problems, such
as knowledge distillation [19], self-training [61], Mixup [65],
CutMix [64], and label smoothing [51]. However, in scenarios such
as few-shot learning, these issues with CE have not been fully
mitigated. Indeed, while techniques such as extended fine-tuning
epochs and specialized optimizers [66, 37] can reduce the impact of
CE to some extent, they introduce new challenges, such as extended
training time and increased model complexity [66, 37, 36].
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Amidst these challenges in context of image classification, con-
trastive learning has emerged as a promising solution [33], particu-
larly in few-shot learning scenarios such as CIFAR-FS [2] and CUB-
200-2011 datasets [55]. The effectiveness of contrastive learning lies
in its ability to amplify similarities among positive pairs (intra-class
data points) and distinguish negative pairs (inter-class data points).
SimCLR [4], for instance, has utilized instance-level comparisons
unsupervised. However, this unsupervised approach raises concerns
regarding its effectiveness , primarily because it limits the positive
pairs to be transformed views of an image and treats all other samples
in a mini-batch as negatives, potentially overlooking actual positive
pairs. We hypothesis incorporating task-specific label information is
thus crucial for accurately identifying all positive pairs, especially
given the presence of labels in many downstream datasets.

There is a growing trend of using task labels with contrastive learn-
ing to replace the standard use of CE [23]. A critical observation here
is that many state-of-the-art methods, both in supervised [23, 15] and
unsupervised [4, 48, 11, 57, 59] contrastive learning, overlook the
strategic selection of negative samples. They fail to differentiate or
prioritize these samples during selection or processing, thereby miss-
ing the benefits of leveraging “hard" negative samples, as highlighted
in numerous studies [49, 25, 50, 5, 69, 26]. While contrastive learning
mitigates the limitations of CE, it simultaneously introduces a chal-
lenge: a reliance on large batch sizes—such as 2048 or 4096 samples
per batch—for superior performance compared to CE. This require-
ment is often impractical in budget hardware environments, particu-
larly when using GPUs with less than 24 GB of memory. As a conse-
quence, state-of-the-art methods such as SupCon [23] underperform
compared to CE when using more commonly employed batch sizes,
such as 64 or 128 samples per batch, which limits their application.
Motivated by these successes and gaps in research, we pose the ques-
tion: How can the performance of contrastive learning be improved
to address the shortcomings of cross-entropy loss, while also miti-
gating the reliance on large batch sizes?

Building upon the identified research gaps, we propose CLCE, an
innovative approach that combines Label-Aware Contrastive Learn-
ing with CE. This approach effectively merges the strengths of both
loss functions and integrates hard negative mining. This technique re-
fines the selection of positive and negative samples, thereby enabling
CLCE to achieve state-of-the-art performance. As our empirical find-
ings illustrate in Fig. 1, CLCE places a greater emphasis on hard
negative samples that are visually very similar to positive samples,
forcing the encoder to learn how to generate more distinct embed-
dings and better decision boundaries. The core contributions of our
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work can be summarised as follows:

• Introduction of an innovative approach: We introduce CLCE that
boosts model performance without necessitating specialized ar-
chitectures or additional resources. Our work is the first to suc-
cessfully integrate explicit hard negative mining into Label-Aware
Contrastive Learning, retaining the benefits of CE, while also ob-
viating the dependence on large batch sizes.

• State-of-the-Art Performance in Few-Shot Learning and Transfer
Learning settings: CLCE significantly surpasses CE by an average
of 2.74% in Top-1 accuracy across four few-shot learning datasets
when using the BEiT-3 base model [56], with large gains observed
in 1-shot learning scenarios. Additionally, in transfer learning set-
tings, CLCE consistently outperforms other state-of-the-art meth-
ods across eight image datasets, setting a new state-of-the-art re-
sult for base models (88 million parameters) on ImageNet-1k [7].

• Reduced Contrastive Learning’s Dependency on Large Batch
Sizes: Empirical evidence shows that CLCE significantly outper-
forms both CE and previous state-of-the-art contrastive learning
methods like SupCon [23] in commonly used batch sizes, such
as 64. This is a size at which earlier state-of-the-art contrastive
learning methods underperform. This advancement tackles a cru-
cial bottleneck in contrastive learning, particularly in settings with
limited resources. It positions CLCE as a viable, efficient alterna-
tive to conventional CE.

2 Related Work
2.1 Limitations of Cross-Entropy loss

The cross-entropy loss (CE) has long been the default setting for
many deep neural models due to its ability to optimize classifica-
tion tasks effectively. However, recent research has revealed several
inherent drawbacks [27, 3, 32]. Specifically, models trained with the
CE tend to exhibit poor generalization capabilities. This vulnerability
stems from the model having narrow decision margins in the feature
space, making it more susceptible to errors introduced by noisy la-
bels [39, 27] and adversarial examples [10, 39]. These deficiencies
underscore the need for alternatives that offer better robustness and
discrimination capabilities.

2.2 Contrastive Learning and Negative Mining

The exploration of negative samples, particularly hard negatives,
in contrastive learning has emerged as a critical yet relatively
underexplored area. While the significance of positive sample
identification is well-established [60, 12, 68], recent studies have
begun to unravel the intricate role of hard negatives. The potential of
hard negative mining in latent spaces has been validated in numerous
studies [50, 5, 69, 26, 58, 62, 13, 30, 34? , 44]. These studies
highlight the pivotal role of hard negatives in enhancing the discrim-
inative capability of embeddings. In the contrastive learning domain,
[6] tackled the challenge of discerning true negatives from a vast
pool of candidates by approximating the true negative distribution.
Later, [47] applied hard negative mining to unsupervised contrastive
learning, resulting in a framework where only a single positive pair
is utilized in each iteration of the loss calculation. However, these
approaches still presents limitations, such as inaccurately identifying
positive and negative samples and only using one positive pair,
which harms the performance of contrastive learning. H-SCL [22]
expand upon the concept of hard negative mining within a super-
vised framework. Although both our work and H-SCL utilize hard

negative sampling, the methodologies for implementing sampling
significantly differ between the two. Their approach employs a con-
sistent threshold-based dot product for identifying “hard” samples.
However, determining an appropriate threshold remains challenging,
as it varies significantly across different datasets and even within
individual mini-batches. In contrast, our CLCE method dynamically
determines the weighting of each sample, proving to be significantly
more effective than H-SCL. Moreover, their methodology does
not tackle the dependency on large batch sizes, which is a critical
limitation on performance and applicability.

Our work builds on these foundational insights, aiming to syner-
gize the strengths of contrastive learning with CE, particularly by
employing hard negative mining guided by label information. CLCE
employs a dynamic and adaptive strategy to assign weights to “hard”
samples in each minibatch, offering a more refined approach com-
pared to previous studies. Additionally, CLCE achieves superior per-
formance to CE without relying on large batch sizes.

3 APPROACH

In this paper, we propose an enhanced approach named CLCE for
image models that integrates our propose Label-Aware Contrastive
Learning with the Hard Negative Mining (LACLN) and the Cross-
Entropy (CE). CLCE harnesses the potential of contrastive learning
to mitigate the limitations inherent in CE while preserving its advan-
tages. Specifically, LACLN enhances similarities between instances
of the same class (i.e. positive samples) using label information and
contrasts them against instances from other classes (i.e. negative
samples), with particular emphasis on hard negative samples. Thus,
LACLN reshapes pretrained embeddings into a more distinct and dis-
criminative space, enhancing performance on target tasks. Moreover,
CLCE’s foundation draws from the premise that the training efficacy
of negative samples varies between soft and hard samples. We ar-
gue that weighting negative samples based on their dissimilarity to
positive samples is more effective than treating them equally. This
allows the model to prioritize distinguishing between positive sam-
ples and those negative samples that the embedding deems similar to
the positive ones, ultimately enhancing overall performance.

3.1 CLCE

The overall proposed CLCE approach is a weighted combination of
LACLN and standard CE, as expressed in Eq. 1:

LCLCE = (1− λ)LCE + λLLACLN (1)

In Eq. 1, the term LCE represents the CE loss, while LLACLN

symbolizes our proposed LACLN loss. λ represents a scalar weight-
ing hyperparameter. λ determines the relative importance of each of
the two losses. To provide context for LCE, we refer to the standard
definition of the multi-class CE loss, detailed in Eq. 2:

LCE = − 1

N

N∑
i=1

C∑
c=1

zi,c log(ẑi,c) (2)

In Eq. 2, zi,c and ẑi,c represent the label and the model’s output
probability for the ith instance belonging to class c, respectively.

We present the formal definition of our LACLN in Eq. 3. This loss
introduces a weighting factor for each negative sample, calculated
based on the dot product (indicating similarity) between the sam-
ple embeddings and the anchor, and normalized by a temperature
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Figure 1. CLCE, our proposed approach, integrates a Label-Aware Contrastive Learning with the Hard Negative Mining (LACLN) term and a CE term.
Illustrated with CUB-200-2011 dataset, it emphasizes hard negatives (thick dashed borders) for better class separation. This underscores their marked visual
similarity to their positive counterparts. Blue indicates positive examples and orange denotes negatives. On the right, CLCE visibly separates class embeddings
more effectively and results a better decision boundary than traditional CE.

LLACLN =
∑

xi∈D∗

− log
1
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xp∈D∗+

−xi

exp(xi · xp/τ)

∑
xp∈D∗+

−xi

exp(xi · xp/τ) +
∑

xk∈D∗-
−xi

|D∗-
−xi

|∑
xk∈D∗-
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exp(xi · xk/τ)

2

(3)

parameter τ . This formulation strategically emphasizes “hard” neg-
ative samples — those closely associated with the positive samples
by the model’s current embeddings. Specifically, the weighting fac-
tor for negative samples is determined by calculating their relative
proportion based on the average similarity (dot product) observed
within each mini-batch. The essence of Eq. 3 is to minimize the dis-
tance between positive pair embeddings and maximize the separation
between the anchor and negative samples, particularly the hard nega-
tives. This objective is achieved through two components: the numer-
ator, focusing on bringing positive sample embeddings closer to the
anchor, and the denominator, containing both positive and weighted
negative samples to ensure the anchor’s embedding is distant from
negative samples, with a special focus on the more challenging ones.
The integration of hard negative mining into contrastive learning is
critical as it sharpens the model’s ability to differentiate between
closely related samples, thus enhancing feature extraction and overall
model performance.

Specifically, D∗ represents the entire mini-batch composed of an
embedding x for each image view (or anchor) i. Therefore, xi ∈ D∗

is a set of embeddings within the mini-batch. The superscripts + and
−, e.g. D∗+, denote sets of embeddings consisting only of positive
and negative examples, respectively, for the current anchor within the
mini-batch. The term |D∗+

−xi
| represents the cardinality of the posi-

tive set for the current anchor, while the subscript −xi denotes that
this set excludes the embedding xi. The symbol · represents the dot
product. τ is a scalar temperature parameter controlling class sep-
aration. A lower value for τ encourages the model to differentiate
positive and negative instances more distinctly.

3.2 Analysis of CLCE

Notably, our proposed CLCE has the following desirable properties:

• Robust Positive/Negative Differentiation: We ensure a clear
distinction between true positive and true negative samples by
leveraging explicit label information, as encapsulated in Eq. 3.
This not only prevents the model from being misled by incorrectly
contrasting of samples but also reinforces the core philosophy of
contrastive learning. The aim is two-fold: to reduce the distance
between the embeddings of positive pairs and to increase the
distance for negative pairs, ensuring robust class separation.

• Discriminating Fine Detail with Hard Negatives: Our loss adjusts
the weighting of negative samples based on their similarities to
positive instances, as defined in Eq. 3. This nuanced approach
ensures that the model not only differentiates between glaringly
distinct samples but also adeptly distinguishes more challenging,
closely related negative samples. Such an approach paves the
way for a robust model that discerns real-world scenarios where
differences between classes might be minimal.

3.3 Representation Learning Framework

We use a representation learning framework comprised of three main
components, designed specifically to optimize our CLCE approach:

• Data Augmentation module, Aug(·): This component creates
two different views of each sample r, denoted r̃ = Aug(r). This
means that every sample will have at least one similar sample
(positive pair) in a batch during training.



• Encoder Network, Enc(·): This network encodes the input data,
r, into a representation vector, x = Enc(r). Each of the two dif-
ferent views of the data is fed into the encoder separately.

• Classification head, Head(·): This maps the representation vec-
tor, x, to probabilities of classes in the target task. The mapping
primarily consists of a linear layer, and we utilize its output to
calculate the cross-entropy loss.

Our CLCE approach (Eq. 3) can be applied using a wide range of
encoders, such as BEiT-3 [56] or the ResNets [16] for image classifi-
cation. Following the method in [4], every image in a batch is altered
to produce two separate views (anchors). Views with the same label
as the anchor are considered positive, while the rest are viewed as
negative. The encoder output, represented by xi = Enc(ri), is used
to calculate the contrastive loss. In contrast, the output from the
classification head, denoted as zi = Head(Enc(ri)), is used for
the CE. We have incorporated L2 normalization on encoder outputs,
a strategy demonstrated to enhance performance significantly [52].

4 Evaluation

We evaluate our proposed approach, CLCE, on image classification
in two settings: few-shot learning and transfer learning. We also con-
duct several analytical experiments. For CLCE experiments, a grid-
based hyperparameter search is conducted on the validation set. Op-
timal settings (τ = 0.5 and λ = 0.9) are employed because they
consistently yield the highest validation accuracies. For all experi-
ments, we use the official train/test splits and report the mean Top-1
test accuracy across at least three distinct initializations.

We employ representative models from two categories of archi-
tectures – BEiT-3/MAE/ViT base [56, 17, 9] (transformers based
models), and ResNet-101 [16] (convolutional neural network). While
new state-of-the-art models are continuously emerging (e.g. DI-
NOv2 [41]), our focus is not on the specific choice of architecture.
Instead, we aim to show that CLCE is model-agnostic by demon-
strating performance gains with two very different and widely used
architectures, as well as show it can be trained and deployed in
hardware-constrained settings. Further implementation details and
the complete code for all experiments are publicly available at https:
//github.com/longkukuhi/CLCE.

4.1 Few-shot Learning

We evaluate our proposed CLCE in the few-shot learning setting. The
experiments on few-shot learning aim to assess the quality of the
learned representations. Specifically, each test run comprises 3,000
randomly sampled tasks, and we report median Top-1 accuracy with
a 95% confidence interval across three runs, maintaining a consis-
tent query shot count of 15. Four prominent benchmarks are used
for evaluation: CIFAR-FS [2], FC100 [42], miniImageNet [54], and
tieredImageNet [46]. We follow established splitting protocols for a
fair comparison [2, 42, 45].

Tab. 1 shows the performance of BEiT-3 and ResNet-101 models
under various methods, including CE, H-SCL [22], and the same
weighted combination of CE and state-of-the-art supervised con-
trastive learning loss (SupCon) [23] as CLCE. The results reveal that
our CLCE approach consistently improves classification accuracy
over other methods, demonstrating superior generalization with
limited training data for each class. Our CLCE enhances models’
performance on few-shot datasets, significantly outperforming both

CE and CE+SuperCon (paired t-test, p < 0.01). In the 1-shot learn-
ing context when compared to BEiT-3 trained with CE (BEiT-3-CE),
the most remarkable improvement is seen on the FC100 dataset, with
accuracy rising by 3.52% through the use of CLCE (BEiT-3-CLCE).
Indeed, across all datasets, BEiT-3-CLCE shows an average accuracy
improvement of 2.7%. For 5-shot learning, the average improve-
ments across the datasets are 1.4% in accuracy for BEiT-3-CLCE,
demonstrating CLCE’s effectiveness in scenarios with fewer positive
samples per class and its ability to yield consistent and reliable
results, evident in the tighter confidence intervals for Top-1 accuracy.
As for ResNet-101, CLCE (ResNet-101-CLCE) demonstrates even
more significant improvements over both CE and CE+SupCon. The
enhancement is especially remarkable in the case of tieredImagenet,
where ResNet-101-CLCE achieves increases of 16.68% over
ResNet-101-CE and 14.17% over ResNet-101-CE+SupCon in 1-
shot learning. For 5-shot learning, the improvements are 16.9% and
13.36%, respectively. On average, ResNet-101-CLCE achieves a
9.82% improvement in 1-shot and an 8.71% improvement in 5-shot
settings over the ResNet-101-CE. Lastly, H-SCL [22] underperforms
compared to CE at a batch size of 128. This highlights contrastive
learning’s limitation of needing very large batch sizes for better
performance than CE, evident in ResNet-101 and BEiT-3 models.

Overall, the enhancement of our CLCE is particularly effective for
few-shot scenarios, where limited labelled data requires the model
to rely more on high-quality, discriminative representations. These
outcomes underline the efficacy of our proposed CLCE approach and
CLCE’s broad applicability across different model architectures for
few-shot learning tasks.

4.2 Transfer Learning

We now assess the transfer learning performance of our proposed
CLCE. Here, adhering to the widely accepted paradigm for achieving
state-of-the-art results, models are initialized with publicly-available
weights from pretraining on ImageNet-21k [7] since they are
state-of-the-art, and are fine-tuned on smaller datasets using our
new loss function. We leverage 8 datasets: CIFAR-100 [24],
CUB-200-2011 [55], Caltech-256 [14], Oxford 102 Flowers [40],
Oxford-IIIT Pets [43], iNaturalist 2017 [20], Places365 [70], and
ImageNet-1k [7]. We adhere to official train/test splits and report
mean Top-1 test accuracy over three different initializations.

Tab. 2 presents the results of transfer learning, which offers fur-
ther evidence of the effectiveness of our proposed CLCE approach
beyond few-shot scenarios. When applied to four state-of-the-art im-
age models, including BEiT-3, ResNet-101, ViT-B and MAE, our
proposed CLCE approach consistently surpasses other methods, in-
cluding the standard CE, H-SCL [22] and the same weighted com-
bination of CE and SupCon loss as CLCE. A paired t-test confirms
these improvements as statistically significant (p < 0.05). While
the increase in performance with BEiT-3-CLCE over the BEiT-3-
CE baseline is modest in some cases, such as the rise from 98.00%
(BEiT-3-CE) to 98.93% (BEiT-3-CLCE) on CUB-200, it shows sig-
nificant enhancements in challenging datasets with a higher level of
class diversity. A notable example is iNaturalist2017, which has 5089
different classes, where CLCE leads to a marked improvement in ac-
curacy from 72.31% to 75.72%. This substantial increase suggests
that CLCE’s benefits are more pronounced in more varied datasets.
In the case of ImageNet-1k, accuracy increased from 85.40% (BEiT-
3-CE) to 86.14% (BEiT-3-CLCE), setting a new state-of-the-art for
base models (88 million parameters) 2. We observe similar improve-
2 https://paperswithcode.com/sota/image-classification-on-imagenet
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CIFAR-FS FC100 miniImageNet tieredImageNet
Model Loss 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

[8] Transductive 76.58±0.68 85.79±0.50 43.16±0.59 57.57±0.55 65.73±0.68 78.40±0.52 73.34±0.71 85.50±0.50
[67] Meta-QDA 75.83±0.88 88.79±0.75 - - 67.83±0.64 84.28±0.69 74.33±0.65 89.56±0.79
[18] FewTRUE-ViT 76.10±0.88 86.14±0.64 46.20±0.79 63.14±0.73 68.02±0.88 84.51±0.53 72.96±0.92 87.79±0.67
[18] FewTRUE-Swin 77.76±0.81 88.90±0.59 47.68±0.78 63.81±0.75 72.40±0.78 86.38±0.49 76.32±0.87 89.96±0.55
[21] BAVARDAGE 82.68±0.25 89.97±0.18 52.60±0.32 65.35±0.25 77.85±0.28 88.02±0.14 79.38±0.29 88.04±0.18

ResNet-101 CE 69.80±0.84 85.20±0.62 43.71 ±0.73 58.65±0.74 55.73±0.85 73.86±0.65 46.93±0.85 62.93±0.76
ResNet-101 H-SCL [22] 67.25±0.86 84.51±0.65 41.34±0.72 57.02±0.70 53.38±0.79 70.29±0.63 44.43±0.82 60.83±0.71
ResNet-101 CE+SupCon 73.61±0.80 86.15±0.53 45.30±0.62 60.18±0.72 57.49±0.82 75.63±0.61 49.44±0.79 66.47±0.60
ResNet-101 CLCE (this work) 76.14±0.75 87.93±0.48 49.48±0.57 64.31±0.70 66.20±0.74 83.41±0.55 63.61±0.72 79.83±0.51
BEiT-3 CE 83.68±0.80 93.01±0.38 66.35±0.95 84.33±0.54 90.62±0.60 95.77±0.28 84.84±0.70 94.81±0.34
BEiT-3 H-SCL [22] 82.21±0.80 91.49±0.37 65.27±0.98 82.61±0.52 88.57±0.62 93.03±0.29 81.37±0.73 93.26±0.33
BEiT-3 CE+SupCon 84.93±0.74 93.36±0.34 67.58±0.86 86.10±0.57 91.04±0.55 95.97±0.24 85.72±0.64 95.33±0.29
BEiT-3 CLCE (this work) 87.00±0.70 93.77±0.36 69.87±0.91 87.06±0.52 92.35±0.53 96.78±0.23 87.24±0.62 96.09±0.29

Table 1. Comparison to baselines on the few-shot learning setting. Average few-shot classification accuracies (%) with 95% confidence intervals on test splits
of four few-shot learning datasets.
Model Loss CIFAR-100 CUB-200 Caltech-256 Oxford-Flowers Oxford-Pets iNat2017 Places365 ImageNet-1k

ResNet-101 CE 96.27 84.62 81.38 95.71 93.24 66.11 54.73 78.70
ResNet-101 H-SCL [22] 92.78 77.14 78.64 92.34 92.58 63.14 52.02 77.10
ResNet-101 CE+SupCon 96.31 84.70 81.61 95.73 93.49 66.90 55.41 79.03
ResNet-101 CLCE (this work) 96.92 87.48 85.05 96.33 94.21 67.93 57.30 80.16

ViT-B CE 87.13 76.93 90.92 90.86 93.81 65.26 54.06 77.91
ViT-B CLCE (this work) 88.53 78.21 92.10 92.04 94.01 71.25 58.70 83.94

MAE CE 87.67 78.46 91.82 91.67 94.05 70.50 57.90 83.60
MAE CLCE (this work) 90.29 81.30 93.11 92.82 94.88 71.62 58.40 84.02

BEiT-3 CE 92.96 98.00 98.53 94.94 94.49 72.31 59.81 85.40
BEiT-3 H-SCL [22] 89.50 95.70 96.24 92.60 93.28 68.51 56.66 82.25
BEiT-3 CE+SupCon 92.74 98.06 98.65 94.92 94.77 73.58 60.52 85.70
BEiT-3 CLCE (this work) 93.56 98.93 99.41 95.43 95.62 75.72 62.22 86.14

Table 2. Comparison to baselines on transfer learning setting. The results are Top-1 classification accuracies across eight diverse datasets.ments in other transformer-based models, such as ViT and MAE.
The use of CLCE in fine-tuning ResNet-101 also resulted in sig-
nificant performance gains, particularly in the Caltech-256 dataset.
Here, the model’s accuracy increases from 81.38% (ResNet-101-CE)
to 85.05% (ResNet-101-CLCE). Compared to ResNet-101-CE, there
has been an average increase in accuracy of 1.83% for ResNet-101-
CLCE. Furthermore, H-SCL [22] yields inferior results compared to
CE, mirroring the result observed in few-shot scenarios. Overall, the
consistent achievement of high accuracies across diverse datasets us-
ing models fine-tuned with CLCE, especially ResNet-101 and BEiT-
3, underscores the effectiveness of CLCE in improving model perfor-
mance. Remarkably, this is achieved without resorting to specialized
architectures, extra data, or heightened computational requirements,
thereby establishing CLCE as a powerful alternative to traditional
CE.

4.3 Reducing Batch Size Dependency

We evaluate the effect of batch size on the performance, specifically
comparing our CLCE approach with CE and SupCon [23]. The
results, as detailed in Tab. 3, indicate that SupCon’s performance is
sensitive to batch size variations, a limitation not observed with CE.
Particularly, SupCon shows inferior performance compared to CE
with the commonly used batch size of 64 on both tested datasets.
Even when the batch size is increased to 128, SupCon continues to
underperform relative to CE. In our experiments, SupCon generally
needs a batch size exceeding 512 to outperform CE, a requirement
that is impractical for most single-GPU setups. This scenario mirrors
the results of H-SCL [22] in the context of few-shot and transfer
learning. In contrast, CLCE not only surpasses CE performance
on the iNat2017 dataset with a 1.41% accuracy improvement with
batch size of 64 but also demonstrates an even more performance
gain of 3.52% in accuracy with batch size of 128. Thus, our CLCE
approach significantly mitigates the dependency on large batch
sizes typically associated with contrastive learning approaches like

Loss Batch Size CIFAR-FS iNat2017

CE 64 83.68 72.31
CE 128 83.39 72.20

SupCon [23] 64 80.31 69.05
SupCon [23] 128 82.17 69.93

CLCE (this work) 64 84.59 73.72
CLCE (this work) 128 87.00 75.72

Table 3. Impact of different batch size. Performance of BEiT-3 base model
when trained on CIFAR-FS and iNat2017 datasets. “CE" denotes cross-
entropy loss. “SupCon" denotes supervised contrastive learning loss. “CLCE"
denotes our proposed joint loss.
SupCon and H-SCL. The reduction in dependency on large batch
sizes greatly enhances the adaptability and effectiveness of CLCE
in diverse computational settings, such as environments with budget
GPUs equipped with 12 GB of memory.

Moreover, gradient accumulation is commonly used in cross-
entropy loss to achieve a similar effect when requiring large batch
sizes. However, gradient accumulation is very challenging in
contrastive learning due to the need to ensure that the accumulated
gradients accurately reflect the contrastive nature of the task,
particularly in maintaining the integrity of positive and negative
pair distributions. This also increases the complexity of maintaining
effective sampling strategies which could vary among datasets, in
pairs or triplets across accumulation steps. Thus, gradient accumu-
lation is an inadequate method for overcoming the dependency on
large batch sizes. CLCE, on the other hand, offers a more efficient
and effective solution.

4.4 Optimizing λ: Bridging CE and LACLN

Our proposed CLCE incorporates a hyperparameter, λ, to control
the contributions of the CE term and the proposed LACLN term,
as shown in Eq. 1. To understand the influence of λ, we evaluate its
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Figure 2. Evaluation of the impact of the λ hyperparame-
ter. Results on eight tested datasets with λ values ranging from
{0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. The numerical details for these figures
are provided in the supplementary material [35].effect on classification accuracy in few-shot learning and transfer
learning. Fig. 2 presents the test accuracy for varying values of λ.
Our experiments reveal a consistent trend: as the weight assigned to
the LACLN term (λ) increases, performance progressively improves
across all tested datasets, peaking at λ = 0.9. For instance, this
optimal setting yields an average performance boost of 2.14% and
2.74% over the exclusive use of either the LACLN or CE term on
four few-shot datasets. This trend also manifests in transfer learning
settings, highlighting the complementary nature of CE and LACLN.
Thus, optimizing this balance is crucial for maximizing performance
with CLCE.

CE CL HNM CIFAR-FS iNat2017

✓ 83.68 72.31
✓ ✓ 84.85 73.53
✓ ✓ ✓ 87.00 75.72

Table 4. Results on CIFAR-FS and iNat2017 when training BEiT-3 base
model using ablated versions of our CLCE. “CE" denotes cross-entropy loss.
“CL" refers to our proposed label-aware contrastive learning, and “HNM"
refers to hard negative mining.

4.5 Ablation Study

We conducted an ablation study on the CIFAR-FS and iNat2017
datasets to evaluate the contributions of two key components in our
proposed loss: the proposed label-aware contrastive learning loss
without hard negative mining (CL), and the proposed hard negative
mining strategy (HNM), as presented in Tab. 4. Across both tested
datasets, integrating CL with CE is essential for achieving better per-
formance than the CE—e.g. on the CIFAR-FS dataset, there is a no-
table performance increase of 1.17%. Meanwhile, the integration of

our proposed HNM is critical for CLCE’s enhanced performance,
representing one of the main contributions of this paper. For exam-
ple, it yields a gain of 2.19% accuracy on the iNat2017 dataset com-
pared to the variant of CLCE without HNM. Hence, we conclude that
both components are important and complementary.

(a) CE (b) CLCE（a) CE for ‘Tulips’ （b) CLCE for ‘Tulips’
Figure 3. Plot of cosine similarity distribution across the “tulips” class from
CIFAR-100. Blue represents similarities of positive samples, while orange
represents similarities of negative samples.

(a) CE for ‘Cloud’ (b) CLCE for ‘Cloud’

(c) CE for ‘Camel’ (d) CLCE for ‘Camel’

（a) CE for ‘Cloud’ （b) CLCE for ‘Cloud’
Figure 4. Plot of cosine similarity distribution across the “cloud” class from
CIFAR-100. Blue represents similarities of positive samples, while orange
represents similarities of negative samples.

4.6 Embedding Quality Analysis

To validate the enhancements brought by the proposed approach,
CLCE, we perform a thorough evaluation focusing on the geometric
characteristics of the generated representation spaces. We hypoth-
esize that our CLCE enhances the quality of embeddings, thereby
sharpening class distinction and improving performance. To elabo-
rate, we examine the CE embeddings and CLCE embeddings pro-
duced by the BEiT-3 base model. Specifically, we evaluate two key
aspects: (1) Distributions of cosine similarities between image pairs.
This assessment provides insights into how well the model differen-
tiates between classes in the embedding space. (2) Visualization of
the embedding space using the t-SNE algorithm [53]. This visualiza-
tion allows us to observe the separation or clustering of data points
belonging to different classes. (3) We employ the Isotropy Score as
defined by [38] to evaluate the quality of produced embeddings. The
Isotropy Score measures the distribution of data in the embedding
space and serves as a metric for the quality of the produced embed-
dings. Historically, isotropy has served as an evaluation metric for
representation quality [1]. This is based on the premise that widely
distributed representations across different classes in the embedding
space facilitate better distinction between them.

We present the pairwise cosine similarity distributions of CE and
CLCE embeddings in Figs. 3 and 4. Specifically, we randomly se-
lect the “tulips” and “cloud” classes from CIFAR-100 to compute
cosine similarities for positive (same class) and negative pairs (differ-
ent classes). Observations from these plots reveal that the CLCE em-



beddings demonstrate superior separation between classes and less
overlap between positive and negative samples compared to CE.

(a) BEiT-3-CE (b) BEiT-3-SCHaNe(a) CE (b) CLCE

Figure 5. Embedding Space Visualization for CE vs. CLCE, over twenty
CIFAR-100 test set classes using t-SNE. Each dot represents a sample, with
distinct colors indicating different label classes.In Fig. 5, the t-SNE visualization of the embedding space for CE
and CLCE across twenty CIFAR-100 classes. The CE embeddings
(Fig. 5a) display instances where the same class nodes are relatively
closely packed but also reveal many outliers. This suggests a re-
duced discriminative capability. On the contrary, CLCE embeddings
(Fig. 5b) display more separated and compact class clusters, suggest-
ing improved discriminative capabilities.

Formally, we calculate the quantitative Isotropy Score (IS) [38],
which is defined as follows:

IS(V) =
maxc⊂C

∑
v⊂V exp (CTV )

minc⊂C

∑
v⊂V exp (CTV )

(4)

where V is a set of vectors, C is the set of all possible unit vectors
(i.e., any c so that ||c|| = 1) in the embedding space. In practice, C
is approximated by the eigenvector set of V TV (V are the stacked
embeddings of v). The larger the IS value, the more isotropic an em-
bedding space is (i.e., a perfectly isotropic space obtains an IS score
of 1).

Model iNaturalist2017 Imagenet-1k Places365

BEiT3-CE 0.32 0.27 0.34
BEiT3-CLCE 0.98 0.92 0.93

Table 5. Comparison of Isotropy Score across three datasets for BEiT-3-CE
and BEiT-3-CLCE. A higher value is better. A higher Isotropy Score indicates
better isotropy and generalizability.

Tab. 5 demonstrates that the IS score for BEiT-3-CLCE is su-
perior to that of BEiT-3-CE, confirming that CLCE produces a
more isotropic semantic space. The BEiT-3-CE embeddings are
more anisotropic, implying that BEiT-3-CLCE embeddings more
distinctly separate the different classes.

These observations indicate that the proposed CLCE approach
restructures the embedding space to enhance class distinction, ad-
dressing the generalization limitation of the CE. This enhancement is
particularly effective for few-shot scenarios, where limited labelled
data requires the model to rely more on high-quality, discriminative
representations.

5 Discussion and Conclusion
Limitations. While our CLCE approach advances the state-of-the-
art, it still has certain limitations. Firstly, CLCE shows increased per-
formance with larger batch sizes. As Table 3 illustrates, CLCE sur-
passes CE in accuracy in few-shot and transfer learning scenarios at a
batch size of 64, with further improvements observed at larger batch
sizes. Secondly, our approach applies hard negative mining solely to

the contrastive learning component and not to the CE component.
This is due to differing implementations of hard negative mining
in each loss. In cross-entropy, hard negatives are identified based
on loss values, necessitating a unique strategy that might interfere
with the existing sampling process in contrastive learning and poten-
tially cause conflicting outcomes. Additionally, the divergent goals
of cross-entropy and contrastive learning, where the former focuses
on minimizing the discrepancy between predicted and true distribu-
tions and the latter emphasizes embedding similarities, complicate
the use of a unified hard negative mining approach.

Conclusion. In this work, we proposed a approach for training im-
age models, denoted CLCE. CLCE combines label-aware contrastive
learning with hard negative mining and CE, to address the shortcom-
ings of CE and existing contrastive learning methods. Our empir-
ical results demonstrate that CLCE consistently outperforms tradi-
tional CE and prior contrastive learning approaches, both in few-
shot learning and transfer learning settings. Furthermore, CLCE of-
fers an effective solution for researchers and developers who can
only access commodity GPU hardware, as CLCE maintains its effec-
tiveness when working with smaller batch sizes that can be loaded
onto cheaper GPU cards with less on-board memory. To summa-
rize, our comprehensive investigations and robust empirical evidence
compellingly substantiate our methodological decisions, underscor-
ing that CLCE serves as a superior alternative to CE for augmenting
the performance of image models for image classification.
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