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Abstract. The ability to interpret Machine Learning (ML) mod-
els is becoming increasingly essential. However, despite significant
progress in the field, there remains a lack of rigorous characteriza-
tion regarding the innate interpretability of different models. In an
attempt to bridge this gap, recent work has demonstrated that it is
possible to formally assess interpretability by studying the computa-
tional complexity of explaining the decisions of various models. In
this setting, if explanations for a particular model can be obtained
efficiently, the model is considered interpretable (since it can be ex-
plained “easily”). However, if generating explanations over an ML
model is computationally intractable, it is considered uninterpretable.
Prior research identified two key factors that influence the complexity
of interpreting an ML model: (i) the type of the model (e.g., neu-
ral networks, decision trees, etc.); and (ii) the form of explanation
(e.g., contrastive explanations, Shapley values, etc.). In this work, we
claim that a third, important factor must also be considered for this
analysis — the underlying distribution over which the explanation is
obtained. Considering the underlying distribution is key in avoiding
explanations that are socially misaligned, i.e., convey information
that is biased and unhelpful to users. We demonstrate the significant
influence of the underlying distribution on the resulting overall inter-
pretation complexity, in two settings: (i) prediction models paired with
an external out-of-distribution (OOD) detector; and (ii) prediction
models designed to inherently generate socially aligned explanations.
Our findings prove that the expressiveness of the distribution can
significantly influence the overall complexity of interpretation, and
identify essential prerequisites that a model must possess to generate
socially aligned explanations. We regard this work as a step towards a
rigorous characterization of the complexity of generating explanations
for ML models, and towards gaining a mathematical understanding
of their interpretability.

1 Introduction

Ensuring the interpretability of ML models is becoming increasingly
vital, as it enhances their trustworthiness, particularly when deployed
in safety-critical systems [23]. However, despite significant advance-
ments in the field, there remains a notable lack of mathematical rigor
in understanding the inherent interpretability of various ML models.
For instance, many fundamental claims within interpretability, such
as “decision trees are more interpretable than neural networks", are
often regarded as folklore and lack sufficient mathematical rigor.
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To bridge this gap, work by Barcelo et al. [6] proposes assessing
the interpretability of an ML model by examining the computational
complexity involved in generating various types of explanations for it.
The idea is that if explanations can be efficiently obtained for an ML
model, it can be considered interpretable. Conversely, if obtaining
explanations is computationally intractable, the model is deemed
uninterpretable. For example, while obtaining certain explanation
forms for decision trees can be computed in polynomial or even linear
time, these same tasks become NP-hard for neural networks [6, 26, 24].
This provides rigorous mathematical evidence that neural networks
are indeed less interpretable than decision trees in these contexts.

The computational complexity of obtaining explanations was stud-
ied in a variety of different settings [6, 47, 9], in which the computa-
tional complexity is typically analyzed along two main axes: (i) the
model type and (ii) the explanation form. For example, computing
Shapley value explanations for decision trees can be obtained in
polynomial time [3, 46], while obtaining minimum size contrastive
explanations for neural networks is NP-complete [6].

The Distribution Component. In many explainability methods, un-
derstanding the rationale behind a specific input prediction often
involves defining an explanation that satisfies certain properties in
inputs similar to the one being interpreted. For instance, inputs that
are identical to the original one in most features, with differences
in only a few. This approach can be problematic because these new
inputs might be out-of-distribution (OOD), and may deviate substan-
tially from inputs of interest. Hence, the OOD inputs may affect the
explanation in unexpected ways, and convey unintuitive information
to users. Hase et al. [19] refer to explanations that disregard the input
distribution as socially misaligned, i.e., convey information that is
biased and unhelpful to users.

This general OOD phenomenon in explanations is termed “the
OOD problem of explainability" [19] and is encountered in numer-
ous explanation forms, including counterfactual explanations [37],
contrastive explanations [50, 17], sufficient explanations [19, 50, 17],
and Shapley values [42]. Therefore, many practical explanation tech-
niques aim to mitigate the impact of OOD instances, making this a
crucial aspect of computing more precise explanations [31, 11, 49,
19, 44, 53, 43].

In this work, we argue that evaluating the computational complexity
of explaining the decision of a model, should not rely solely on the
model type and the explanation form, but also on the underlying
distribution over which the explanation is computed. The distribution
component is crucial for ensuring that the computed explanations are
socially aligned and meaningful. In this paper, we illustrate the impact
of this factor on the overall interpretation complexity, in various
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settings and scenarios.

A Running Example. Consider the task of classifying low-
dimensional images as either “0" or “1". Due to the simplicity of
this task, let us assume that it can be effectively learned using a sim-
ple decision tree classifier. Given an image classified as “0", we can
interpret the prediction of the decision tree using a local, post-hoc
explainability method. For instance, we can obtain a sufficient reason
S [26, 13, 7]: a subset of features (in this case, pixels) that, when
fixed, ensure the image remains classified as “0”, regardless of the
assignment of the additional features S. Fortunately, since this task
was learned by a decision tree classifier, obtaining a locally minimal
sufficient reason can be achieved in polynomial time [24].

However, despite their appeal, sufficient reasons, similarly to other
explanation forms, suffer from the OOD problem of explainability [19,
50, 17]. In this particular case, the sufficient reason S may take into
account OOD assignments over S. In other words, setting the pixels
of S to partial images that are OOD (e.g., images featuring unrelated
digits, or cats) might result in the image being classified as “1”. This
will preclude S from being a sufficient reason — even if it is one when
taking into account only the context of interest (i.e., all in-distribution
images of the digits “0” or “1”).

A common solution for bridging this gap is to train another model
to detect OOD inputs, and then use it to dismantle the effect of any
misleading assignment [31, 11, 49, 19, 44, 53]. However, the task of
OOD detection is considered very challenging, both in theory [15, 36]
and in practice [22, 40, 10] — as modeling the feature distribution
is often harder than the original prediction task [42]. Hence, obtain-
ing an OOD classifier may require training a very expressive model,
such as a generative model that approximates the domain distribution
pφ(x). For our running example, for instance, learning to distinguish
between in-distribution images (“0” or “1”) and OOD images (any
other possible image) may be a substantially harder task than learning
to classify images of “0” and “1”. Such a task may require the use of
a much more expressive model, such as a deep generative neural net-
work. The complexity of obtaining a sufficient reason S that ignores
the effect of any OOD assignment may thus be much greater than that
of simply explaining the decision tree classifier, without considering
the distribution. Revisiting our running example, the findings in this
study demonstrate that performing this task is indeed NP-hard, de-
spite the fact that computing such an explanation without distribution
alignment can be done in polynomial time.

Paper Structure. In Sec. 2, we start by covering the relevant back-
ground for this work. Next, in Sec. 3, we examine a wide variety of
explanation forms, such as sufficiency-based, contrastive-based, and
counting-based explanations, and study how they can be formalized
to maintain social alignment. Specifically, we delve into the common
scenario where the classification model is coupled with an additional
component — an OOD detector. This detector plays a crucial role in
mitigating the impact of OOD counterfactuals in explanations, and
can be used to align various explanation forms with a distribution of
interest. We proceed to demonstrate that diverse explanation forms can
be unified through a single framework, which captures their shared
structure. Given an OOD detector, this framework can be used to
preserve the alignment of each of these explanations; as well as to
study the computational complexity of obtaining them.

In Sec. 4 we prove that for any explanation matching our abstract
form, the complexity of interpreting a model is dominated by the
complexity of interpreting an OOD detector for the same type of
explanation. Since OOD detection is computationally hard [15], the
task of obtaining an aligned interpretation of the model may be sub-

stantially more complex than the misaligned form.
In Sec. 5 we study the specific case of self-aligned explanations.

Here, our focus shifts from relying on an external OOD-detection
model to the possibility of utilizing a single model that derives aligned
explanations. Specifically, we focus on the case of efficiently produc-
ing a single model that serves both as a classifier and as an OOD
detector, given that each of these is realized separately by the same
model class. As we prove, this capability correlates to the degree of
expressiveness inherent in various ML models — while some model
types possess the required level of expressiveness, others do not. We
prove these insights for specific model types and show that, assuming
P�=NP, both neural networks and decision trees have the capability to
derive self-aligned explanations, while linear classifiers do not.

Furthermore, related work is covered in Sec. 6. We conclude in
Sec. 7, and discuss the limitations of our theoretical framework, as
well as potential future work in Sec. 8.

Due to space limitations, we provide only concise overviews of
the proofs of our various claims, and refer the reader to the extended
version of our paper [1] for the comprehensive and more detailed
proofs.

2 Preliminaries

Domain

We assume a set of n features x = (x1, . . . , xn), where the domain
of each feature is xi ∈ {0, 1}. The entire feature space is denoted as
F = {0, 1}n. We seek to locally interpret the prediction of a binary
classifier f : F → {0, 1}, i.e., given an input x ∈ F, to explain the
prediction f(x) of the classifier over this specific input. We follow
common practice in the field, and concentrate on Boolean input and
output values, to make the presentation clearer [2, 47, 6]. However,
many of our findings are also applicable to scenarios involving real-
valued data.

Complexity Classes and Second-Order Logic (SOL)

The paper assumes basic familiarity with the common complexity
classes of polynomial time (PTIME) and nondeterministic polynomial
time (NP, co-NP). The second order of polynomial hierarchy, i.e., ΣP

2 ,
which is briefly mentioned in the paper, is the set of problems that
become members of NP given an oracle that solves co-NP problems
in O(1). We also discuss the class #P, which corresponds to the total
number of accepting paths of a polynomial-time nondeterministic
Turing machine. It is widely believed that PTIME� NP�ΣP

2 � #P [5].
We use the common convention L1 ≤p L2 to denote a polynomial-
time reduction from language L1 to L2, and L1 =p L2 to indicate
that such a reduction exists in both directions.

The paper also makes use of second-order logic (SOL) formulas
— a generalization of the first-order predicate logic. In both logic
forms, existential or universal quantifiers are applied to each variable
or subset thereof, so that the formula evaluates to either true or false.
However, we chose SOL formulas for our abstraction due to their high
expressivity (in contrast to first-order logic queries suggested in [2]),
as they can also encode an explanation size, which is infeasible with
FOL. As such, SOL-based queries are rigorous enough to enable the
formulation of general proofs that hold for any explanation within
this framework. For each SOL formula Q, we define #Q as the
corresponding counting problem over that formula — which counts
the number of satisfying assignments for Q. Given a finite number
of inputs, implying a finite logic-based model, each SOL formula
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is associated with a specific complexity class within the polynomial
hierarchy, and with a corresponding counting class.

Explainability Queries

We follow prior work [6, 9] and define an explainability query, de-
noted Q, which represents some form of interpretation. Q takes both f
and x as inputs, and it outputs information regarding the interpretation
of f(x). In line with previous work [34, 47, 2, 4, 9], our emphasis is
on explainability queries that output an answer to a decision problem
— providing a definite yes/no answer or, in the case of Q being a
counting problem, a numerical value. For example, Q can provide a
yes/no answer to the question is a specific subset of features a suffi-
cient reason? It can also count the number of possible assignments in
which the prediction is altered, or maintained.

Models

The techniques presented in this work are applicable to a diverse set of
model classes. Still, we focus our attention on a few popular models,
located at the extremities of the interpretability spectrum: decision
trees, linear classifiers, and neural networks. Specifically, we address
Free Binary Decision Diagrams (FBDDs), which serve as an extension
of decision trees, along with Perceptrons and Multi-Layer Perceptrons
(MLPs) employing ReLU activations. An exact formalization of these
models appears in the extended paper [1].

3 Socially Aligned Explainability Queries

Context Indicator

To cope with the undesired effects of OOD input assignments, we
consider some context C ⊆ F over which an explanation is to be
provided. Intuitively, context C denotes the entire potential set of
in-distribution inputs that we take into consideration when providing
an explanation, while disregarding the effect of any OOD assignment
from F \ C. Because describing the context C explicitly is clearly
non-trivial, in our framework, we instead assume the existence of a
context indicator π : F → {0, 1}: a binary classifier over a specific
context C, i.e., π(x) = 1{x∈C}.

Naturally, assuming the existence of a context indicator π that
perfectly captures the desired context C is non-trivial as well. For
instance, in our running example, this requires π to identify any
possible image of either “0” or “1”. Nevertheless, practical tools were
shown to be able to approximate such domains, for example, by using
generative-model-based OOD classifiers, trained to learn the data
distribution pφ(x) [48, 32]. In these particular scenarios, the indicated
C can be seen as a mere approximation of the true, intended context.

Socially Aligning Explainability Queries

Model interpretability is subjective, and this has led to the design of
multiple forms of explanations in recent years. We focus here on a
few widely used explanation forms, and analyze them rigorously.

Sufficiency-Based Explanations. A common definition of an expla-
nation for a model f ’s decision with respect to an input x is that of a
sufficient reason [26, 13, 7]. A sufficient reason is a subset of features
S ⊆ {1, . . . , n} such that, when fixed to the corresponding values in
x, determine that the prediction remains f(x), regardless of the other
features’ assignments [6, 34]. This notation is used quite often, and

aligns with commonly used explainability techniques [38]. Formally
put:

∀(z ∈ F). [f(xS ; zS̄) = f(x)] (1)

where (xS ; zS̄) denotes an assignment in which the values of S are
taken from x and, the remaining values (i.e., from S), are taken from
z.

Given a context C, indicated by π, a socially aligned sufficient
reason is defined as follows [50, 17]:

∀(z ∈ F). [π(xS ; zS̄) = 1 → f(xS ; zS̄) = f(x)] (2)

A widely observed convention in the literature is that smaller suf-
ficient reasons (relative to the size of |S|) are more meaningful than
larger ones [26, 6, 18]. Consequently, it is interesting to consider car-
dinally minimal sufficient reasons. Clearly, these can also be obtained
with respect to π. This leads us to our first explainability query:

MSR (Minimum Sufficient Reason):
Input: Model f , input x, context indicator π, and integer k.
Output: Yes, if there exists a sufficient reason S for f(x) with respect
to π such that |S| ≤ k, and No otherwise.

We note that we can consider the case of socially misaligned queries
as a trivial case of this definition, in which the context indicator is
the constant function π := 1, indicating the entire input space as
in-distribution.

Contrastive/Counterfactual-Based Explanations. A different ap-
proach to interpreting a model is by observing subsets of features
that, when altered, may cause the classification of the model to
change [26, 6]. These are referred to as contrastive explanations
or contrastive reasons, and the corresponding values are referred to as
counterfactual explanations. We define a subset S ⊆ {1, . . . , n} as
contrastive if altering its values may cause the original classification
f(x) to change:

∃z ∈ F. [f(xS̄ ; zS) �= f(x)] (3)

To avoid counterfactual OOD assignments, a contrastive subset S
can be obtained with respect to a context indicator π [50], by encoding:

∃z ∈ F. [π(xS̄ ; zS) = 1 ∧ f(xS̄ ; zS) �= f(x)] (4)

Similarly to sufficient reasons, smaller contrastive reasons tend
to be more meaningful. Here, too, it is usually more informative to
focus on cardinally minimal contrastive reasons, as expressed in the
following explainability query:

MCR (Minimum Change Required):
Input: Model f , input x, context indicator π, and integer k.
Output: Yes, if there exists some contrastive reason S such that |S| ≤
k for f(x) with respect to π, and No otherwise.

Counting-Based Explanations. Finally, another common explain-
ability form is based on exploring the number of assignment comple-
tions for maintaining (or altering) a specific classification [29, 14, 47].
As with previous explanation forms, we redefine the problem to avoid
counting OOD completions, which may cause the social misalignment
of the corresponding interpretation. In order to do so, we define the
completion count c of S with respect to π as:

c(S) := |{z ∈ {0, 1}|S|, π(xS̄ ; zS) = 1, f(xS̄ ; zS) �= f(x)}| (5)
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CC (Count Completions):
Input: Model f , input x, context indicator π, and subset of features
S.
Output: The completion count c(S) of f(x) with respect to π.

The widely used Shapley values [42], which serve as a common
form of explanation [33, 43], can also be characterized as a type of
counting problem [46, 3].

Abstract Query Form

Many of the explanation forms studied in the literature, including the
aforementioned ones, become more meaningful when the effect of
OOD counterfactuals are reduced. For analyzing how distributions
affect the complexity of obtaining explanations not only for one
specific explanation, but for a wide array of explanation forms, we
proceed to define abstract explainability queries. We then provide
general results regarding the computational complexity of obtaining
this abstract form of explanation.

The task of obtaining each of the explanation types discussed so
far can be achieved by invoking a decision procedure for determining
whether or not f(xS̄ ; zS) = f(x) (or for solving the corresponding
counting problem). These decision procedures receive a partial as-
signment (xS̄ ; zS) of a given input x, which fixes some features of x

while allowing the rest to change according to an arbitrary z; and their
goal is to determine whether these assignments preserve, or alter, the
classification outcome.

The task of deciding whether or not f(xS̄ ; zS) = f(x) can, in
turn, be formulated as an SOL formula, SOL¬f , which encodes that
f(xS̄ ; zS) �= f(x) (or, again, the counting problem over that for-
mula). If SOL¬f is false, then the answer to the original problem is
affirmative; and otherwise, it is negative.

The relevant formula is fully quantified, in a manner that represents
a specific explanation form. For example, contrastive reason queries
check whether there exists any assignment leading to a misclassifica-
tion, whereas sufficient reason queries ask whether the classification
stays constant for all possible completions. The goal is to eventu-
ally determine whether the formula is true or not, and equivalently —
whether the explanation is correct.

In the extended paper [1], we show how each of the predefined
explainability queries can be formalized using this notion, in which
MSR (Minimum Sufficient Reason) and MCR (Minimum Change
Required) are possible solutions to an underlying satisfiability query
over SOL¬f , and CC (Count Completions) is the counting solution of
#SOL¬f . This can also be extended to additional explanation forms.

Definition 1. Let SOL¬f be an SOL formula encoding the query
f(xS̄ ; zS) �= f(x). We define an abstract query, Q, that receives f
and x as inputs, and answers whether SOL¬f is true. For the counting
case, Q returns the counting of #SOL¬f .

Next, we adjust this abstract query form to provide only socially
aligned explanations. This is performed by incorporating into the
formula the additional constraint π(xS̄ ; zS) = 1, which guarantees
that any explanation that satisfies the query is also in-distribution.

Definition 2. Let SOL¬f,π be an SOL formula encoding the query
f(xS̄ ; zS) �= f(x)∧ π(xS̄ ; zS) = 1. The respective aligned query, Q,
receives as inputs f , x, and π, and answers whether SOL¬f,π is true.
For the counting case, Q returns the counting of #SOL¬f,π .

Any of the aligned query forms mentioned in the previous section
can be described as an abstract notion of this query as we show in

the extended paper [1]. In essence, this abstract form captures various
(logically expressible) explanation formulations, over which we can
dismantle the effect of OOD counterfactuals.

By using this single, broader form of Q, we are able to prove
general properties regarding socially aligned explainability queries,
and deduce the complexity of interpreting these queries in various
settings.

4 The Complexity of Obtaining Socially Aligned
Explanations

A General Framework

To evaluate the computational complexity of interpreting a specific
class of models, denoted as CM, it is useful to define Q(CM) as the
computational problem represented by interpreting a set of models
within the class CM with respect to an explainability query Q [6,
9]. To illustrate, let us consider the class of multi-layer perceptrons
denoted as CMLP. MSR(CMLP) is then the computational problem of
obtaining cardinally minimal sufficient reasons for an MLP, given an
input x.

While this formalization is helpful for assessing the interpretability
of a specific model type, it does not consider the underlying context
and thus, it may produce socially misaligned explanations.

We revisit our running example, where our model f represents a
decision tree. We further assume that the decision of whether x ∈ C

(or equivalently, whether x is in-distribution) is learned by another
model, e.g., a deep neural network. In this scenario, the context indi-
cator π belongs to a different class than f (which is in CM). In such
a case, we should pose a different type of question that assesses the
computational complexity of providing a socially aligned explanation
for an instance classified by f . Specifically, we need to determine
the computational complexity of interpreting a model f ∈ CM while
ensuring its alignment with a context indicator function π ∈ Cπ . As
mentioned earlier, in many instances (including our example), π cor-
responds to a more expressive function than f , potentially dominating
the overall complexity. Therefore, we introduce the following notion
that enables us to assess the computational complexity of models in
CM with respect to a class of context indicators Cπ .

Definition 3. Given an explainability query Q, a class of predic-
tion models CM, and a class of context indicators Cπ , we define
Q(CM, Cπ) as the computational problem of Q defined by the set
of functions within CM, with respect to the contexts induced by the
functions of Cπ .

For our running example, Q(CDT, CMLP) denotes the computational
complexity of some explainability query Q, given that our classifica-
tion model is a decision tree and the OOD detector is a multi-layer
perceptron. We note that, similarly to the previously studied eval-
uation of Q(CM) [6], the formalization of Q(CM, Cπ) considers a
“worst-case” scenario of the corresponding alignment, and not any
parameter-specific configuration. This is captured by assessing the
corresponding complexity with respect to a class of prediction models
and a class of distribution indicators.

The Complexity of Q(CM, Cπ)
We prove a connection between the complexity of calculating an
aligned explanation Q(CM, Cπ), to the complexity of obtaining mis-
aligned explanations of either Q(CM) or Q(Cπ). This relation holds
in a broad sense, as we prove it for our abstract query form Q, defined
in Sec. 3.
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First, clearly, if 1 ∈ Cπ (1 is a trivial function that accepts any
possible input as in-context), then Q(CM, Cπ) is polynomially re-
ducible from Q(CM). We note that 1 ∈ Cπ is a trivial request for
any expressive class of context indicators, for example, assuming the
existence of a neural network that always outputs 1.

Theorem 1. If 1 ∈ Cπ then Q(CM) ≤p Q(CM, Cπ).

This result is, of course, not surprising and a more interesting
connection to explore is the less straightforward relation between
Q(CM, Cπ) and Q(Cπ). We show that a similar result to the former
can be obtained in this case as well, provided that Cπ is symmetrically
constructible (given some f ∈ Cπ , we can construct in polynomial
time ¬f ∈ Cπ); and that CM is naively constructible (given some
x ∈ F, it holds that we can construct in polynomial time 1{x} ∈
CM). A full formalization of these conditions is provided in our
extended paper [1]. Later in this section, we also demonstrate that
these constructions also hold for popular function classes, and provide
model-specific instantiations of our framework.

Theorem 2. If CM is symmetrically constructible and Cπ is naively
constructible, then Q(Cπ) ≤p Q(CM, Cπ).

Theorem 2 indicates that, given basic assumptions regarding the
expressivity of CM and Cπ , it holds that the complexity of evaluating
Q(CM, Cπ), i.e., interpreting a model from CM with respect to a
model from Cπ , for some explainability query Q, is at least as hard
as interpreting Q(Cπ), i.e., interpreting the OOD detector π. This is
significant — as in many cases Cπ , the class associated with the input
distribution, is much more expressive than CM , the class associated
with the prediction model, and hence may be much harder to interpret.

Proof sketch. The reduction exploits the naive constructibility of CM,
with the aim of rendering obsolete the conjunct responsible for vali-
dating whether a subset is contrastive. The reduction takes advantage
of the fact that π ∈ Cπ is symmetrically constructible in order to
transform π to validate the model instead of the indicated context. By
employing this approach, it becomes feasible to polynomially reduce
any SOL formula representing Q(Cπ) to an equivalent SOL formula
under the formulation of Q(CM, Cπ). Consequently, any decision or
counting solution for the original SOL formula will be tantamount to
solving an equivalent SOL formula corresponding to a query seeking
socially aligned explanations.

Model-Specific Framework Instantiations

Next, we present specific results when focusing on FBDDs, Percep-
trons, and MLPs. It is straightforward to show that these classes of
models match our theoretical framework, as the following holds (and
proven in our extended paper [1]):

Proposition 1. FBDDs, Perceptrons, and MLPs are all symmetrically
constructible and naively constructible.

Dominance of Interpreting MLPs. We prove that when dealing
with complexity classes of explainability queries that are from the
polynomial hierarchy (such as NP, ΣP

2 , etc.), the complexity class
associated with the MLP always dominates the overall complexity.
Hence, the exact complexity class of Q(CM, Cπ) when CM = CMLP

and/or Cπ = CMLP, is equivalent to that of Q(CMLP). This claim holds
for any class of polynomially computable functions.

Theorem 3. Let CM, Cπ be classes of polynomially computable func-
tions such that CM = CMLP or Cπ = CMLP. If Q(CMLP) is K-complete,

where K is a complexity class of the polynomial hierarchy (or the
class associated with its counting problem), then Q(CM, Cπ) is also
K-complete.

The “hardness” part of Theorem 3 is a direct consequence of Theo-
rems 1 and 2. However, when specifically considering MLPs, com-
pleteness also holds. The proof of this claim is relegated to the ex-
tended paper [1], and is a result of the fact that any Boolean circuit
can be polynomially reduced to an MLP [6]. This relation implies that
the “hardest” possible complexity class in the polynomial hierarchy is
always associated with the one for interpreting an MLP over Q. Fig. 1
depicts the relations among different complexity classes, as derived
from Theorems 1, 2, and 3.

����� �����
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Figure 1: A visual illustration of Theorems 1, 2, and 3. Dashed lines
depict that both queries are in the same complexity class, and are hard
for that class. Arrows are directed from the query with the “easier”
complexity class to the query with the “harder” complexity class.

In Table 1, we exemplify the aforementioned explainability queries
(MCR, MSR, and CC) and a specific scenario where CM is set to either
CFBDD or CPerceptron, whereas the context indicator Cπ is set to CMLP

(this is the case of our running example, in which the OOD detection is
performed using a more expressive model than the original classifier).
Hence, Theorem 3 implies that the complexity of solving the aligned
query is primarily determined by the complexity involved in using an
MLP, as summarized in Table 1.

5 “Self-Alignment”: Incorporating Social
Alignment within a Single Model

Until now, we focused on the general scenario in which f and π are
chosen from two different model classes (for instance f is a decision
tree, and π is a neural network). However, in some cases, f and π
can be two models of the same type, i.e., from the same class. In this
scenario, given a classifier and an OOD detector, both from the same
class, practitioners might decide to train a single model that learns
both the prediction task and the alignment task. More formally, we
say that a single model class C is “self-aligned” when it is expressive
enough to incorporate this dual procedure. This is demonstrated by
the fact that given a model f and a context indicator π, a new model g
can be efficiently constructed to show the alignment of f with respect
to the distribution indicated by π:

Definition 4. A class of models C is self-aligned if for any f, π ∈ C,
and any inputs x and I , there exists a polynomially constructible
function g ∈ C, such that:

〈f, π, x, I〉 ∈ Q(C, C) ⇐⇒ 〈g, x, I〉 ∈ Q(C) (6)
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Table 1: The computational complexity of Q(CM) and Q(CM, Cπ) with respect to various explainability queries.

CM = CFBDD CM = CPerceptron

Q(CM ) Q(CM, CMLP) Q(CM) Q(CM, CMLP)

MCR PTIME NP-complete PTIME NP-complete

MSR NP-complete ΣP
2 -complete PTIME ΣP

2 -complete

CC PTIME #P-complete #P-complete #P-complete

Intuitively, for any possible explainability query within Q (decision
or counting), explanations of f , aligned by π, can be expressed by a
single aggregated function g. Clearly, g must be at least as expressive
as the original models f and π. This raises the question of how
expressive a class of models C should be, for it to be self-aligned.

Theorem 4. Given a class of models C, if for any f1, f2 ∈ C, we can
polynomially construct g := f1[op]f2 ∈ C, for [op]∈ {∧,→}, then
C is self-aligned.

Intuitively, classes of models that are capable of expressing the
logical operators → and ∧ are capable of “capturing” that a given
explanation form is determined by its underlying distribution. The
proof of this theorem is relegated to the extended paper [1], and can
be obtained by showing an equivalence between the two underlying
formalizations.

If self-alignment implies that, given a prediction model f and a
context indicator π, we can attain a single aggregated model g — then
clearly the computational complexity of interpreting f ∈ C with
respect to π ∈ C (i.e., the complexity of Q(C, C)) is correlated to the
complexity of interpreting g ∈ C (i.e., the complexity of Q(C)). This
can be demonstrated by the subsequent proposition:

Proposition 2. If the conditions in Theorem 4 hold for a class of
models C, then Q(C, C) =P Q(C).

Model-Specific Results

We move on to analyze which of the aforementioned model classes
incorporate self-alignment. First, we show that both FBDDs and MLPs
are self-aligned, which is a result of their capability to polynomially
express → and ∧ relations within their class:

Proposition 3. FBDDs and MLPs are self-aligned, and hence, it fol-
lows that: Q(CFBDD, CFBDD) =P Q(CFBDD) and Q(CMLP, CMLP) =P

Q(CMLP).

However, in contrast to decision trees and neural networks, linear
classifiers lack the ability to capture the notion of self-alignment. It is
important to note that a single Perceptron cannot inherently represent
the → and ∧ relations over two other Perceptrons. That said, it is
worth emphasizing that this observation alone does not conclusively
establish their lack of self-alignment, as this condition is sufficient
but not necessary. To rigorously prove the inability of Perceptrons to
be self-aligned, we prove the subsequent proposition:

Proposition 4. While the query MCR(CPerceptron) can be solved in
polynomial time, the query MCR(CPerceptron, CPerceptron) is NP-complete.

Proof sketch. Membership results from the fact that we can guess a
subset of features S and validate whether it is contrastive for f and
whether it is also in-distribution (by feeding it to π). For hardness,
we reduce from SSP (the k-subset-sum problem), which is a classic

NP-complete problem. The reduction exploits the ranges of the Per-
ceptrons of both f and π in order to bind the target sum T of the
subset, both from above and from below.

Building upon Proposition 4, we can deduce the following corollary
(proved in the extended paper [1]):

Theorem 5. Assuming that P �= NP , the class CPerceptron is not
self-aligned.

These findings underscore a crucial aspect concerning the inter-
pretability of Perceptrons. While producing explanations pertaining to
them can be achieved with low computational complexity (providing
further evidence of their interpretability), they are not self-aligned.
Consequently, obtaining aligned explanations using Perceptrons ne-
cessitates the adoption of a more sophisticated model, that is expres-
sive enough to incorporate social alignment — and this, in turn, can
significantly increase the overall complexity of their interpretation.

6 Related Work

This work continues a line of research that focuses on Formal
XAI [25, 47, 4, 2, 27, 7, 8]. Prior studies have already investigated
the explanation forms that were analyzed within our work [2, 47,
4, 2], including sufficiency-based explainability queries (MSR) [26,
34], contrastive/counterfactual-based queries (MCR) [41, 28], and
counting-based queries (CC) [14]. Other work [17] defined formal
notions of sufficient and contrastive reasons under specific contexts
and suggested ways to compute them on a wide range of models [50].
However, these explanation forms were not analyzed with respect to
their overarching computational complexity. Closer to ours is the work
of Cooper et al. [12] which analyzes different properties (including the
computational complexity) of sufficiency-based explanations under
logical constraints. We also acknowledge the work of Arenas et al. [2],
which describes a general logic-based explanation form, similar to
our abstract query form. While their work focuses on explanations
of first-order logic forms for decision queries, our approach is more
expressive, encompassing second-order logic forms that incorporate
both decision-based and counting-based explanations.

Another line of research examines the computational complexity
of obtaining Shapley value-based explanations [3, 46, 35], where
alignment with respect to a given distribution is vital [42]. Specifically,
Van den Broeck et al. [46] identify a complexity gap in interpreting
Shapley values when considering fully factorized or Naive Bayes-
modeled distributions.

In some cases, the term “sufficient reason” is also defined as an
abductive explanation [26] and correlates with the notion of a prime
implicant for a Boolean classifier [14]. The CC query is associated
with probabilistic notions of explainability, by correlating the pre-
cision of the explanation with the number of possible input com-
pletions [38, 47]. A similar notion, formally known as a δ-relevant
set [29, 47], focuses on bounding this specific portion.

The dependency of explanations on OOD assignments has been
studied extensively [51, 43, 16, 20, 31, 21, 49, 42]. Specifically, many

G. Amir et al. / Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation 823



heuristic-based tools and frameworks have been proposed for dealing
with the OOD counterfactual problem in model explainability. These
include marginalizing the prediction of the model over possible coun-
terfactual assignments [53, 31, 49], sampling points in the proximity
of the original input [11, 39, 38], as well as counterfactual train-
ing [19, 45] — a method that, similarly to adversarial training [52],
seeks to robustify models to OOD counterfactuals. Other work focuses
on mitigating the effect of OOD assignments on the computation of
Shapley values [42, 30, 44]. In spite of these notable accomplish-
ments, the theoretical analysis of the OOD counterfactual problem
with respect to its computational complexity has yet to be thoroughly
examined.

7 Conclusion

Computational complexity theory stands as a potential avenue to for-
mally assess the interpretability of various ML models. Prior research
examined this by considering two main factors: the model type and the
explanation form. We claim that a third and important factor should be
taken into consideration — the underlying distribution over which the
explanation is computed. To achieve this goal, we generalize existing
explainability queries and show how a unified form can describe the
desired social alignment requirement for any explanation form under
our second-order logic formalization. Moreover, we present a frame-
work for assessing the computational complexity of these queries and
demonstrate that, for a broad range of model types and query forms,
providing socially aligned explanations is as hard as interpreting a
model designed to detect OOD inputs. As OOD detection is known
to be substantially difficult, such models may often require more ex-
pressive capacity than the original classification models, significantly
impacting the overall complexity of model interpretation. Finally, we
provide an analysis of the required capacity of models to inherently
produce aligned explanations without using an external OOD detector.
We hope that our work serves as a foundation for a deeper mathemat-
ical understanding of the interpretability pertaining to various ML
models.

8 Limitations and Future Work

Our framework can be extended along several different axes. First and
foremost, we note that assuming the existence of a context indicator π
for identifying OOD inputs is highly non-trivial. Previous work, both
theoretical and practical, has highlighted the challenges associated
with obtaining such an OOD detector [15, 36, 22, 40, 10]. However,
it is important to emphasize that our framework does not necessarily
assume the complete accuracy or correctness of such a classifier. In-
stead, π can be viewed as a function that provides an approximation
of the underlying context C. Therefore, future research endeavors
could center around evaluating the computational complexity of spe-
cific approximations tailored to particular contexts of interest. While
these approximations may only offer a partially guaranteed solution
to the alignment issue, they may still exhibit an improved complexity
overall.

Other limitations correspond to similar (non-aligned) approaches
for analyzing the computational complexity of obtaining explana-
tions [6, 47, 9]. Firstly, our analysis considers only a worst-case
scenario that may change under various parameter-specific configu-
rations. Secondly, the natural subjectivity of interpretability makes it
challenging to analyze the computational complexity of interpreting
a model in a single “correct” way. To address this issue, theoretical
frameworks define various explainability queries and evaluate them

separately. We regard our proof for a wide range of explainability
queries Q (the abstract query form) as potential evidence that the
shared characteristics among different types of explainability queries
can be utilized to offer more generalized assessments.

Finally, we highlight that our study primarily concentrates on
an OOD detector π(x), which classifies each input as either in-
distribution or OOD, rather than on the input distribution pθ(x) itself.
This approach is due to the strictly formal nature of the explanations
we investigate; an explanation is either valid or not, necessitating
a definitive categorization of the presence or absence of each in-
put. In contrast, probabilistic explanation forms, such as δ-relevant
sets [47, 29] or Shapley values [33, 42], are defined in relation to the
distribution itself and can also be assessed based on the computational
complexity of obtaining them. For instance, a recent study by Mar-
zouk et al. [35] explores the computational complexity of calculating
Shapley values within Markovian distributions. Future research can
focus on expanding the strictly formal explanation framework dis-
cussed here to include probabilistic explanation forms as well, where
complexity assessments would focus directly on the input distribution
pθ(x) rather than on the OOD detector π(x). Other, broader future
work can explore the relation between the computational complexity
of generating explanations (our current focus) and the complexity of
the explanations themselves. This can be achieved using various tools,
such as Kolmogorov complexity. We also cover additional extensions
of our framework in our extended paper [1].
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